The mathematical model for online controlling hot rolled steel cooling on run-out table (ROT for abbreviation) was analyzed, and water cooling is found to be the main cooling mode for hot rolled steel. The calculati...The mathematical model for online controlling hot rolled steel cooling on run-out table (ROT for abbreviation) was analyzed, and water cooling is found to be the main cooling mode for hot rolled steel. The calculation of the drop in strip temperature by both water cooling and air cooling is summed up to obtain the change of heat transfer coefficient. It is found that the learning coefficient of heat transfer coefficient is the kernel coefficient of coiler temperature control (CTC) model tuning. To decrease the deviation between the calculated steel temperature and the measured one at coiler entrance, a laminar cooling control self-learning strategy is used. Using the data acquired in the field, the results of the self-learning model used in the field were analyzed. The analyzed results show that the self-learning function is effective.展开更多
Owing to a lack of gaugemeter and the variety of steel grades and standards in some plate mills, the longand short-term self-learning models of rolling force based on gauge soft-measuring with high precision were brou...Owing to a lack of gaugemeter and the variety of steel grades and standards in some plate mills, the longand short-term self-learning models of rolling force based on gauge soft-measuring with high precision were brought up. The soft-measuring method and target value locked method were used in these models to confirm the actual exit gauge of passes, and thick layer division and exponential smoothing method were used to dispose the deformation resistance parameter, which could be calculated from the actual data of the rolling process. The correlative mathematical methods can also be adapted to self-learning with gaugemeter. The models were applied to the process control system of AGC (automatic gauge control) reconstruction on 2800 mm finishing mill of Anyang steel and favorable effect was obtained.展开更多
On the basis of a simulated bright continuous annealing experimental machine, a process control model for heating system was built. The heating model was simplified and self-learning parameters were normalized to enha...On the basis of a simulated bright continuous annealing experimental machine, a process control model for heating system was built. The heating model was simplified and self-learning parameters were normalized to enhance the precision of temperature control. By means of the division of temperature layers and the exponential smoothing disposal of the annealing experimental data, the self-learning of the heating model was carried out. Through exponentially smoothing the deviation of self-learning parameters of the heated phase in heating process, dynamic modifications of self-learning parameters and heating electric current were carried out, and the precision of temperature control was confirmed. The application indicated that the process control model for the heating system can control temperature with high precision, and the deviation can be controlled within 8 ℃.展开更多
In machine learning,positive-unlabelled(PU)learning is a special case within semi-supervised learning.In positiveunlabelled learning,the training set contains some positive examples and a set of unlabelled examples fr...In machine learning,positive-unlabelled(PU)learning is a special case within semi-supervised learning.In positiveunlabelled learning,the training set contains some positive examples and a set of unlabelled examples from both the positive and negative classes.Positive-unlabelled learning has gained attention in many domains,especially in time-series data,in which the obtainment of labelled data is challenging.Examples which originate from the negative class are especially difficult to acquire.Self-learning is a semi-supervised method capable of PU learning in time-series data.In the self-learning approach,observations are individually added from the unlabelled data into the positive class until a stopping criterion is reached.The model is retrained after each addition with the existent labels.The main problem in self-learning is to know when to stop the learning.There are multiple,different stopping criteria in the literature,but they tend to be inaccurate or challenging to apply.This publication proposes a novel stopping criterion,which is called Peak evaluation using perceptually important points,to address this problem for time-series data.Peak evaluation using perceptually important points is exceptional,as it does not have tunable hyperparameters,which makes it easily applicable to an unsupervised setting.Simultaneously,it is flexible as it does not make any assumptions on the balance of the dataset between the positive and the negative class.展开更多
To respond to the further development of college English reforms,many universities employed network-based selflearning classes to aid the traditional classroom teaching,especially in teaching listening,but as time wen...To respond to the further development of college English reforms,many universities employed network-based selflearning classes to aid the traditional classroom teaching,especially in teaching listening,but as time went by,some universities gradually gave them up.The paper intends to reflect on the employment of network-based self-learning listening classes,analyz ing the learning with and without its aid,and meanwhile introduce the need to re-employ it,and discuss how we can improve the network-based self-learning classes to help with students' listening.展开更多
Control precision of coiling temperature is one of the key factors affecting the profile shape and surface quality during the cooling process of hot rolled steel strip.For this reason,the core of temperature control p...Control precision of coiling temperature is one of the key factors affecting the profile shape and surface quality during the cooling process of hot rolled steel strip.For this reason,the core of temperature control precision is to establish an effective cooling mathematical model with self-learning function.Starting from this point,a cooling mathematical model with nonlinear structural characteristics is established in this paper for the cooling process of hot rolled steel strip.By the analysis of self-learning ability,key parameters of the mathematical model could be constantly corrected so as to improve temperature control precision and adaptive capability of the model.The site actual application results proved the stable performance and high control precision of the proposed mathematical model,which would lay a solid foundation to improve the steel product qualities.展开更多
This papcr presents a new genetic algorithms(GAs)-based method for self-learniag fuzzy control rules. An improved GA is used to learn to optimally select the fuzzy membership functions of the linguistic labels in the ...This papcr presents a new genetic algorithms(GAs)-based method for self-learniag fuzzy control rules. An improved GA is used to learn to optimally select the fuzzy membership functions of the linguistic labels in the condition portion of each rule, and to automatically generate fuzzy control actions under each condition. The dynamics of the controlled system is unknown to the GA. The only information for evaluating performance is a failure signal indicating that the controlled system is out of control. We compare its performance with that of other learning methods for the same problem. We also examine the ability of the algorithm to adapt to changing conditions. Simulation results show that such an approach for self-learning fuzzy control rules is both effective and robust.展开更多
This paper presents a novel method for constructing fuzzy controllers based on a real time reinforcement genetic algorithm. This methodology introduces the real-time learning capability of neural networks into globall...This paper presents a novel method for constructing fuzzy controllers based on a real time reinforcement genetic algorithm. This methodology introduces the real-time learning capability of neural networks into globally searching process of genetic algorithm, aiming to enhance the convergence rate and real-time learning ability of genetic algorithm, which is then used to construct fuzzy controllers for complex dynamic systems without any knowledge about system dynamics and prior control experience. The cart-pole system is employed as a test bed to demonstrate the effectiveness of the proposed control scheme, and the robustness of the acquired fuzzy controller with comparable result.展开更多
In this paper, the weld pool shape control by intelligent strategy was studied. A neuron self-learning PSD controller for backside width of weld pool in pulsed GTAW with wire filler was designed. The PSD control arith...In this paper, the weld pool shape control by intelligent strategy was studied. A neuron self-learning PSD controller for backside width of weld pool in pulsed GTAW with wire filler was designed. The PSD control arithmetic was analyzed, simulating experiment by MATLAB software was done, and the validating experiments on varied heat sink workpiece and varied gap workpiece were successfully implemented. The study results show that the neuron self-learning PSD control method can attain a perfect control effect under different set values and conditions, and is suitable for the welding process with the varied structure and coefficients of control model.展开更多
A design idea was proposed that it was about intelligent digital welding machine with self-learning and self- regulation functions. The overall design scheme of software and hardware was provided. It was introduced th...A design idea was proposed that it was about intelligent digital welding machine with self-learning and self- regulation functions. The overall design scheme of software and hardware was provided. It was introduced that a parameter self-learning algorithm was based on large-step calibration and partial Newton interpolation. Furthermore, experimental verification was carried out with different welding technologies. The results show that weld bead is pegrect. Therefore, good welding quality and stability are obtained, and intelligent regulation is realized by parameters self-learning.展开更多
Among social media networks,TripAdvisor acts as the main role because everyone is eager to share and review their thoughts on their travel experiences in different destinations.Sentiment analysis is amethod that can b...Among social media networks,TripAdvisor acts as the main role because everyone is eager to share and review their thoughts on their travel experiences in different destinations.Sentiment analysis is amethod that can be used to analyze people's behaviors and opinions onpublic and socialmedia platforms.In this study,hotel reviews are extracted fromthe five most attractive Sri Lankan cities,and user-written reviews are compared over user bubble ratings,which define overall travelers'experiences as a numerical scale that ranks from 1 to 5.We find that the compatibility between userwritten reviews and bubble ratings has a low correlation because bubble ratings may not represent the overall idea of users'genuine opinions expressed in their reviews.To address this problem,a two-phase approach is proposed:(1)the ensemblemethod to improve the performance of lexicon-based outputs and identify the correctlymatching user review and bubble rating;(2)the self-learning approach to finding the sentiment of a review that does not properly label by the user.The performance is studied by considering reviews incompatible with the sentiment of user bubble rating and the sentiment generated by the proposedmodel.For example,regardless of bigram“not good”,the average percentages of the word“good”for each negatively identified review from the proposed model and bubble rating are 25.63%and 38.85%,respectively.Thereby,it is apparent that the negative sentiments derived by bubble rating have significantly more positive words compared to the proposed model.展开更多
The article describes an approach to building a self-learning diagnostic algorithm. The self-learning algorithm creates models of the object under consideration. The models are formed periodically through a certain ti...The article describes an approach to building a self-learning diagnostic algorithm. The self-learning algorithm creates models of the object under consideration. The models are formed periodically through a certain time period. The model includes a set of functions that can describe whole object, or a part of the object, or a specified functionality of the object. Thus, information about fault location can be obtained. During operation of the object the algorithm collects data received from sensors. Then the algorithm creates samples related to steady state operation. Clustering of those samples is used for the functions definition. Values of the functions in the centers of clusters are stored in the computer’s memory. To illustrate the considered approach, its application to the diagnosis of turbomachines is described.展开更多
Self-learning is one of the most important scientific methods that helps develop sciences, as it derives from the desire and interests of the individual. However, self-learning loses importance if it does not follow t...Self-learning is one of the most important scientific methods that helps develop sciences, as it derives from the desire and interests of the individual. However, self-learning loses importance if it does not follow the scientific methodology for building and organizing information. The case becomes harder if the science is new and few scientific sources are available. Quantum computing is one of the new sciences in computer science and needs the support of specialists to develop it. Quantum computing overlaps with many sciences such as physics, chemistry, and mathematics, so any student in one of the previous disciplines may lose the correct self-learning path to find themselves learning the details of another discipline that does not achieve their goals. This article motivates students and those interested in computer science to begin studying the science of quantum computing and choose the same specialization that suits their interests. The article also provides a roadmap for self-learning steps to protect the learner from losing the correct learning path. I have categorized the stages of learning quantum computing into four steps through which all the essential basics can be learned, provided the goals mentioned in each stage which should be achieved. The learning strategy proposed in this article corresponds with individuals’ self-learning rules. Through my personal experience, the proposed learning strategy has proven its effectiveness in building information in an enjoyable scientific way.展开更多
Objective:To explore the effect of implementing the case-based three-dimensional teaching method guided by evidence-based thinking in the teaching of trainee nurses in the rehabilitation department.Method:Eighty nursi...Objective:To explore the effect of implementing the case-based three-dimensional teaching method guided by evidence-based thinking in the teaching of trainee nurses in the rehabilitation department.Method:Eighty nursing practice nurses who were conducting clinical practice learning in the Rehabilitation Department of Deyang People’s Hospital from June 2024 to May 2025 were selected as the research subjects.By using the controlled grouping method,the practice nurses from June 2024 to November 2024 were taken as the control group(n=40).The period from December 2024 to May 2025 was taken as the experimental group(n=40 students),the control group was taught by traditional teaching methods,and the experimental group was taught by evidence-based nursing combined with case teaching method.The clinical thinking ability,autonomous learning ability,exit assessment scores and teaching satisfaction of the two groups of intern nurses at the time of leaving the department were compared.Results:At the time of leaving the department,the scores of each dimension and the total score of clinical thinking ability of the intern nurses in the experimental group were higher than those in the control group(t=9.268,6.354,6.199)9.694,all p<0.05).At the time of leaving the department the scores of each dimension and the total score of the autonomous learning ability of the intern nurses in the experimental group were higher than those in the control group(t=6.998,7.333,5.503,5.977,22.244)all p<0.05).At the time of leaving the department the theoretical assessment scores and operational assessment scores of the experimental group were both higher than those of the control group(t=14.546,11.676,all p<0.05).At the time of graduation,the teaching satisfaction of the experimental group was higher than that of the control group(χ^(2)=7.314,p<0.05.Conclusion:The adoption of the case-based three-dimensional teaching.Rehabilitation method guided by the evidence-based ideology during the teaching process can effectively improve the clinical thinking ability,autonomous learning ability,departmental assessment results and teaching satisfaction of the intern nurses in the rehabilitation department,which is worthy of reference.展开更多
Friction coefficients in spread formulas were studied under low width-to-thickness ratio. The effects of all the factors on friction were considered as different roughness of surfaces. After lead rolling experiments i...Friction coefficients in spread formulas were studied under low width-to-thickness ratio. The effects of all the factors on friction were considered as different roughness of surfaces. After lead rolling experiments in 5 different roughness grades, friction coefficients were obtained. With changing width-to-thickness ratio, reduction rate and ratio of diameter of roller to thickness, all the nominal friction coefficients which can be used in these formulas were calculated. Then, a fitting expression was proposed, comparing with the results measured in 232 times tests, the errors of the nominal friction coefficients calculated by the expression are mostly less than 12%. After a certain times self-learning, the errors are no more than 2%. With the varying nominal friction coefficients, the spread will be predicted more accurately. When the nominal friction coefficient is used to predict the spread under the real working condition, the results calculated are also in agreement with the measured ones, and the errors are less than 2%. This credible reference and solution about how to set the friction coefficient in spread formulas would also be used in practical industrial production.展开更多
The existing research of the flatness control for strip cold rolling mainly focuses on the calculation of the optimum adjustment of individual flatness actuator in accordance with the flatness deviation , which is use...The existing research of the flatness control for strip cold rolling mainly focuses on the calculation of the optimum adjustment of individual flatness actuator in accordance with the flatness deviation , which is used for general flatness control.As the basis of flatness control system , the efficiencies of flatness actuators provide a quantitative description to the law of flatness control.Therefore , the determination of actuator efficiency factors is crucial in flatness control.The strategies of closed loop feedback flatness control and rolling force feed-forward control were established respectively based on actuator efficiency factors.For the purpose of obtaining accurate efficiency factors matrixes of flatness actuators , a self-learning model of actuator efficiency factors was established.The precision of actuator efficiency factors can be improved continuously by the input of correlative measured flatness data.Meanwhile , the self-learning model of actuator efficiency factors permits the application of this flatness control for all possible types of actuators and every stand type.The application results show that the self-learning model is capable of obtaining good flatness.展开更多
A temperature control system of 31m vertical forced air-circulation quench furnace is proposed, which is a kind of equipment critical for thermal treatment of aluminum alloy components that are widely used in aerospac...A temperature control system of 31m vertical forced air-circulation quench furnace is proposed, which is a kind of equipment critical for thermal treatment of aluminum alloy components that are widely used in aerospace industry. For the effective operation of the furnace, it is essential to analyze the radial temperature distribution of the furnace. A set of thermodynamic balance equations modeling is established firsdy. By utilizing the numerical analysis result to modify the temperature measurements, the control accuracy and precision of the temperature are truly guaranteed. Furthermore, the multivariable decoupling self-learning PID control algorithm based on the characteristics of strong coupling between the multi-zones in the large-scaled furnace is implemented to ensure the true homogeneity of the axial temperature distribution. Finally, the redundant structure composed of industrial control computers and touch panels leads to great improvement of system reliability.展开更多
A parallel neural network-based controller (PNNC) is presented for the motion control of underwater vehicles in this paper. It consists of a real-time part, a self-learning part and a desired-state programmer, and i...A parallel neural network-based controller (PNNC) is presented for the motion control of underwater vehicles in this paper. It consists of a real-time part, a self-learning part and a desired-state programmer, and it is different from normal adaptive neural network controller in structure. Owing to the introduction of the self-learning part, on-line learning can be performed without sample data in several sample periods, resulting in high learning speed of the controller and good control performance. The desired-state programmer is utilized to obtain better learning samples of the neural network to keep the stability of the controller. The developed controller is applied to the 4-degree of freedom control of the AUV “IUV- IV” and is successful on the simulation platform. The control performance is also compared with that of neural network controller with different structures such as normal adaptive neural network and different learning methods. Current effects and surge velocity control are also included to demonstrate the controller' s performance. It is shown that the PNNC has a great possibility to solve the problems in the control system design of underwater vehicles.展开更多
基金Item Sponsored by National Natural Science Foundation of China(50474016)
文摘The mathematical model for online controlling hot rolled steel cooling on run-out table (ROT for abbreviation) was analyzed, and water cooling is found to be the main cooling mode for hot rolled steel. The calculation of the drop in strip temperature by both water cooling and air cooling is summed up to obtain the change of heat transfer coefficient. It is found that the learning coefficient of heat transfer coefficient is the kernel coefficient of coiler temperature control (CTC) model tuning. To decrease the deviation between the calculated steel temperature and the measured one at coiler entrance, a laminar cooling control self-learning strategy is used. Using the data acquired in the field, the results of the self-learning model used in the field were analyzed. The analyzed results show that the self-learning function is effective.
基金Item Sponsored by National Natural Science Foundation of China (50604006)
文摘Owing to a lack of gaugemeter and the variety of steel grades and standards in some plate mills, the longand short-term self-learning models of rolling force based on gauge soft-measuring with high precision were brought up. The soft-measuring method and target value locked method were used in these models to confirm the actual exit gauge of passes, and thick layer division and exponential smoothing method were used to dispose the deformation resistance parameter, which could be calculated from the actual data of the rolling process. The correlative mathematical methods can also be adapted to self-learning with gaugemeter. The models were applied to the process control system of AGC (automatic gauge control) reconstruction on 2800 mm finishing mill of Anyang steel and favorable effect was obtained.
基金Item Sponsored by National Natural Science Foundation of China (50527402)
文摘On the basis of a simulated bright continuous annealing experimental machine, a process control model for heating system was built. The heating model was simplified and self-learning parameters were normalized to enhance the precision of temperature control. By means of the division of temperature layers and the exponential smoothing disposal of the annealing experimental data, the self-learning of the heating model was carried out. Through exponentially smoothing the deviation of self-learning parameters of the heated phase in heating process, dynamic modifications of self-learning parameters and heating electric current were carried out, and the precision of temperature control was confirmed. The application indicated that the process control model for the heating system can control temperature with high precision, and the deviation can be controlled within 8 ℃.
文摘In machine learning,positive-unlabelled(PU)learning is a special case within semi-supervised learning.In positiveunlabelled learning,the training set contains some positive examples and a set of unlabelled examples from both the positive and negative classes.Positive-unlabelled learning has gained attention in many domains,especially in time-series data,in which the obtainment of labelled data is challenging.Examples which originate from the negative class are especially difficult to acquire.Self-learning is a semi-supervised method capable of PU learning in time-series data.In the self-learning approach,observations are individually added from the unlabelled data into the positive class until a stopping criterion is reached.The model is retrained after each addition with the existent labels.The main problem in self-learning is to know when to stop the learning.There are multiple,different stopping criteria in the literature,but they tend to be inaccurate or challenging to apply.This publication proposes a novel stopping criterion,which is called Peak evaluation using perceptually important points,to address this problem for time-series data.Peak evaluation using perceptually important points is exceptional,as it does not have tunable hyperparameters,which makes it easily applicable to an unsupervised setting.Simultaneously,it is flexible as it does not make any assumptions on the balance of the dataset between the positive and the negative class.
基金the National Natural Science Foundation of China(No.61375086)the Key Project of Science and Technique Plan of Beijing Municipal Commission of Education(No.KZ201210005001)+1 种基金the National Basic Research Program(973)of China(No.2012CB720000)the China Scholarship Council Program(No.201406540017)
文摘To respond to the further development of college English reforms,many universities employed network-based selflearning classes to aid the traditional classroom teaching,especially in teaching listening,but as time went by,some universities gradually gave them up.The paper intends to reflect on the employment of network-based self-learning listening classes,analyz ing the learning with and without its aid,and meanwhile introduce the need to re-employ it,and discuss how we can improve the network-based self-learning classes to help with students' listening.
基金Project supported by the National Key Technology Research and Development Program (Grant No.2006BAE03A08)
文摘Control precision of coiling temperature is one of the key factors affecting the profile shape and surface quality during the cooling process of hot rolled steel strip.For this reason,the core of temperature control precision is to establish an effective cooling mathematical model with self-learning function.Starting from this point,a cooling mathematical model with nonlinear structural characteristics is established in this paper for the cooling process of hot rolled steel strip.By the analysis of self-learning ability,key parameters of the mathematical model could be constantly corrected so as to improve temperature control precision and adaptive capability of the model.The site actual application results proved the stable performance and high control precision of the proposed mathematical model,which would lay a solid foundation to improve the steel product qualities.
文摘This papcr presents a new genetic algorithms(GAs)-based method for self-learniag fuzzy control rules. An improved GA is used to learn to optimally select the fuzzy membership functions of the linguistic labels in the condition portion of each rule, and to automatically generate fuzzy control actions under each condition. The dynamics of the controlled system is unknown to the GA. The only information for evaluating performance is a failure signal indicating that the controlled system is out of control. We compare its performance with that of other learning methods for the same problem. We also examine the ability of the algorithm to adapt to changing conditions. Simulation results show that such an approach for self-learning fuzzy control rules is both effective and robust.
文摘This paper presents a novel method for constructing fuzzy controllers based on a real time reinforcement genetic algorithm. This methodology introduces the real-time learning capability of neural networks into globally searching process of genetic algorithm, aiming to enhance the convergence rate and real-time learning ability of genetic algorithm, which is then used to construct fuzzy controllers for complex dynamic systems without any knowledge about system dynamics and prior control experience. The cart-pole system is employed as a test bed to demonstrate the effectiveness of the proposed control scheme, and the robustness of the acquired fuzzy controller with comparable result.
文摘In this paper, the weld pool shape control by intelligent strategy was studied. A neuron self-learning PSD controller for backside width of weld pool in pulsed GTAW with wire filler was designed. The PSD control arithmetic was analyzed, simulating experiment by MATLAB software was done, and the validating experiments on varied heat sink workpiece and varied gap workpiece were successfully implemented. The study results show that the neuron self-learning PSD control method can attain a perfect control effect under different set values and conditions, and is suitable for the welding process with the varied structure and coefficients of control model.
文摘A design idea was proposed that it was about intelligent digital welding machine with self-learning and self- regulation functions. The overall design scheme of software and hardware was provided. It was introduced that a parameter self-learning algorithm was based on large-step calibration and partial Newton interpolation. Furthermore, experimental verification was carried out with different welding technologies. The results show that weld bead is pegrect. Therefore, good welding quality and stability are obtained, and intelligent regulation is realized by parameters self-learning.
文摘Among social media networks,TripAdvisor acts as the main role because everyone is eager to share and review their thoughts on their travel experiences in different destinations.Sentiment analysis is amethod that can be used to analyze people's behaviors and opinions onpublic and socialmedia platforms.In this study,hotel reviews are extracted fromthe five most attractive Sri Lankan cities,and user-written reviews are compared over user bubble ratings,which define overall travelers'experiences as a numerical scale that ranks from 1 to 5.We find that the compatibility between userwritten reviews and bubble ratings has a low correlation because bubble ratings may not represent the overall idea of users'genuine opinions expressed in their reviews.To address this problem,a two-phase approach is proposed:(1)the ensemblemethod to improve the performance of lexicon-based outputs and identify the correctlymatching user review and bubble rating;(2)the self-learning approach to finding the sentiment of a review that does not properly label by the user.The performance is studied by considering reviews incompatible with the sentiment of user bubble rating and the sentiment generated by the proposedmodel.For example,regardless of bigram“not good”,the average percentages of the word“good”for each negatively identified review from the proposed model and bubble rating are 25.63%and 38.85%,respectively.Thereby,it is apparent that the negative sentiments derived by bubble rating have significantly more positive words compared to the proposed model.
文摘The article describes an approach to building a self-learning diagnostic algorithm. The self-learning algorithm creates models of the object under consideration. The models are formed periodically through a certain time period. The model includes a set of functions that can describe whole object, or a part of the object, or a specified functionality of the object. Thus, information about fault location can be obtained. During operation of the object the algorithm collects data received from sensors. Then the algorithm creates samples related to steady state operation. Clustering of those samples is used for the functions definition. Values of the functions in the centers of clusters are stored in the computer’s memory. To illustrate the considered approach, its application to the diagnosis of turbomachines is described.
文摘Self-learning is one of the most important scientific methods that helps develop sciences, as it derives from the desire and interests of the individual. However, self-learning loses importance if it does not follow the scientific methodology for building and organizing information. The case becomes harder if the science is new and few scientific sources are available. Quantum computing is one of the new sciences in computer science and needs the support of specialists to develop it. Quantum computing overlaps with many sciences such as physics, chemistry, and mathematics, so any student in one of the previous disciplines may lose the correct self-learning path to find themselves learning the details of another discipline that does not achieve their goals. This article motivates students and those interested in computer science to begin studying the science of quantum computing and choose the same specialization that suits their interests. The article also provides a roadmap for self-learning steps to protect the learner from losing the correct learning path. I have categorized the stages of learning quantum computing into four steps through which all the essential basics can be learned, provided the goals mentioned in each stage which should be achieved. The learning strategy proposed in this article corresponds with individuals’ self-learning rules. Through my personal experience, the proposed learning strategy has proven its effectiveness in building information in an enjoyable scientific way.
基金2023 Higher Education Teaching Research and Reform Project of Southwest Medical University(Project No.:JG2023jdyb033)。
文摘Objective:To explore the effect of implementing the case-based three-dimensional teaching method guided by evidence-based thinking in the teaching of trainee nurses in the rehabilitation department.Method:Eighty nursing practice nurses who were conducting clinical practice learning in the Rehabilitation Department of Deyang People’s Hospital from June 2024 to May 2025 were selected as the research subjects.By using the controlled grouping method,the practice nurses from June 2024 to November 2024 were taken as the control group(n=40).The period from December 2024 to May 2025 was taken as the experimental group(n=40 students),the control group was taught by traditional teaching methods,and the experimental group was taught by evidence-based nursing combined with case teaching method.The clinical thinking ability,autonomous learning ability,exit assessment scores and teaching satisfaction of the two groups of intern nurses at the time of leaving the department were compared.Results:At the time of leaving the department,the scores of each dimension and the total score of clinical thinking ability of the intern nurses in the experimental group were higher than those in the control group(t=9.268,6.354,6.199)9.694,all p<0.05).At the time of leaving the department the scores of each dimension and the total score of the autonomous learning ability of the intern nurses in the experimental group were higher than those in the control group(t=6.998,7.333,5.503,5.977,22.244)all p<0.05).At the time of leaving the department the theoretical assessment scores and operational assessment scores of the experimental group were both higher than those of the control group(t=14.546,11.676,all p<0.05).At the time of graduation,the teaching satisfaction of the experimental group was higher than that of the control group(χ^(2)=7.314,p<0.05.Conclusion:The adoption of the case-based three-dimensional teaching.Rehabilitation method guided by the evidence-based ideology during the teaching process can effectively improve the clinical thinking ability,autonomous learning ability,departmental assessment results and teaching satisfaction of the intern nurses in the rehabilitation department,which is worthy of reference.
基金Projects(51074052,50734002)supported by the National Natural Science Foundation of China
文摘Friction coefficients in spread formulas were studied under low width-to-thickness ratio. The effects of all the factors on friction were considered as different roughness of surfaces. After lead rolling experiments in 5 different roughness grades, friction coefficients were obtained. With changing width-to-thickness ratio, reduction rate and ratio of diameter of roller to thickness, all the nominal friction coefficients which can be used in these formulas were calculated. Then, a fitting expression was proposed, comparing with the results measured in 232 times tests, the errors of the nominal friction coefficients calculated by the expression are mostly less than 12%. After a certain times self-learning, the errors are no more than 2%. With the varying nominal friction coefficients, the spread will be predicted more accurately. When the nominal friction coefficient is used to predict the spread under the real working condition, the results calculated are also in agreement with the measured ones, and the errors are less than 2%. This credible reference and solution about how to set the friction coefficient in spread formulas would also be used in practical industrial production.
基金Item Sponsored by National Science and Technology Support Plan of China ( 2011BAF15B01 , 2011BAF15B03 )Provincial Natural Science Foundation of Hebei of China ( E2011203004 )
文摘The existing research of the flatness control for strip cold rolling mainly focuses on the calculation of the optimum adjustment of individual flatness actuator in accordance with the flatness deviation , which is used for general flatness control.As the basis of flatness control system , the efficiencies of flatness actuators provide a quantitative description to the law of flatness control.Therefore , the determination of actuator efficiency factors is crucial in flatness control.The strategies of closed loop feedback flatness control and rolling force feed-forward control were established respectively based on actuator efficiency factors.For the purpose of obtaining accurate efficiency factors matrixes of flatness actuators , a self-learning model of actuator efficiency factors was established.The precision of actuator efficiency factors can be improved continuously by the input of correlative measured flatness data.Meanwhile , the self-learning model of actuator efficiency factors permits the application of this flatness control for all possible types of actuators and every stand type.The application results show that the self-learning model is capable of obtaining good flatness.
基金It was supported by the National Natural Science Foundation of China (No. 59835170).
文摘A temperature control system of 31m vertical forced air-circulation quench furnace is proposed, which is a kind of equipment critical for thermal treatment of aluminum alloy components that are widely used in aerospace industry. For the effective operation of the furnace, it is essential to analyze the radial temperature distribution of the furnace. A set of thermodynamic balance equations modeling is established firsdy. By utilizing the numerical analysis result to modify the temperature measurements, the control accuracy and precision of the temperature are truly guaranteed. Furthermore, the multivariable decoupling self-learning PID control algorithm based on the characteristics of strong coupling between the multi-zones in the large-scaled furnace is implemented to ensure the true homogeneity of the axial temperature distribution. Finally, the redundant structure composed of industrial control computers and touch panels leads to great improvement of system reliability.
文摘A parallel neural network-based controller (PNNC) is presented for the motion control of underwater vehicles in this paper. It consists of a real-time part, a self-learning part and a desired-state programmer, and it is different from normal adaptive neural network controller in structure. Owing to the introduction of the self-learning part, on-line learning can be performed without sample data in several sample periods, resulting in high learning speed of the controller and good control performance. The desired-state programmer is utilized to obtain better learning samples of the neural network to keep the stability of the controller. The developed controller is applied to the 4-degree of freedom control of the AUV “IUV- IV” and is successful on the simulation platform. The control performance is also compared with that of neural network controller with different structures such as normal adaptive neural network and different learning methods. Current effects and surge velocity control are also included to demonstrate the controller' s performance. It is shown that the PNNC has a great possibility to solve the problems in the control system design of underwater vehicles.