Alkaline lacustrine shale is highly heterogeneous,and the complex relationship between the organicinorganic porosity network and hydrocarbon occurrence restricts the effectiveness of shale oil exploration and developm...Alkaline lacustrine shale is highly heterogeneous,and the complex relationship between the organicinorganic porosity network and hydrocarbon occurrence restricts the effectiveness of shale oil exploration and development.Herein,we investigated the Fengcheng Formation(P_(1)f)in Mahu Sag.This study integrated geochemistry,Soxhlet extraction,scanning electron microscopy,gas adsorption,and nuclear magnetic resonance T_(1)-T_(2)spectroscopy to elucidate the microscopic oil occurrence mechanisms in shales.Results indicate the presence of felsic shale,dolomitic shale,lime shale,and mixed shale within the P_(1)f.Matrix pores and microfractures associated with inorganic minerals are the predominant pore types in P_(1)f.Adsorbed oil primarily resides on the surfaces of organic matter and clay minerals,while free oil predominantly occupies inorganic pores and microfractures with larger pore sizes.Variations exist in the quantity and distribution of shale oil accumulation across different scales,where free oil and adsorbed oil are governed by dominant pores with diameters exceeding 10 nm and ineffective pores with diameters below 10 nm,respectively.Shale oil occurrence characteristics are influenced by organic matter,pore structure,and mineral composition.Felsic shale exhibits a high abundance of dominant pores,possesses the highest oil content,predominantly harbors free oil within these dominant pores,and demonstrates good mobility.Fluid occurrence in dolomitic shale and lime shale is intricate,with low oil content and a free oil to adsorbed oil ratio of 1:1.Mixed shale exhibits elevated clay mineral content and a scarcity of dominant pores.Moreover,ineffective pores contain increased bound water,resulting in medium oil content and limited mobility predominantly due to adsorption.Presently,shale oil mainly occurs in the dominant pores with a diameter larger than 10 nm in a free state.During the exploration and development of alkaline lacustrine shale oil resources,emphasis should be placed on identifying sweet spots within the felsic shale characterized by dominant pores.展开更多
The global energy demand is increasing rapidly,and it is imperative to develop shale hydrocarbon re-sources vigorously.The prerequisite for enhancing the exploitation efficiency of shale reservoirs is the systematic e...The global energy demand is increasing rapidly,and it is imperative to develop shale hydrocarbon re-sources vigorously.The prerequisite for enhancing the exploitation efficiency of shale reservoirs is the systematic elucidation of the occurrence characteristics,flow behavior,and enhanced oil recovery(EOR)mechanisms of shale oil within commonly developed nanopores.Molecular dynamics(MD)technique can simulate the occurrence,flow,and extraction processes of shale oil at the nanoscale,and then quantitatively characterize various fluid properties,flow characteristics,and action mechanisms under different reservoir conditions by calculating and analyzing a series of MD parameters.However,the existing review on the application of MD simulation in shale oil reservoirs is not systematic enough and lacks a summary of technical challenges and solutions.Therefore,recent MD studies on shale oil res-ervoirs were summarized and analyzed.Firstly,the applicability of force fields and ensembles of MD in shale reservoirs with different reservoir conditions and fluid properties was discussed.Subsequently,the calculation methods and application examples of MD parameters characterizing various properties of fluids at the microscale were summarized.Then,the application of MD simulation in the study of shale oil occurrence characteristics,flow behavior,and EOR mechanisms was reviewed,along with the elucidation of corresponding micro-mechanisms.Moreover,influencing factors of pore structure,wall properties,reservoir conditions,fluid components,injection/production parameters,formation water,and inorganic salt ions were analyzed,and some new conclusions were obtained.Finally,the main challenges associated with the application of MD simulations to shale oil reservoirs were discussed,and reasonable prospects for future MD research directions were proposed.The purpose of this review is to provide theoretical basis and methodological support for applying MD simulation to study shale oil reservoirs.展开更多
Gas-bearing shales have become a major source of future natural gas production worldwide.It has become increasingly urgent to develop a reliable prediction model and corresponding workflow for identifying shale gas sw...Gas-bearing shales have become a major source of future natural gas production worldwide.It has become increasingly urgent to develop a reliable prediction model and corresponding workflow for identifying shale gas sweet spots.The formation of gas-bearing shales is closely linked to relative sealevel changes,providing an important approach to predicting sweet spots in the Wufeng-Longmaxi shale in the southern Sichuan Basin,China.Three types of marine shale gas sweet spots are identified in the shale based on their formation stages combined with relative sea-level changes:early,middle,and late transgression types.This study develops a prediction model and workflow for identifying shale gas sweet spots by analyzing relative sea-level changes and facies sequences.Predicting shale gas sweet spots in an explored block using this model and workflow can provide a valuable guide for well design and hydraulic fracturing,significantly enhancing the efficiency of shale gas exploration and development.Notably,the new prediction model and workflow can be utilized for the rapid evaluation of the potential for shale gas development in new shale gas blocks or those with low exploratory maturity.展开更多
To study the development of imbibition such as the imbibition front and phase distribution in shale,the Lattice Boltzmann Method(LBM)is used to study the imbibition processes in the pore-throat network of shale.Throug...To study the development of imbibition such as the imbibition front and phase distribution in shale,the Lattice Boltzmann Method(LBM)is used to study the imbibition processes in the pore-throat network of shale.Through dimensional analysis,four dimensionless parameters affecting the imbibition process were determined.A color gradient model of LBM was used in computation based on a real core pore size distribution.The numerical results show that the four factors have great effects on imbibition.The impact of each factor is not monotonous.The imbibition process is the comprehensive effect of all aspects.The imbibition front becomes more and more non-uniform with time in a heterogeneous pore-throat network.Some non-wetting phases(oil here)cannot be displaced out.The displacement efficiency and velocity do not change monotonously with any factor.The development of the average imbibition length with time is not smooth and not linear in a heterogeneous pore-throat network.Two fitting relations between the four dimensionless parameters and the imbibition velocity and efficiency are obtained,respectively.展开更多
The loaded rock experiences multiple stages of deformation.It starts with the formation of microcracks at low stresses(crack initiation,CI)and then transitions into unstable crack propagation(crack damage,CD)near the ...The loaded rock experiences multiple stages of deformation.It starts with the formation of microcracks at low stresses(crack initiation,CI)and then transitions into unstable crack propagation(crack damage,CD)near the ultimate strength.In this study,both the acoustic emission method(AEM)and the ultrasonic testing method(UTM)were used to examine the characteristics of AE parameters(b-value,peak frequency,frequency-band energy ratio,and fractal dimension)and ultrasonic(ULT)properties(velocity,amplitude,energy attenuation,and scattering attenuation)of bedded shale at CI,CD,and ultimate strength.The comparison involved analyzing the strain-based method(SBM),AEM,and UTM to determine the thresholds for damage stress.A fuzzy comprehensive evaluation model(FCEM)was created to describe the damage thresholds and hazard assessment.The results indicate that the optimal AE and ULT parameters for identifying CI and CD stress are ringing count,ultrasonic amplitude,energy attenuation,and scattering attenuation of the S-wave.Besides,damage thresholds were detected earlier by AE monitoring,ranging from 3 MPa to 10 MPa.CI and CD identified by UTM occurred later than SBM and AEM,and were in the range of 12 MPa.The b-value,peak frequency,energy ratio in the low-frequency band(0e62.5 kHz),correlation dimension,and sandbox dimension showed low values at the peak stress,while the energy ratio in a moderate-frequency band(187.5e281.25 kHz)and amplitude showed high values.The successful application of FCEM to laboratory testing of shales has demonstrated its ability to quantitatively identify AE/ULT precursors of seismic hazards associated with rock failure.展开更多
Prediction of production decline and evaluation of the adsorbed/free gas ratio are critical for determining the lifespan and production status of shale gas wells.Traditional production prediction methods have some sho...Prediction of production decline and evaluation of the adsorbed/free gas ratio are critical for determining the lifespan and production status of shale gas wells.Traditional production prediction methods have some shortcomings because of the low permeability and tightness of shale,complex gas flow behavior of multi-scale gas transport regions and multiple gas transport mechanism superpositions,and complex and variable production regimes of shale gas wells.Recent research has demonstrated the existence of a multi-stage isotope fractionation phenomenon during shale gas production,with the fractionation characteristics of each stage associated with the pore structure,gas in place(GIP),adsorption/desorption,and gas production process.This study presents a new approach for estimating shale gas well production and evaluating the adsorbed/free gas ratio throughout production using isotope fractionation techniques.A reservoir-scale carbon isotope fractionation(CIF)model applicable to the production process of shale gas wells was developed for the first time in this research.In contrast to the traditional model,this model improves production prediction accuracy by simultaneously fitting the gas production rate and δ^(13)C_(1) data and provides a new evaluation method of the adsorbed/free gas ratio during shale gas production.The results indicate that the diffusion and adsorption/desorption properties of rock,bottom-hole flowing pressure(BHP)of gas well,and multi-scale gas transport regions of the reservoir all affect isotope fractionation,with the diffusion and adsorption/desorption parameters of rock having the greatest effect on isotope fractionation being D∗/D,PL,VL,α,and others in that order.We effectively tested the universality of the four-stage isotope fractionation feature and revealed a unique isotope fractionation mechanism caused by the superimposed coupling of multi-scale gas transport regions during shale gas well production.Finally,we applied the established CIF model to a shale gas well in the Sichuan Basin,China,and calculated the estimated ultimate recovery(EUR)of the well to be 3.33×10^(8) m^(3);the adsorbed gas ratio during shale gas production was 1.65%,10.03%,and 23.44%in the first,fifth,and tenth years,respectively.The findings are significant for understanding the isotope fractionation mechanism during natural gas transport in complex systems and for formulating and optimizing unconventional natural gas development strategies.展开更多
Fine-grained sediments are widely distributed and constitute the most abundant component in sedi-mentary systems,thus the research on their genesis and distribution is of great significance.In recent years,fine-graine...Fine-grained sediments are widely distributed and constitute the most abundant component in sedi-mentary systems,thus the research on their genesis and distribution is of great significance.In recent years,fine-grained sediment gravity-flows(FGSGF)have been recognized as an important transportation and depositional mechanism for accumulating thick successions of fine-grained sediments.Through a comprehensive review and synthesis of global research on FGSGF deposition,the characteristics,depositional mechanisms,and distribution patterns of fine-grained sediment gravity-flow deposits(FGSGFD)are discussed,and future research prospects are clarified.In addition to the traditionally recognized low-density turbidity current and muddy debris flow,wave-enhanced gravity flow,low-density muddy hyperpycnal flow,and hypopycnal plumes can all form widely distributed FGSGFD.At the same time,the evolution of FGSGF during transportation can result in transitional and hybrid gravity-flow deposits.The combination of multiple triggering mechanisms promotes the widespread develop-ment of FGSGFD,without temporal and spatial limitations.Different types and concentrations of clay minerals,organic matters,and organo-clay complexes are the keys to controlling the flow transformation of FGSGF from low-concentration turbidity currents to high-concentration muddy debris flows.Further study is needed on the interaction mechanism of FGSGF caused by different initiations,the evolution of FGSGF with the effect of organic-inorganic synergy,and the controlling factors of the distribution pat-terns of FGSGFD.The study of FGSGFD can shed some new light on the formation of widely developed thin-bedded siltstones within shales.At the same time,these insights may broaden the exploration scope of shale oil and gas,which have important geological significances for unconventional shale oil and gas.展开更多
Key technologies that make productivity increase are revealed through analyzing the best practices and production data in major shale basins of North America.Trends of the key technologies and optimization designs for...Key technologies that make productivity increase are revealed through analyzing the best practices and production data in major shale basins of North America.Trends of the key technologies and optimization designs for shale oil and gas development are summarized and analyzed based on drilling and completion operations and well data.These technologies mainly include:(1)Optimizing well design and hydraulic fracturing design,including reducing cluster spacing,increasing proppant and fracturing fluid volumes,optimizing horizontal well lateral length and fracture stage length.The most effective method is to reduce cluster spacing to an optimized length.The second most effective method is to optimally increase proppant volumes.(2)Placing horizontal wells in the sweet spots and drilling the wells parallel or close to the minimum horizontal stress direction.(3)Using cube development with optimized well spacing to maximize resource recovery and reduce well interferences.Plus,in-situ stress impacts on hydraulic fracture propagation and hydrocarbon production are addressed.Determination of formation breakdown pressure is studied by considering the impacts of in-situ stresses,drilling and perforation directions.Whether or not the hydraulic fracturing can generate orthogonal fracture networks is also discussed.The key technologies and optimization design parameters proposed in this paper can be applied to guide new well placement,drilling and completion designs,and hydraulic fracture operations to increase productivity.展开更多
With the increasing demand for energy,traditional oil resources are facing depletion and insufficient supply.Many countries are rapidly turning to the development of unconventional oil and gas resources.Among them,sha...With the increasing demand for energy,traditional oil resources are facing depletion and insufficient supply.Many countries are rapidly turning to the development of unconventional oil and gas resources.Among them,shale oil and gas reservoirs have become the focus of unconventional oil and gas resources exploration and development.Based on the characteristics of shale oil and gas reservoirs,supercritical CO_(2) fracturing is more conducive to improving oil recovery than other fracturing technologies.In this paper,the mechanism of fracture initiation and propagation of supercritical CO_(2) in shale is analyzed,including viscosity effect,surface tension effect,permeation diffusion effect of supercritical CO_(2),and dissolution-adsorption effect between CO_(2) and shale.The effects of natural factors,such as shale properties,bedding plane and natural fractures,and controllable factors,proppant,temperature,pressure,CO_(2) concentration and injection rate on fracture initiation and propagation are clarified.The methods of supercritical CO_(2) fracturing process,thickener and proppant optimization to improve the efficiency of supercritical CO_(2) fracturing are discussed.In addition,some new technologies of supercritical CO_(2) fracturing are introduced.The challenges and prospects in the current research are also summarized.For example,supercritical CO_(2) is prone to filtration when passing through porous media,and it is difficult to form a stable flow state.Therefore,in order to achieve stable fracturing fluid suspension and effectively support fractu res,it is urge nt to explo re new fracturing fluid additives or improve fracturing fluid formulations combined with the research of new proppants.This paper is of great significance for understanding the behavior mechanism of supercritical CO_(2) in shale and optimizing fracturing technology.展开更多
Based on recent advancements in shale oil exploration within the Ordos Basin,this study presents a comprehensive investigation of the paleoenvironment,lithofacies assemblages and distribution,depositional mechanisms,a...Based on recent advancements in shale oil exploration within the Ordos Basin,this study presents a comprehensive investigation of the paleoenvironment,lithofacies assemblages and distribution,depositional mechanisms,and reservoir characteristics of shale oil of fine-grained sediment deposition in continental freshwater lacustrine basins,with a focus on the Chang 7_(3) sub-member of Triassic Yanchang Formation.The research integrates a variety of exploration data,including field outcrops,drilling,logging,core samples,geochemical analyses,and flume simulation.The study indicates that:(1)The paleoenvironment of the Chang 7_(3) deposition is characterized by a warm and humid climate,frequent monsoon events,and a large water depth of freshwater lacustrine basin.The paleogeomorphology exhibits an asymmetrical pattern,with steep slopes in the southwest and gentle slopes in the northeast,which can be subdivided into microgeomorphological units,including depressions and ridges in lakebed,as well as ancient channels.(2)The Chang 7_(3) sub-member is characterized by a diverse array of fine-grained sediments,including very fine sandstone,siltstone,mudstone and tuff.These sediments are primarily distributed in thin interbedded and laminated arrangements vertically.The overall grain size of the sandstone predominantly falls below 62.5μm,with individual layer thicknesses of 0.05–0.64 m.The deposits contain intact plant fragments and display various sedimentary structure,such as wavy bedding,inverse-to-normal grading sequence,and climbing ripple bedding,which indicating a depositional origin associated with density flows.(3)Flume simulation experiments have successfully replicated the transport processes and sedimentary characteristics associated with density flows.The initial phase is characterized by a density-velocity differential,resulting in a thicker,coarser sediment layer at the flow front,while the upper layers are thinner and finer in grain size.During the mid-phase,sliding water effects cause the fluid front to rise and facilitate rapid forward transport.This process generates multiple“new fronts”,enabling the long-distance transport of fine-grained sandstones,such as siltstone and argillaceous siltstone,into the center of the lake basin.(4)A sedimentary model primarily controlled by hyperpynal flows was established for the southwestern part of the basin,highlighting that the frequent occurrence of flood events and the steep slope topography in this area are primary controlling factors for the development of hyperpynal flows.(5)Sandstone and mudstone in the Chang 7_(3) sub-member exhibit micro-and nano-scale pore-throat systems,shale oil is present in various lithologies,while the content of movable oil varies considerably,with sandstone exhibiting the highest content of movable oil.(6)The fine-grained sediment complexes formed by multiple episodes of sandstones and mudstones associated with density flow in the Chang 7_(3) formation exhibit characteristics of“overall oil-bearing with differential storage capacity”.The combination of mudstone with low total organic carbon content(TOC)and siltstone is identified as the most favorable exploration target at present.展开更多
In addition to the organic matter type,abundance,thermal maturity,and shale reservoir space,the preservation conditions of source rocks play a key factor in affecting the quantity and quality of retained hydrocarbons ...In addition to the organic matter type,abundance,thermal maturity,and shale reservoir space,the preservation conditions of source rocks play a key factor in affecting the quantity and quality of retained hydrocarbons in source rocks of lacustrine shale,yet this aspect has received little attention.This paper,based on the case analysis,explores how preservation conditions influence the enrichment of mobile hydrocarbons in shale oil.Research showns that good preservation conditions play three key roles.(1)Ensure the retention of sufficient light hydrocarbons(C_(1)–C_(13)),medium hydrocarbons(C_(14)–C_(25))and small molecular aromatics(including 1–2 benzene rings)in the formation,which enhances the fluidity and flow of shale oil;(2)Maintain a high energy field(abnormally high pressure),thus facilitating the maximum outflow of shale oil;(3)Ensure that the retained hydrocarbons have the miscible flow condition of multi-component hydrocarbons(light hydrocarbons,medium hydrocarbons,heavy hydrocarbons,and heteroatomic compounds),so that the heavy hydrocarbons(C_(25+))and heavy components(non-hydrocarbons and asphaltenes)have improved fluidity and maximum flow capacity.In conclusion,in addition to the advantages of organic matter type,abundance,thermal maturity,and reservoir space,good preservation conditions of shale layers are essential for the formation of economically viable shale oil reservoirs,which should be incorporated into the evaluation criteria of shale oil-rich areas/segments and considered a necessary factor when selecting favorable exploration targets.展开更多
By reviewing the research progress and exploration practices of shale gas geology in China,analyzing and summarizing the geological characteristics,enrichment laws,and resource potential of different types of shale ga...By reviewing the research progress and exploration practices of shale gas geology in China,analyzing and summarizing the geological characteristics,enrichment laws,and resource potential of different types of shale gas,the following understandings have been obtained:(1)Marine,transitional,and lacustrine shales in China are distributed from old to new in geological age,and the complexity of tectonic reworking and hydrocarbon generation evolution processes gradually decreases.(2)The sedimentary environment controls the type of source-reservoir configuration,which is the basis of“hydrocarbon generation and reservoir formation”.The types of source-reservoir configuration in marine and lacustrine shales are mainly source-reservoir integration,with occasional source-reservoir separation.The configuration types of transitional shale are mainly source-reservoir integration and source-reservoir symbiosis.(3)The resistance of rigid minerals to compression for pore preservation and the overpressure facilitate the enrichment of source-reservoir integrated shale gas.Good source reservoir coupling and preservation conditions are crucial for the shale gas enrichment of source-reservoir symbiosis and source-reservoir separation types.(4)Marine shale remains the main battlefield for increasing shale gas reserves and production in China,while transitional and lacustrine shales are expected to become important replacement areas.It is recommended to carry out the shale gas exploration at three levels:Accelerate the exploration of Silurian,Cambrian,and Permian marine shales in the Upper-Middle Yangtze region;make key exploration breakthroughs in ultra-deep marine shales of the Upper-Middle Yangtze region,the new Ordovician marine shale strata in the North China region,the transitional shales of the Carboniferous and Permian,as well as the Mesozoic lacustrine shale gas in basins such as Sichuan,Ordos and Songliao;explore and prepare for new shale gas exploration areas such as South China and Northwest China,providing technology and resource reserves for the sustainable development of shale gas in China.展开更多
Constructed Wetlands (CWs) are currently one of the most promising techniques for wastewater treatment, having demonstrated their effectiveness. However, the choice of substrate particle size is critical to the smooth...Constructed Wetlands (CWs) are currently one of the most promising techniques for wastewater treatment, having demonstrated their effectiveness. However, the choice of substrate particle size is critical to the smooth operation of the process, as hydrodynamic constraints require a coarse particle size, whereas wastewater treatment recommends a fine particle size. This study investigates the suitability of laterite and shale as substrates of different sizes (1 - 3, 3 - 5 and 5 - 8 mm) in CWs for domestic wastewater treatment. The study was carried out in an experimental pilot plant consisting of 12 parallelepiped beds (C × C = 0.4 × 0.4 m2;H = 0.6 m) filled from bottom to top with 0.1 m of gravel and 0.4 m of shale or laterite of different grain sizes with two replications. During the six months of operation, plant biomass and stem diameter of Pennisetum purpureum used as vegetation in the CWs were determined. Raw and treated water were also sampled and analyzed for pollutants, including chemical oxygen demand (COD), biochemical oxygen demand (BOD5), total Kjedahl nitrogen (TKN), total phosphorus (TP), and total suspended solids (TSS), using International Organization for Standardization (ISO) analytical methods. P. purpureum developed much better in the CW beds lined with shale;plant biomass ranged from 13.8 to 14.7 kg/m2 and from 11.2 to 12.5 kg/m2 in the beds lined with shale and laterite, respectively, as did stump diameter, which ranged from 15.5 to 16.1 cm and from 11.10 to 12.7 cm, respectively. However, the highest values for biomass and stump diameter for each material were obtained in the beds lined with 1 - 3 mm geomaterials. Pollutant removal efficiencies were highest in the CWs lined with laterite and shale of 1 - 3 mm grain size (76.9% - 83% COD, 78% - 84.7% BOD5, 55.5% - 72.2% TKN, 58.4% - 72.4% TP, 78.1% - 80.2% TSS), with the highest values recorded in the shale-lined beds. However, the 3 - 5 mm grain size of both materials provided quality filtrates (140 - 174 mg/L COD, 78.5 - 94.8 mg/L BOD5, 4.6 - 5.7 mg/L TP) in line with local wastewater discharge levels. This size of geomaterials appears to be suitable for optimization purposes, although further work with these materials, such as increasing the depth of the wetland, is required to improve the level of NTK and TSS discharge.展开更多
0 INTRODUCTION Shale oil has become a significant component of unconventional oil and gas exploration worldwide,dramatically transforming the global energy landscape over the past two decades(Xu et al.,2024;Guo et al....0 INTRODUCTION Shale oil has become a significant component of unconventional oil and gas exploration worldwide,dramatically transforming the global energy landscape over the past two decades(Xu et al.,2024;Guo et al.,2023;Wan et al.,2023;Zou et al.,2020).The successful commercial development of shale oil resources in North America has triggered a global surge in unconventional petroleum exploration,with many countries now actively pursuing their own shale resource development programs(Yang and Jin,2019).展开更多
Research on the distribution and development of black shales in the Lianggaoshan Formation has been deficient,which has hindered exploration for lacustrine shale oil in the Sichuan Basin.Our study characterized the we...Research on the distribution and development of black shales in the Lianggaoshan Formation has been deficient,which has hindered exploration for lacustrine shale oil in the Sichuan Basin.Our study characterized the well logging data,core samples,outcrops,and geochemistry of black shales in the Lianggaoshan Formation in the Sichuan Basin.Our analysis focused on the lake basin evolution and the migration characteristics,paleoenvironmental features,formation mechanisms,and developmental model of the black shales.The results indicated that black shales in the Lianggaoshan Formation exhibited significant lateral migration,with an overall thickening trend from east to west.Within the 1st Member of the formation,black shale occurred as a single thick layer in the eastern region that gradually thinned toward the central region.Multiple sets of shale developed within the 2nd and 3rd members,and these had lower thicknesses than the 1st Member and migrated toward central Sichuan.Paleoproductivity and terrigenous input were the main factors controlling the deposition of black shales.A semi-humid climate influenced the deposition of black shales,bringing abundant freshwater,terrigenous debris,and nutrients into the basin.Decomposition of organic matter consumed oxygen in sediment and bottom water,causing localized oxygen deficiency in the strata.展开更多
Based on the basic data of drilling,logging,testing and geological experiments,the geological characteristics of the Permian Dalong Formation marine shales in the northern Sichuan Basin and the factors controlling sha...Based on the basic data of drilling,logging,testing and geological experiments,the geological characteristics of the Permian Dalong Formation marine shales in the northern Sichuan Basin and the factors controlling shale gas enrichment and high yield are studied.The results are obtained in four aspects.First,the high-quality shale of the Dalong Formation was formed after the deposition of the Permian Wujiaping Formation,and it is developed in the Kaijiang-Liangping trough in the northern part of Sichuan Basin,where deep-water continental shelf facies and deep-water reduction environment with thriving siliceous organisms have formed the black siliceous shale rich in organic matter.Second,the Dalong Formation shale contains both organic and inorganic pores,with stratification of alternated brittle and plastic minerals.In addition to organic pores,a large number of inorganic pores are developed even in ultra-deep(deeper than 4500 m)layers,contributing a total porosity of more than 5%,which significantly expands the storage space for shale gas.Third,the limestone at the roof and floor of the Dalong Formation acted as seal rock in the early burial and hydrocarbon generation stage,providing favorable conditions for the continuous hydrocarbon generation and rich gas preservation in shale interval.In the later reservoir stimulation process,it was beneficial to the lateral extension of the fractures,so as to achieve the optimal stimulation performance and increase the well-controlled resources.Combining the geological,engineering and economic conditions,the favorable area with depth less than 5500 m is determined to be 1800 km2,with resources of 5400×10^(8) m^(3).Fourth,the shale reservoirs of the Dalong Formation are thin but rich in shale gas.The syncline zone far away from the main faults in the high and steep tectonic zone,eastern Sichuan Basin,with depth less than 5500 m,is the most favorable target for producing the Permian shale gas under the current engineering and technical conditions.It mainly includes the Nanya syncline,Tanmuchang syncline and Liangping syncline.展开更多
The black shale samples from the Niutitang Formation in the Yangtze Block were sequentially treated using organic solvent extraction and wet chemical oxidation.The organic matter(OM)in the shales includes physically m...The black shale samples from the Niutitang Formation in the Yangtze Block were sequentially treated using organic solvent extraction and wet chemical oxidation.The organic matter(OM)in the shales includes physically mobile OM(PmOM),chemically mobile OM(CmOM),and stable OM(StOM).The CmOM has the strongest CH_(4)adsorption capacity because it has the largest volume of micropores and mesopores.In contrast,the PmOM has a very negative effect on the CH_(4)adsorption because it is poreless.The XD shale is a siliceous shale,in which the quartz particles wrap partly OM,preventing extraction and oxidation.The SL shale is an argillaceous shale,in which most of the OM is combined with clay minerals to form organo-clay composites.In both the SL and XD shales,the OM that is extractable via organic solvents is distributed among the mineral particles and is interconnected.The conceptual model of marine black shale in different environments needs to be perfected in the future because quantitative and qualitative methods should be combined to clarify the relationship between the known OM types(e.g.,pyrobitumen,solid bitumen,and solid kerogen)and the OM types identified in this study.展开更多
Based on large-field rock thin section scanning,high-resolution field emission-scanning electron microscopy(FE-SEM),fluorescence spectroscopy,and rock pyrolysis experiments of the Mesoproterozoic Jixianian Hongshuizhu...Based on large-field rock thin section scanning,high-resolution field emission-scanning electron microscopy(FE-SEM),fluorescence spectroscopy,and rock pyrolysis experiments of the Mesoproterozoic Jixianian Hongshuizhuang Formation shale samples from the Yanliao Basin in northern China,combined with sedimentary forward modeling,a systematic petrological and organic geochemical study was conducted on the reservoir quality,oil-bearing potential,distribution,and resource potential of the Hongshuizhuang Formation shale in Well Yuanji-2.The results indicate that:(1)The original organic carbon content of the Hongshuizhuang Formation shale averages up to 6.24%,and the original hydrocarbon generation potential is as high as 44.09 mg/g,demonstrating a strong oil generation potential.(2)The rock type is primarily siliceous shale containing low clay mineral content,characterized by the development of shale bedding fractures and organic shrinkage fractures,resulting in good compressibility and reservoir quality.(3)The fifth and fourth members of the Hongshuizhuang Formation serve as shale oil sweet spots,contributing more than 60%of shale oil production with their total thickness as only 40%of the target formation.(4)The Kuancheng-Laozhuanghu area is the most prospective shale oil exploration option in the Yanliao Basin and covers approximately 7200 km^(2).Its original total hydrocarbon generation potential reaches about 74.11 billion tons,with current estimated retained shale oil resources exceeding 1.148 billion tons(lower limit)–comparable to the geological resources of the Permian Lucaogou Formation shale oil in the Jimsar Sag of the Junggar Basin.These findings demonstrate the robust exploration potential of the Hongshuizhuang Formation shale oil in the Yanliao Basin.展开更多
Shale gas is an important unconventional resource,and shale reservoirs typically contain both water and gas fluids.Water can occupy the shale gas storage space,reduce the flow capacity of shale gas,and even completely...Shale gas is an important unconventional resource,and shale reservoirs typically contain both water and gas fluids.Water can occupy the shale gas storage space,reduce the flow capacity of shale gas,and even completely seal off the shale gas.When the shale develops an effective sealing capacity,the water saturation of the shale reaches a threshold value which can be measured using physical simulation experiments.However,limited research has been conducted on the quantitative calculation of critical water saturation.In order to obtain the critical water saturation of shale,this paper proposes a theoretical calculation method to estimate the critical water saturation of shale based on DLvo(Derjaguin-Landau-Verwey-Overbeek)theory.Two shale samples from the Longmaxi Formation in the Sichuan Basin with different total organic carbon(TOC)were selected for gas adsorption experiments to characterize the pore structure of the organic matter and inorganic matter of the shale.Based on the established theoretical and geological models,the critical water film thickness and critical water saturation of pores with different pore sizes were calculated.Taking the boundary conditions into account,the critical water saturation of the two shale samples was ultimately determined.The results showed that inorganic pores occupied 81.0%of the pores of the shale with a ToC of 0.89%,and their dominant pore sizes were dominated by mesopores around 40 nm;inorganic pores occupied 48.7%of the pores of the shale with a TOC of 4.27%,and their dominant pore sizes were dominated by micropores and mesopores around 0-20 nm and 40 nm.As the pore size increased,the corresponding critical water film thickness also increased,and the critical water saturation was normally distributed in the pore size range centered at about 10 nm.The distribution of critical water saturation in inorganic pores with different pore sizes was in the range of about 63%-76%,and the critical water saturation of shale with a TOC of 0.89%and shale with a TOC of 4.27%were calculated to be 41.7%and 32.7%,respectively.The method proposed in this study accurately calculates the critical water saturation of shale and effectively distinguishes the differences critical water saturation between shales with different TOc.Further,shale gas reservoirs can be finely characterized by comparing with the original water saturation of shale layers.This study is of great scientific significance to shale gas exploration and development,and even to the field of cO2 geological storage.展开更多
Pore structure characteristics,gas content,and micro-scale gas occurrence mechanisms were investigated in the Shan_(2)^(3)sub-member marine-continental transitional shale of the southeastern margin of the Ordos Basin ...Pore structure characteristics,gas content,and micro-scale gas occurrence mechanisms were investigated in the Shan_(2)^(3)sub-member marine-continental transitional shale of the southeastern margin of the Ordos Basin using scanning electron microscope images,lowtemperature N_(2)/CO_(2)adsorption and high-pressure mercury intrusion,methane isothermal adsorption experiments,and CH4-saturated nuclear magnetic resonance(NMR).Two distinct shale types were identified:organic pore-rich shale(Type OP)and microfracture-rich shale(Type M).The Type OP shale exhibited relatively well-developed organic matter pores,while the Type M shale was primarily characterized by a high degree of microfracture development.An experimental method combining methane isothermal adsorption on crushed samples and CH4-saturated NMR of plug samples was proposed to determine the adsorbed gas,free gas,and total gas content under high temperature and pressure conditions.There were four main research findings.(1)Marine-continental transitional shale exhibited substantial total gas content in situ,ranging from 2.58 to 5.73 cm^(3)/g,with an average of 4.35 cm^(3)/g.The adsorbed gas primarily resided in organic matter pores through micropore filling and multilayer adsorption,followed by multilayer adsorption in clay pores.(2)The changes in adsorbed and free pore volumes can be divided into four stages.Pores of<5 nm exclusively contain adsorbed gas,while those of 5-20 nm have a high proportion of adsorbed gas alongside free gas.Pores ranging from 20 to 100 nm have a high proportion of free gas and few adsorbed gas,while pores of>100 nm and microfractures are almost predominantly free gas.(3)The proportion of adsorbed gas in Type OP shale exceeds that in Type M,reaching 66%.(4)Methane adsorbed in Type OP shale demonstrates greater desorption capability,suggesting a potential for enhanced stable production,which finds support in existing production well data.However,it must be emphasized that high-gas-bearing intervals in both types present valuable opportunities for exploration and development.These data may support future model validations and enhance confidence in exploring and developing marine-continental transitional shale gas.展开更多
基金financially supported by the State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Efficient Development(33550000-22-ZC0613-0006)National Natural Science Foundation of China(42202133)+2 种基金CNPC Innovation Fund(2022DQ02-0106)Strategic Cooperation Technology Projects of the CNPC and CUPB(ZLZX2020-01-05)Key Laboratory of Tectonics and Petroleum Resources(China University of Geosciences),Ministry of Education,China(TPR-2023-05)。
文摘Alkaline lacustrine shale is highly heterogeneous,and the complex relationship between the organicinorganic porosity network and hydrocarbon occurrence restricts the effectiveness of shale oil exploration and development.Herein,we investigated the Fengcheng Formation(P_(1)f)in Mahu Sag.This study integrated geochemistry,Soxhlet extraction,scanning electron microscopy,gas adsorption,and nuclear magnetic resonance T_(1)-T_(2)spectroscopy to elucidate the microscopic oil occurrence mechanisms in shales.Results indicate the presence of felsic shale,dolomitic shale,lime shale,and mixed shale within the P_(1)f.Matrix pores and microfractures associated with inorganic minerals are the predominant pore types in P_(1)f.Adsorbed oil primarily resides on the surfaces of organic matter and clay minerals,while free oil predominantly occupies inorganic pores and microfractures with larger pore sizes.Variations exist in the quantity and distribution of shale oil accumulation across different scales,where free oil and adsorbed oil are governed by dominant pores with diameters exceeding 10 nm and ineffective pores with diameters below 10 nm,respectively.Shale oil occurrence characteristics are influenced by organic matter,pore structure,and mineral composition.Felsic shale exhibits a high abundance of dominant pores,possesses the highest oil content,predominantly harbors free oil within these dominant pores,and demonstrates good mobility.Fluid occurrence in dolomitic shale and lime shale is intricate,with low oil content and a free oil to adsorbed oil ratio of 1:1.Mixed shale exhibits elevated clay mineral content and a scarcity of dominant pores.Moreover,ineffective pores contain increased bound water,resulting in medium oil content and limited mobility predominantly due to adsorption.Presently,shale oil mainly occurs in the dominant pores with a diameter larger than 10 nm in a free state.During the exploration and development of alkaline lacustrine shale oil resources,emphasis should be placed on identifying sweet spots within the felsic shale characterized by dominant pores.
基金supported by the National Natural Science Foundation of China(52304021,52104022,52204031)the Natural Science Foundation of Sichuan Province(2022NSFSC0205,2024NSFSC0201,2023NSFSC0947)the National Science and Technology Major Projects of China(2017ZX05049006-010).
文摘The global energy demand is increasing rapidly,and it is imperative to develop shale hydrocarbon re-sources vigorously.The prerequisite for enhancing the exploitation efficiency of shale reservoirs is the systematic elucidation of the occurrence characteristics,flow behavior,and enhanced oil recovery(EOR)mechanisms of shale oil within commonly developed nanopores.Molecular dynamics(MD)technique can simulate the occurrence,flow,and extraction processes of shale oil at the nanoscale,and then quantitatively characterize various fluid properties,flow characteristics,and action mechanisms under different reservoir conditions by calculating and analyzing a series of MD parameters.However,the existing review on the application of MD simulation in shale oil reservoirs is not systematic enough and lacks a summary of technical challenges and solutions.Therefore,recent MD studies on shale oil res-ervoirs were summarized and analyzed.Firstly,the applicability of force fields and ensembles of MD in shale reservoirs with different reservoir conditions and fluid properties was discussed.Subsequently,the calculation methods and application examples of MD parameters characterizing various properties of fluids at the microscale were summarized.Then,the application of MD simulation in the study of shale oil occurrence characteristics,flow behavior,and EOR mechanisms was reviewed,along with the elucidation of corresponding micro-mechanisms.Moreover,influencing factors of pore structure,wall properties,reservoir conditions,fluid components,injection/production parameters,formation water,and inorganic salt ions were analyzed,and some new conclusions were obtained.Finally,the main challenges associated with the application of MD simulations to shale oil reservoirs were discussed,and reasonable prospects for future MD research directions were proposed.The purpose of this review is to provide theoretical basis and methodological support for applying MD simulation to study shale oil reservoirs.
文摘Gas-bearing shales have become a major source of future natural gas production worldwide.It has become increasingly urgent to develop a reliable prediction model and corresponding workflow for identifying shale gas sweet spots.The formation of gas-bearing shales is closely linked to relative sealevel changes,providing an important approach to predicting sweet spots in the Wufeng-Longmaxi shale in the southern Sichuan Basin,China.Three types of marine shale gas sweet spots are identified in the shale based on their formation stages combined with relative sea-level changes:early,middle,and late transgression types.This study develops a prediction model and workflow for identifying shale gas sweet spots by analyzing relative sea-level changes and facies sequences.Predicting shale gas sweet spots in an explored block using this model and workflow can provide a valuable guide for well design and hydraulic fracturing,significantly enhancing the efficiency of shale gas exploration and development.Notably,the new prediction model and workflow can be utilized for the rapid evaluation of the potential for shale gas development in new shale gas blocks or those with low exploratory maturity.
基金supported by the National Natural Science Foundation of China(12072347)the Excellent Training Plan of the Institute of Mechanics,Chinese Academy of SciencesCNPC New Energy Key Project(2021DJ4902).
文摘To study the development of imbibition such as the imbibition front and phase distribution in shale,the Lattice Boltzmann Method(LBM)is used to study the imbibition processes in the pore-throat network of shale.Through dimensional analysis,four dimensionless parameters affecting the imbibition process were determined.A color gradient model of LBM was used in computation based on a real core pore size distribution.The numerical results show that the four factors have great effects on imbibition.The impact of each factor is not monotonous.The imbibition process is the comprehensive effect of all aspects.The imbibition front becomes more and more non-uniform with time in a heterogeneous pore-throat network.Some non-wetting phases(oil here)cannot be displaced out.The displacement efficiency and velocity do not change monotonously with any factor.The development of the average imbibition length with time is not smooth and not linear in a heterogeneous pore-throat network.Two fitting relations between the four dimensionless parameters and the imbibition velocity and efficiency are obtained,respectively.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.U20A20266 and 12302503)Scientific and technological research projects in Sichuan province(Grant No.2024NSFSC0973).
文摘The loaded rock experiences multiple stages of deformation.It starts with the formation of microcracks at low stresses(crack initiation,CI)and then transitions into unstable crack propagation(crack damage,CD)near the ultimate strength.In this study,both the acoustic emission method(AEM)and the ultrasonic testing method(UTM)were used to examine the characteristics of AE parameters(b-value,peak frequency,frequency-band energy ratio,and fractal dimension)and ultrasonic(ULT)properties(velocity,amplitude,energy attenuation,and scattering attenuation)of bedded shale at CI,CD,and ultimate strength.The comparison involved analyzing the strain-based method(SBM),AEM,and UTM to determine the thresholds for damage stress.A fuzzy comprehensive evaluation model(FCEM)was created to describe the damage thresholds and hazard assessment.The results indicate that the optimal AE and ULT parameters for identifying CI and CD stress are ringing count,ultrasonic amplitude,energy attenuation,and scattering attenuation of the S-wave.Besides,damage thresholds were detected earlier by AE monitoring,ranging from 3 MPa to 10 MPa.CI and CD identified by UTM occurred later than SBM and AEM,and were in the range of 12 MPa.The b-value,peak frequency,energy ratio in the low-frequency band(0e62.5 kHz),correlation dimension,and sandbox dimension showed low values at the peak stress,while the energy ratio in a moderate-frequency band(187.5e281.25 kHz)and amplitude showed high values.The successful application of FCEM to laboratory testing of shales has demonstrated its ability to quantitatively identify AE/ULT precursors of seismic hazards associated with rock failure.
基金supported by the Natural Science Foundation of China(Grant No.42302170)National Postdoctoral Innovative Talent Support Program(Grant No.BX20220062)+3 种基金CNPC Innovation Found(Grant No.2022DQ02-0104)National Science Foundation of Heilongjiang Province of China(Grant No.YQ2023D001)Postdoctoral Science Foundation of Heilongjiang Province of China(Grant No.LBH-Z22091)the Natural Science Foundation of Shandong Province(Grant No.ZR2022YQ30).
文摘Prediction of production decline and evaluation of the adsorbed/free gas ratio are critical for determining the lifespan and production status of shale gas wells.Traditional production prediction methods have some shortcomings because of the low permeability and tightness of shale,complex gas flow behavior of multi-scale gas transport regions and multiple gas transport mechanism superpositions,and complex and variable production regimes of shale gas wells.Recent research has demonstrated the existence of a multi-stage isotope fractionation phenomenon during shale gas production,with the fractionation characteristics of each stage associated with the pore structure,gas in place(GIP),adsorption/desorption,and gas production process.This study presents a new approach for estimating shale gas well production and evaluating the adsorbed/free gas ratio throughout production using isotope fractionation techniques.A reservoir-scale carbon isotope fractionation(CIF)model applicable to the production process of shale gas wells was developed for the first time in this research.In contrast to the traditional model,this model improves production prediction accuracy by simultaneously fitting the gas production rate and δ^(13)C_(1) data and provides a new evaluation method of the adsorbed/free gas ratio during shale gas production.The results indicate that the diffusion and adsorption/desorption properties of rock,bottom-hole flowing pressure(BHP)of gas well,and multi-scale gas transport regions of the reservoir all affect isotope fractionation,with the diffusion and adsorption/desorption parameters of rock having the greatest effect on isotope fractionation being D∗/D,PL,VL,α,and others in that order.We effectively tested the universality of the four-stage isotope fractionation feature and revealed a unique isotope fractionation mechanism caused by the superimposed coupling of multi-scale gas transport regions during shale gas well production.Finally,we applied the established CIF model to a shale gas well in the Sichuan Basin,China,and calculated the estimated ultimate recovery(EUR)of the well to be 3.33×10^(8) m^(3);the adsorbed gas ratio during shale gas production was 1.65%,10.03%,and 23.44%in the first,fifth,and tenth years,respectively.The findings are significant for understanding the isotope fractionation mechanism during natural gas transport in complex systems and for formulating and optimizing unconventional natural gas development strategies.
基金supported by National Natural Science Foundation of China(Grant Nos.42072126,42372139)the Natural Science Foundation of Sichuan Province(Grant Nos.2022NSFSC0990).
文摘Fine-grained sediments are widely distributed and constitute the most abundant component in sedi-mentary systems,thus the research on their genesis and distribution is of great significance.In recent years,fine-grained sediment gravity-flows(FGSGF)have been recognized as an important transportation and depositional mechanism for accumulating thick successions of fine-grained sediments.Through a comprehensive review and synthesis of global research on FGSGF deposition,the characteristics,depositional mechanisms,and distribution patterns of fine-grained sediment gravity-flow deposits(FGSGFD)are discussed,and future research prospects are clarified.In addition to the traditionally recognized low-density turbidity current and muddy debris flow,wave-enhanced gravity flow,low-density muddy hyperpycnal flow,and hypopycnal plumes can all form widely distributed FGSGFD.At the same time,the evolution of FGSGF during transportation can result in transitional and hybrid gravity-flow deposits.The combination of multiple triggering mechanisms promotes the widespread develop-ment of FGSGFD,without temporal and spatial limitations.Different types and concentrations of clay minerals,organic matters,and organo-clay complexes are the keys to controlling the flow transformation of FGSGF from low-concentration turbidity currents to high-concentration muddy debris flows.Further study is needed on the interaction mechanism of FGSGF caused by different initiations,the evolution of FGSGF with the effect of organic-inorganic synergy,and the controlling factors of the distribution pat-terns of FGSGFD.The study of FGSGFD can shed some new light on the formation of widely developed thin-bedded siltstones within shales.At the same time,these insights may broaden the exploration scope of shale oil and gas,which have important geological significances for unconventional shale oil and gas.
文摘Key technologies that make productivity increase are revealed through analyzing the best practices and production data in major shale basins of North America.Trends of the key technologies and optimization designs for shale oil and gas development are summarized and analyzed based on drilling and completion operations and well data.These technologies mainly include:(1)Optimizing well design and hydraulic fracturing design,including reducing cluster spacing,increasing proppant and fracturing fluid volumes,optimizing horizontal well lateral length and fracture stage length.The most effective method is to reduce cluster spacing to an optimized length.The second most effective method is to optimally increase proppant volumes.(2)Placing horizontal wells in the sweet spots and drilling the wells parallel or close to the minimum horizontal stress direction.(3)Using cube development with optimized well spacing to maximize resource recovery and reduce well interferences.Plus,in-situ stress impacts on hydraulic fracture propagation and hydrocarbon production are addressed.Determination of formation breakdown pressure is studied by considering the impacts of in-situ stresses,drilling and perforation directions.Whether or not the hydraulic fracturing can generate orthogonal fracture networks is also discussed.The key technologies and optimization design parameters proposed in this paper can be applied to guide new well placement,drilling and completion designs,and hydraulic fracture operations to increase productivity.
文摘With the increasing demand for energy,traditional oil resources are facing depletion and insufficient supply.Many countries are rapidly turning to the development of unconventional oil and gas resources.Among them,shale oil and gas reservoirs have become the focus of unconventional oil and gas resources exploration and development.Based on the characteristics of shale oil and gas reservoirs,supercritical CO_(2) fracturing is more conducive to improving oil recovery than other fracturing technologies.In this paper,the mechanism of fracture initiation and propagation of supercritical CO_(2) in shale is analyzed,including viscosity effect,surface tension effect,permeation diffusion effect of supercritical CO_(2),and dissolution-adsorption effect between CO_(2) and shale.The effects of natural factors,such as shale properties,bedding plane and natural fractures,and controllable factors,proppant,temperature,pressure,CO_(2) concentration and injection rate on fracture initiation and propagation are clarified.The methods of supercritical CO_(2) fracturing process,thickener and proppant optimization to improve the efficiency of supercritical CO_(2) fracturing are discussed.In addition,some new technologies of supercritical CO_(2) fracturing are introduced.The challenges and prospects in the current research are also summarized.For example,supercritical CO_(2) is prone to filtration when passing through porous media,and it is difficult to form a stable flow state.Therefore,in order to achieve stable fracturing fluid suspension and effectively support fractu res,it is urge nt to explo re new fracturing fluid additives or improve fracturing fluid formulations combined with the research of new proppants.This paper is of great significance for understanding the behavior mechanism of supercritical CO_(2) in shale and optimizing fracturing technology.
基金Supported by the CNPC Major Science and Technology Project(2021DJ1806).
文摘Based on recent advancements in shale oil exploration within the Ordos Basin,this study presents a comprehensive investigation of the paleoenvironment,lithofacies assemblages and distribution,depositional mechanisms,and reservoir characteristics of shale oil of fine-grained sediment deposition in continental freshwater lacustrine basins,with a focus on the Chang 7_(3) sub-member of Triassic Yanchang Formation.The research integrates a variety of exploration data,including field outcrops,drilling,logging,core samples,geochemical analyses,and flume simulation.The study indicates that:(1)The paleoenvironment of the Chang 7_(3) deposition is characterized by a warm and humid climate,frequent monsoon events,and a large water depth of freshwater lacustrine basin.The paleogeomorphology exhibits an asymmetrical pattern,with steep slopes in the southwest and gentle slopes in the northeast,which can be subdivided into microgeomorphological units,including depressions and ridges in lakebed,as well as ancient channels.(2)The Chang 7_(3) sub-member is characterized by a diverse array of fine-grained sediments,including very fine sandstone,siltstone,mudstone and tuff.These sediments are primarily distributed in thin interbedded and laminated arrangements vertically.The overall grain size of the sandstone predominantly falls below 62.5μm,with individual layer thicknesses of 0.05–0.64 m.The deposits contain intact plant fragments and display various sedimentary structure,such as wavy bedding,inverse-to-normal grading sequence,and climbing ripple bedding,which indicating a depositional origin associated with density flows.(3)Flume simulation experiments have successfully replicated the transport processes and sedimentary characteristics associated with density flows.The initial phase is characterized by a density-velocity differential,resulting in a thicker,coarser sediment layer at the flow front,while the upper layers are thinner and finer in grain size.During the mid-phase,sliding water effects cause the fluid front to rise and facilitate rapid forward transport.This process generates multiple“new fronts”,enabling the long-distance transport of fine-grained sandstones,such as siltstone and argillaceous siltstone,into the center of the lake basin.(4)A sedimentary model primarily controlled by hyperpynal flows was established for the southwestern part of the basin,highlighting that the frequent occurrence of flood events and the steep slope topography in this area are primary controlling factors for the development of hyperpynal flows.(5)Sandstone and mudstone in the Chang 7_(3) sub-member exhibit micro-and nano-scale pore-throat systems,shale oil is present in various lithologies,while the content of movable oil varies considerably,with sandstone exhibiting the highest content of movable oil.(6)The fine-grained sediment complexes formed by multiple episodes of sandstones and mudstones associated with density flow in the Chang 7_(3) formation exhibit characteristics of“overall oil-bearing with differential storage capacity”.The combination of mudstone with low total organic carbon content(TOC)and siltstone is identified as the most favorable exploration target at present.
基金Supported by the National Natural Science Foundation of China(U22B6004)Project of PetroChina Research Institute of Petroleum Exploration and Development(2022yjcq03)Core Technology Key Project of China Petroleum Changqing Oilfield Company(KJZX2023-01).
文摘In addition to the organic matter type,abundance,thermal maturity,and shale reservoir space,the preservation conditions of source rocks play a key factor in affecting the quantity and quality of retained hydrocarbons in source rocks of lacustrine shale,yet this aspect has received little attention.This paper,based on the case analysis,explores how preservation conditions influence the enrichment of mobile hydrocarbons in shale oil.Research showns that good preservation conditions play three key roles.(1)Ensure the retention of sufficient light hydrocarbons(C_(1)–C_(13)),medium hydrocarbons(C_(14)–C_(25))and small molecular aromatics(including 1–2 benzene rings)in the formation,which enhances the fluidity and flow of shale oil;(2)Maintain a high energy field(abnormally high pressure),thus facilitating the maximum outflow of shale oil;(3)Ensure that the retained hydrocarbons have the miscible flow condition of multi-component hydrocarbons(light hydrocarbons,medium hydrocarbons,heavy hydrocarbons,and heteroatomic compounds),so that the heavy hydrocarbons(C_(25+))and heavy components(non-hydrocarbons and asphaltenes)have improved fluidity and maximum flow capacity.In conclusion,in addition to the advantages of organic matter type,abundance,thermal maturity,and reservoir space,good preservation conditions of shale layers are essential for the formation of economically viable shale oil reservoirs,which should be incorporated into the evaluation criteria of shale oil-rich areas/segments and considered a necessary factor when selecting favorable exploration targets.
基金Supported by the National Natural Science Foundation of China(42172165,42272143)Project of SINOPEC Science and Technology Department(P24181,KLP24017).
文摘By reviewing the research progress and exploration practices of shale gas geology in China,analyzing and summarizing the geological characteristics,enrichment laws,and resource potential of different types of shale gas,the following understandings have been obtained:(1)Marine,transitional,and lacustrine shales in China are distributed from old to new in geological age,and the complexity of tectonic reworking and hydrocarbon generation evolution processes gradually decreases.(2)The sedimentary environment controls the type of source-reservoir configuration,which is the basis of“hydrocarbon generation and reservoir formation”.The types of source-reservoir configuration in marine and lacustrine shales are mainly source-reservoir integration,with occasional source-reservoir separation.The configuration types of transitional shale are mainly source-reservoir integration and source-reservoir symbiosis.(3)The resistance of rigid minerals to compression for pore preservation and the overpressure facilitate the enrichment of source-reservoir integrated shale gas.Good source reservoir coupling and preservation conditions are crucial for the shale gas enrichment of source-reservoir symbiosis and source-reservoir separation types.(4)Marine shale remains the main battlefield for increasing shale gas reserves and production in China,while transitional and lacustrine shales are expected to become important replacement areas.It is recommended to carry out the shale gas exploration at three levels:Accelerate the exploration of Silurian,Cambrian,and Permian marine shales in the Upper-Middle Yangtze region;make key exploration breakthroughs in ultra-deep marine shales of the Upper-Middle Yangtze region,the new Ordovician marine shale strata in the North China region,the transitional shales of the Carboniferous and Permian,as well as the Mesozoic lacustrine shale gas in basins such as Sichuan,Ordos and Songliao;explore and prepare for new shale gas exploration areas such as South China and Northwest China,providing technology and resource reserves for the sustainable development of shale gas in China.
文摘Constructed Wetlands (CWs) are currently one of the most promising techniques for wastewater treatment, having demonstrated their effectiveness. However, the choice of substrate particle size is critical to the smooth operation of the process, as hydrodynamic constraints require a coarse particle size, whereas wastewater treatment recommends a fine particle size. This study investigates the suitability of laterite and shale as substrates of different sizes (1 - 3, 3 - 5 and 5 - 8 mm) in CWs for domestic wastewater treatment. The study was carried out in an experimental pilot plant consisting of 12 parallelepiped beds (C × C = 0.4 × 0.4 m2;H = 0.6 m) filled from bottom to top with 0.1 m of gravel and 0.4 m of shale or laterite of different grain sizes with two replications. During the six months of operation, plant biomass and stem diameter of Pennisetum purpureum used as vegetation in the CWs were determined. Raw and treated water were also sampled and analyzed for pollutants, including chemical oxygen demand (COD), biochemical oxygen demand (BOD5), total Kjedahl nitrogen (TKN), total phosphorus (TP), and total suspended solids (TSS), using International Organization for Standardization (ISO) analytical methods. P. purpureum developed much better in the CW beds lined with shale;plant biomass ranged from 13.8 to 14.7 kg/m2 and from 11.2 to 12.5 kg/m2 in the beds lined with shale and laterite, respectively, as did stump diameter, which ranged from 15.5 to 16.1 cm and from 11.10 to 12.7 cm, respectively. However, the highest values for biomass and stump diameter for each material were obtained in the beds lined with 1 - 3 mm geomaterials. Pollutant removal efficiencies were highest in the CWs lined with laterite and shale of 1 - 3 mm grain size (76.9% - 83% COD, 78% - 84.7% BOD5, 55.5% - 72.2% TKN, 58.4% - 72.4% TP, 78.1% - 80.2% TSS), with the highest values recorded in the shale-lined beds. However, the 3 - 5 mm grain size of both materials provided quality filtrates (140 - 174 mg/L COD, 78.5 - 94.8 mg/L BOD5, 4.6 - 5.7 mg/L TP) in line with local wastewater discharge levels. This size of geomaterials appears to be suitable for optimization purposes, although further work with these materials, such as increasing the depth of the wetland, is required to improve the level of NTK and TSS discharge.
基金supported by the State Key Laboratory of Petroleum Resources and Engineering,China University of Petroleum(Beijing)(No.PRE/open-2501)。
文摘0 INTRODUCTION Shale oil has become a significant component of unconventional oil and gas exploration worldwide,dramatically transforming the global energy landscape over the past two decades(Xu et al.,2024;Guo et al.,2023;Wan et al.,2023;Zou et al.,2020).The successful commercial development of shale oil resources in North America has triggered a global surge in unconventional petroleum exploration,with many countries now actively pursuing their own shale resource development programs(Yang and Jin,2019).
基金funded by Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance(2020CX050103).
文摘Research on the distribution and development of black shales in the Lianggaoshan Formation has been deficient,which has hindered exploration for lacustrine shale oil in the Sichuan Basin.Our study characterized the well logging data,core samples,outcrops,and geochemistry of black shales in the Lianggaoshan Formation in the Sichuan Basin.Our analysis focused on the lake basin evolution and the migration characteristics,paleoenvironmental features,formation mechanisms,and developmental model of the black shales.The results indicated that black shales in the Lianggaoshan Formation exhibited significant lateral migration,with an overall thickening trend from east to west.Within the 1st Member of the formation,black shale occurred as a single thick layer in the eastern region that gradually thinned toward the central region.Multiple sets of shale developed within the 2nd and 3rd members,and these had lower thicknesses than the 1st Member and migrated toward central Sichuan.Paleoproductivity and terrigenous input were the main factors controlling the deposition of black shales.A semi-humid climate influenced the deposition of black shales,bringing abundant freshwater,terrigenous debris,and nutrients into the basin.Decomposition of organic matter consumed oxygen in sediment and bottom water,causing localized oxygen deficiency in the strata.
基金Supported by the PetroChina Science&Technology Special Project(2023ZZ21YJ04)PetroChina Gas Reservoir Evaluation Project(20230304-08)。
文摘Based on the basic data of drilling,logging,testing and geological experiments,the geological characteristics of the Permian Dalong Formation marine shales in the northern Sichuan Basin and the factors controlling shale gas enrichment and high yield are studied.The results are obtained in four aspects.First,the high-quality shale of the Dalong Formation was formed after the deposition of the Permian Wujiaping Formation,and it is developed in the Kaijiang-Liangping trough in the northern part of Sichuan Basin,where deep-water continental shelf facies and deep-water reduction environment with thriving siliceous organisms have formed the black siliceous shale rich in organic matter.Second,the Dalong Formation shale contains both organic and inorganic pores,with stratification of alternated brittle and plastic minerals.In addition to organic pores,a large number of inorganic pores are developed even in ultra-deep(deeper than 4500 m)layers,contributing a total porosity of more than 5%,which significantly expands the storage space for shale gas.Third,the limestone at the roof and floor of the Dalong Formation acted as seal rock in the early burial and hydrocarbon generation stage,providing favorable conditions for the continuous hydrocarbon generation and rich gas preservation in shale interval.In the later reservoir stimulation process,it was beneficial to the lateral extension of the fractures,so as to achieve the optimal stimulation performance and increase the well-controlled resources.Combining the geological,engineering and economic conditions,the favorable area with depth less than 5500 m is determined to be 1800 km2,with resources of 5400×10^(8) m^(3).Fourth,the shale reservoirs of the Dalong Formation are thin but rich in shale gas.The syncline zone far away from the main faults in the high and steep tectonic zone,eastern Sichuan Basin,with depth less than 5500 m,is the most favorable target for producing the Permian shale gas under the current engineering and technical conditions.It mainly includes the Nanya syncline,Tanmuchang syncline and Liangping syncline.
基金financially supported by the National Natural Science Fund of China(Nos.42002166,41690134,42162016)the Guizhou Provincial Fund Project(Nos.[2020]1Y161,ZK[2021]199,ZK[2022]106)。
文摘The black shale samples from the Niutitang Formation in the Yangtze Block were sequentially treated using organic solvent extraction and wet chemical oxidation.The organic matter(OM)in the shales includes physically mobile OM(PmOM),chemically mobile OM(CmOM),and stable OM(StOM).The CmOM has the strongest CH_(4)adsorption capacity because it has the largest volume of micropores and mesopores.In contrast,the PmOM has a very negative effect on the CH_(4)adsorption because it is poreless.The XD shale is a siliceous shale,in which the quartz particles wrap partly OM,preventing extraction and oxidation.The SL shale is an argillaceous shale,in which most of the OM is combined with clay minerals to form organo-clay composites.In both the SL and XD shales,the OM that is extractable via organic solvents is distributed among the mineral particles and is interconnected.The conceptual model of marine black shale in different environments needs to be perfected in the future because quantitative and qualitative methods should be combined to clarify the relationship between the known OM types(e.g.,pyrobitumen,solid bitumen,and solid kerogen)and the OM types identified in this study.
基金Supported by the National Key R&D Program of China(2022YFF0800304)PetroChina Science and Technology Project(2023ZZ0203)。
文摘Based on large-field rock thin section scanning,high-resolution field emission-scanning electron microscopy(FE-SEM),fluorescence spectroscopy,and rock pyrolysis experiments of the Mesoproterozoic Jixianian Hongshuizhuang Formation shale samples from the Yanliao Basin in northern China,combined with sedimentary forward modeling,a systematic petrological and organic geochemical study was conducted on the reservoir quality,oil-bearing potential,distribution,and resource potential of the Hongshuizhuang Formation shale in Well Yuanji-2.The results indicate that:(1)The original organic carbon content of the Hongshuizhuang Formation shale averages up to 6.24%,and the original hydrocarbon generation potential is as high as 44.09 mg/g,demonstrating a strong oil generation potential.(2)The rock type is primarily siliceous shale containing low clay mineral content,characterized by the development of shale bedding fractures and organic shrinkage fractures,resulting in good compressibility and reservoir quality.(3)The fifth and fourth members of the Hongshuizhuang Formation serve as shale oil sweet spots,contributing more than 60%of shale oil production with their total thickness as only 40%of the target formation.(4)The Kuancheng-Laozhuanghu area is the most prospective shale oil exploration option in the Yanliao Basin and covers approximately 7200 km^(2).Its original total hydrocarbon generation potential reaches about 74.11 billion tons,with current estimated retained shale oil resources exceeding 1.148 billion tons(lower limit)–comparable to the geological resources of the Permian Lucaogou Formation shale oil in the Jimsar Sag of the Junggar Basin.These findings demonstrate the robust exploration potential of the Hongshuizhuang Formation shale oil in the Yanliao Basin.
基金the Sinopec Ministry of Science and Technology Research Project of Experimental study and application of key parameters for self-sealing evaluation of deep shale(KLP25015)Research on stress in complex tectonic zones and its impact on shale gas enrichment and high yield(P24181)+1 种基金Quantitative characterization technology and application of fluid properties in veins of shale of eastern fault basins(KLP24017)Evolution and differential enrichment mechanism of deep-ultra deep shale gas in southeastern Sichuan(P23132).
文摘Shale gas is an important unconventional resource,and shale reservoirs typically contain both water and gas fluids.Water can occupy the shale gas storage space,reduce the flow capacity of shale gas,and even completely seal off the shale gas.When the shale develops an effective sealing capacity,the water saturation of the shale reaches a threshold value which can be measured using physical simulation experiments.However,limited research has been conducted on the quantitative calculation of critical water saturation.In order to obtain the critical water saturation of shale,this paper proposes a theoretical calculation method to estimate the critical water saturation of shale based on DLvo(Derjaguin-Landau-Verwey-Overbeek)theory.Two shale samples from the Longmaxi Formation in the Sichuan Basin with different total organic carbon(TOC)were selected for gas adsorption experiments to characterize the pore structure of the organic matter and inorganic matter of the shale.Based on the established theoretical and geological models,the critical water film thickness and critical water saturation of pores with different pore sizes were calculated.Taking the boundary conditions into account,the critical water saturation of the two shale samples was ultimately determined.The results showed that inorganic pores occupied 81.0%of the pores of the shale with a ToC of 0.89%,and their dominant pore sizes were dominated by mesopores around 40 nm;inorganic pores occupied 48.7%of the pores of the shale with a TOC of 4.27%,and their dominant pore sizes were dominated by micropores and mesopores around 0-20 nm and 40 nm.As the pore size increased,the corresponding critical water film thickness also increased,and the critical water saturation was normally distributed in the pore size range centered at about 10 nm.The distribution of critical water saturation in inorganic pores with different pore sizes was in the range of about 63%-76%,and the critical water saturation of shale with a TOC of 0.89%and shale with a TOC of 4.27%were calculated to be 41.7%and 32.7%,respectively.The method proposed in this study accurately calculates the critical water saturation of shale and effectively distinguishes the differences critical water saturation between shales with different TOc.Further,shale gas reservoirs can be finely characterized by comparing with the original water saturation of shale layers.This study is of great scientific significance to shale gas exploration and development,and even to the field of cO2 geological storage.
基金the Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance,China(No.2020CX030101)the National Natural Science Foundation of China(No.42222209)the Scientific Research and Technological Development Program of CNPC,China(No.2023ZZ0801).
文摘Pore structure characteristics,gas content,and micro-scale gas occurrence mechanisms were investigated in the Shan_(2)^(3)sub-member marine-continental transitional shale of the southeastern margin of the Ordos Basin using scanning electron microscope images,lowtemperature N_(2)/CO_(2)adsorption and high-pressure mercury intrusion,methane isothermal adsorption experiments,and CH4-saturated nuclear magnetic resonance(NMR).Two distinct shale types were identified:organic pore-rich shale(Type OP)and microfracture-rich shale(Type M).The Type OP shale exhibited relatively well-developed organic matter pores,while the Type M shale was primarily characterized by a high degree of microfracture development.An experimental method combining methane isothermal adsorption on crushed samples and CH4-saturated NMR of plug samples was proposed to determine the adsorbed gas,free gas,and total gas content under high temperature and pressure conditions.There were four main research findings.(1)Marine-continental transitional shale exhibited substantial total gas content in situ,ranging from 2.58 to 5.73 cm^(3)/g,with an average of 4.35 cm^(3)/g.The adsorbed gas primarily resided in organic matter pores through micropore filling and multilayer adsorption,followed by multilayer adsorption in clay pores.(2)The changes in adsorbed and free pore volumes can be divided into four stages.Pores of<5 nm exclusively contain adsorbed gas,while those of 5-20 nm have a high proportion of adsorbed gas alongside free gas.Pores ranging from 20 to 100 nm have a high proportion of free gas and few adsorbed gas,while pores of>100 nm and microfractures are almost predominantly free gas.(3)The proportion of adsorbed gas in Type OP shale exceeds that in Type M,reaching 66%.(4)Methane adsorbed in Type OP shale demonstrates greater desorption capability,suggesting a potential for enhanced stable production,which finds support in existing production well data.However,it must be emphasized that high-gas-bearing intervals in both types present valuable opportunities for exploration and development.These data may support future model validations and enhance confidence in exploring and developing marine-continental transitional shale gas.