期刊文献+
共找到173篇文章
< 1 2 9 >
每页显示 20 50 100
Unveiling the catalytic active sites of iron-vanadium catalysts for the selective oxidation of methanol to formaldehyde
1
作者 Yujie Zhan Chengqin Zhong +8 位作者 Mingli Bi Yafei Liang Yuji Qi Jiaqi Chen Jiaxu Liu Xindang Zhang Shuai Zhang Yehong Wang Feng Wang 《Chinese Journal of Catalysis》 2025年第5期334-343,共10页
Iron-Vanadium(FeV)catalyst showed a unique catalytic activity for the selective oxidation of methanol to formaldehyde;however,due to its complex compositions,the identification of catalytic active sites still remains ... Iron-Vanadium(FeV)catalyst showed a unique catalytic activity for the selective oxidation of methanol to formaldehyde;however,due to its complex compositions,the identification of catalytic active sites still remains challenging,inhibiting the rational design of excellent FeV-based catalysts.Here,in this work,a series of FeV catalysts with various compositions,including FeVO_(4),isolated VO_(x),low-polymerized V_(n)O_(x),and crystalline V_(2)O_(5) were prepared by controlling the preparation conditions,and were applied to methanol oxidation to formaldehyde reaction.A FeV_(1.1) catalyst,which consisted of FeVO_(4) and low-polymerized V_(n)O_(x) species showed an excellent catalytic performance with a methanol conversion of 92.3%and a formaldehyde selectivity of 90.6%,which was comparable to that of conventional iron-molybdate catalyst.The results of CH_(3)OH-IR,O_(2) pulse and control experiments revealed a crucial synergistic effect between FeVO_(4) and low-polymerized V_(n)O_(x).It enhanced the oxygen supply capacity and suitable binding and adsorption strengths for formaldehyde intermediates,contributing to the high catalytic activity and formaldehyde selectivity.This study not only advances the understanding of FeV structure but also offers valuable guidelines for selective methanol oxidation to formaldehyde. 展开更多
关键词 Iron-vanadium selective oxidation METHANOL FORMALDEHYDE Synergistic effect
在线阅读 下载PDF
Enhanced selective oxidation of dimethyl ether to formaldehyde by MoO_(3)-Fe_(2)(MoO_(4))_(3) interaction over iron-molybdate catalysts
2
作者 Yafei Liang Yuji Qi +6 位作者 Mingli Bi Zhen Shi Junju Mu Shushuang Li Jian Zhang Yehong Wang Feng Wang 《Journal of Energy Chemistry》 2025年第7期832-841,共10页
The efficient catalytic conversion of fossil-based low-carbon small molecules to oxygen-containing chemicals is an attractive research topic in the fields of energy and chemical engineering.The selective oxidation of ... The efficient catalytic conversion of fossil-based low-carbon small molecules to oxygen-containing chemicals is an attractive research topic in the fields of energy and chemical engineering.The selective oxidation of dimethyl ether(DME),which is derived from fossil resources,represents a promising approach to producing high-concentration formaldehyde with low energy consumption.However,there is still a lack of catalysts achieving satisfactory conversion of DME with high selectivity for formaldehyde under mild conditions.In this work,an efficient iron-molybdate(FeMo)catalyst was developed for the selective oxidation of DME to formaldehyde.The DME conversion of 84% was achieved with a superior formaldehyde selectivity(77%)at 300℃,a performance that is superior to all previously reported results.In an approximately 550 h continuous reaction,the catalyst maintained a conversion of 64% and a formaldehyde selectivity of 79%.Combined X-ray diffraction(XRD),Transmission electron microscope(TEM),Ultraviolet-visible spectroscopy(UV-Vis),Hydrogen temperature-programmed reduction(H_(2)-TPR),Fourier transform infrared(FT-IR)analyses,along with density functional theory(DFT)calculations,demonstrated that the excellent FeMo catalyst was composed of active Fe_(2)(MoO_(4))_(3)and MoO_(3)phases,and there was an interaction between them,which contributed to the efficient DME dissociation and smooth hydrogen spillover,leading to a superior DME conversion.With the support of DME/O_(2)pulse experiments,in-situ Raman,in-situ Dimethyl ether infrared spectroscopy(DME-IR)and DFT calculation results,a Mars-van Krevelen(MvK)reaction mechanism was proposed:DME was dissociated on the interface between Fe_(2)(MoO_(4))_(3)and MoO_(3)phases to form active methoxy species firstly,and it dehydrogenated to give hydrogen species;the generated hydrogen species smoothly spilled over from Fe_(2)(MoO_(4))_(3)to MoO_(3)enhanced by the interaction between Fe_(2)(MoO_(4))_(3)and MoO_(3);then the hydrogen species was consumed by MoO_(3),leading to a reduction of MoO_(3),and finally,the reduced MoO_(3)was re-oxidized by O_(2),returning to the initial state.These findings offer valuable insights not only for the development of efficient FeMo catalysts but also for elucidating the reaction mechanism involved in the oxidation of DME to formaldehyde,contributing to the optimized utilization of DME derived from fossil resources. 展开更多
关键词 Dimethyl ether selective oxidation FeMo catalyst FORMALDEHYDE INTERACTION
暂未订购
Development of multifunctional Co_(3)O_(4)-modified ZnIn_(2)S_(4) photocatalyst for the selective oxidation of biomass-derived 5-hydroxymethylfurfural
3
作者 Shan Jiang Zhenpan Chen +3 位作者 Shaofeng Xiong Hongxin Zhao Xishun Xiao Zhigang Shen 《Journal of Energy Chemistry》 2025年第10期830-838,共9页
The photocatalytic selective oxidation of biomass-derived 5-hydroxymethylfurfural(HMF)offers a sustainable alternative to thermal catalysis.However,the efficiency of this process is significantly limited by inadequate... The photocatalytic selective oxidation of biomass-derived 5-hydroxymethylfurfural(HMF)offers a sustainable alternative to thermal catalysis.However,the efficiency of this process is significantly limited by inadequate light absorption efficiency and the rapid recombination of photogenerated charge carriers in conventional photocatalysts.Herein,we developed a Co_(3)O_(4)/ZnIn_(2)S_(4)(Co_(3)O_(4)/ZIS)photocatalyst,in which Co_(3)O_(4)functions as a multifunctional cocatalyst.This photocatalyst significantly enhances the chemisorption and activation of HMF molecules through interfacial oxygen-hydroxyl interactions.Additionally,the incorporation of narrow-band gap Co_(3)O_(4)broadens the optical absorption range of the composite photocatalyst.Besides,integrating Co_(3)O_(4)with ZnIn_(2)S_(4)leads to a 5.9-fold increase in charge separation efficiency compared to pristine ZnIn_(2)S_(4).The optimized Co_(3)O_(4)/ZIS-3 photocatalyst(3 wt% Co_(3)O_(4)loading)exhibits exceptional selectivity and yield for 2,5-diformylfuran(DFF)under visible light irradiation,achieving 70.4%DFF selectivity with a 5.4-fold enhancement compared to pristine ZnIn_(2)S_(4).Scavenger experiments and electron spin resonance(ESR)spectroscopy indicate that superoxide radicals(O_(2)^(-))and h^(+)are the main active species driving the photocatalytic oxidation of HMF.Molecular simulations reveal that the activation of HMF and the transformation of the intermediate^(*)MF to^(*)DFF are more favorable over the Co_(3)O_(4)/ZIS composite due to lower activation barriers compared to those over ZnIn_(2)S_(4).Through this work,we aim to design highly efficient and affordable photocatalysts for biomass valorization and contribute valuable insights into the mechanisms of photocatalytic oxidation of HMF. 展开更多
关键词 PHOTOCATALYSIS selective oxidation COCATALYST 5-HYDROXYMETHYLFURFURAL
在线阅读 下载PDF
Unveiling the Selective Oxidation Mechanism of a Low Cr Alloy with Surface Spraying Oxide Nanoparticles of hcp Structure
4
作者 Hang Ding Juanjuan Liang +3 位作者 Xin Luo Song Tang Yun Xie Xiao Peng 《Acta Metallurgica Sinica(English Letters)》 2025年第12期2125-2133,共9页
This study systematically explored the oxidation behavior of a Ni-10Cr alloy without and with surface spraying hexagonal closed pack(hcp)-structuredα-Al_(2)O_(3)orα-Fe_(2)O_(3)nanoparticles.Despite the distinct equi... This study systematically explored the oxidation behavior of a Ni-10Cr alloy without and with surface spraying hexagonal closed pack(hcp)-structuredα-Al_(2)O_(3)orα-Fe_(2)O_(3)nanoparticles.Despite the distinct equilibrium dissociation oxygen partial pressure of the two kinds of oxide nanoparticles,they both contributed to the selective oxidation of Ni-10Cr alloy,achieving the transition from internal Cr oxidation to external Cr_(2)O_(3)scale formation.Nano-scaled characterization indicates that a coherent interface was developed between the newly grown Cr_(2)O_(3)grains and the hcp-structured oxide nanoparticles,whereby promoting epitaxial Cr_(2)O_(3)nucleation surrounding the nanoparticles and kinetically accelerating the formation of a continuous Cr_(2)O_(3)scale at the transient oxidation stage.The findings provide new insights into the selective oxidation mechanism of alloys with low Cr contents. 展开更多
关键词 Nanoparticles selective oxidation High temperature oxidation Low Cr alloy
原文传递
MOF encapsulation derived slow-release oxygen species to enhance the activity and selectivity of methane selective oxidation:A transient DRIFTs Study
5
作者 Ke-Xin Li Hao Yuan +1 位作者 Ralph T.Yang Zhun Hu 《Chinese Journal of Catalysis》 2025年第11期202-214,共13页
The methane selective oxidation was a"holy grail"reaction.However,peroxidation and low selectivity limited the application.Herein,we combined three Au contents with TiO_(2)in both encapsulation(xAu@TiO_(2))a... The methane selective oxidation was a"holy grail"reaction.However,peroxidation and low selectivity limited the application.Herein,we combined three Au contents with TiO_(2)in both encapsulation(xAu@TiO_(2))and surface-loaded(xAu/TiO_(2))ways by MOF derivation strategy,reported a catalyst 0.5Au@TiO_(2)exhibited a CH_(3)OH yield of 32.5μmol·g^(-1)·h^(-1)and a CH_(3)OH selectivity of 80.6%under catalytic conditions of only CH_(4),O_(2),and H_(2)O.Mechanically speaking,the catalytic activity was controlled by both electron-hole separation efficiency and core-shell structure.The interfacial contact between Au nanoparticles and TiO_(2)in xAu@TiO_(2)and xAu/TiO_(2)induced the formation of oxygen vacancies,with 0.5 Au content showing the highest oxygen vacancy concentration.At the same Au content,xAu@TiO_(2)generated more oxygen vacancies than xAu/TiO_(2).The oxygen vacancy acted as an effective electron cold trap,which enhanced the photogenerated carrier separation efficiency and thereby improved the catalytic activity.In-situ DRIFTs revealed that the isolated OH(non-hydrogen bond adsorption)were key species for the methane selective oxidation,playing a role in the activation of CH_(4)to^(*)CH_(3).However,an overabundance of isolated OH led to severe overoxidation.Fortunately,the core-shell structure over xAu@TiO_(2)provided a slow-release environment for isolated OH through the intermediate state of^(*)OH(hydrogen bond adsorption)to balance the formation rate and consumption rate of isolated OH,doubling the methanol yield and increasing the>29%selectivity.These results showed a new strategy for the control of the overoxidation rate via a strategy of MOF encapsulation followed by pyrolytic derivation for methane selective oxidation. 展开更多
关键词 Methane selective oxidation Metal-organic framework derived Reactive oxygen species modulation Hydrogen bonded adsoprotion hydroxyl groups
在线阅读 下载PDF
Selective oxidation of methane to syngas using Pr_(0.7)Zr_(0.3)O_(2-δ): Stability of oxygen carrier
6
作者 杜云鹏 祝星 +2 位作者 王华 魏永刚 李孔斋 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第4期1248-1253,共6页
Pr0.7Zr0.3O2-δ solid solution was prepared by co-precipitation method and used as an oxygen carrier in the selective oxidation of methane to syngas(methane/air redox process). The evolution on the physicochemical pro... Pr0.7Zr0.3O2-δ solid solution was prepared by co-precipitation method and used as an oxygen carrier in the selective oxidation of methane to syngas(methane/air redox process). The evolution on the physicochemical properties of Pr0.7Zr0.3O2-δ during the redox process was studied by means of X-ray diffraction(XRD), H2 temperature-programmed reduction(H2-TPR), O2temperature-programmed desorption(O2-TPD), Brunauer-Emmett-Teller(BET) surface area measurement and X-ray photoelectron spectroscopy(XPS) technologies. The results indicated that Pr0.7Zr0.3O2-δ solid solution showed the high activity for the methane conversion to syngas with a high CO selectivity in the range of 83.5%-88.1%. Though Pr-Zr solid solution possessed high thermal stability, lattice oxygen was obviously reduced for the recycled sample due to decreased surface oxygen which promoted oxygen vacancies. The increased oxygen vacancies seemed to enhance the oxygen transfer ability in the redox process and provided sufficient oxygen for the methane selective oxidation, resulting in a satisfactory activity. The problem of hot pot was avoided by comparing fresh, aged and recycle sample in the reaction. 展开更多
关键词 METHANE selective oxidation oxygen carrier Pr-Zr solid solution SYNGAS STABILITY
在线阅读 下载PDF
Solvent-free selective oxidation of cyclohexane with molecular oxygen over manganese oxides:Effect of the calcination temperature 被引量:3
7
作者 吴明周 詹望成 +5 位作者 郭耘 王筠松 郭杨龙 龚学庆 王丽 卢冠忠 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第1期184-192,共9页
The effects of calcination temperature on the physicochemical properties of manganese oxide catalysts prepared by a precipitation method were assessed by X-ray diffraction,N2 adsorption-desorption,X-ray photoelectron ... The effects of calcination temperature on the physicochemical properties of manganese oxide catalysts prepared by a precipitation method were assessed by X-ray diffraction,N2 adsorption-desorption,X-ray photoelectron spectroscopy,H2 temperature-programmed reduction,O2 temperature-programmed desorption,and thermogravimetry-differential analysis.The catalytic performance of each of these materials during the selective oxidation of cyclohexane with oxygen in a solvent-free system was subsequently examined.It was found that the MnOx-500 catalyst,calcined at 500 °C,consisted of a Mn2O3 phase in addition to Mn5O8 and Mn3O4 phases and possessed a low surface area.Unlike MnOx-500,the MnOx-400 catalyst prepared at 400 °C was composed solely of Mn3O4 and Mn5O8 and had a higher surface area.The pronounced catalytic activity of this latter material for the oxidation of cyclohexene was determined to result from numerous factors,including a higher concentration of surface adsorbed oxygen,greater quantities of the surface Mn4+ ions that promote oxygen mobility and the extent of O2 adsorption and reducibility on the catalyst.The effects of various reaction conditions on the activity of the MnOx-400 during the oxidation of cyclohexane were also evaluated,such as the reaction temperature,reaction time,and initial oxygen pressure.Following a 4 h reaction at an initial O2 pressure of 0.5 MPa and 140 °C,an 8.0% cyclohexane conversion and 5.0% yield of cyclohexanol and cyclohexanone were achieved over the MnOx-400 catalyst.In contrast,employing MnOx-500 resulted in a 6.1% conversion of cyclohexane and 75% selectivity for cyclohexanol and cyclohexanone.After being recycled through 10 replicate uses,the catalytic activity of the MnOx-400 catalyst was unchanged,demonstrating its good stability. 展开更多
关键词 Manganese oxide catalyst selective oxidation of cyclohexane OXYGEN Calcination temperature Solvent-free reaction
在线阅读 下载PDF
Morphology evolution of acetic acid-modulated MIL-53(Fe)for efficient selective oxidation of H2S 被引量:7
8
作者 Xiaoxiao Zheng Sihui Qi +3 位作者 Yanning Cao Lijuan Shen Chaktong Au Lilong Jiang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第2期279-287,共9页
MIL-53(Fe)was synthesized using a“modulator approach”that utilizes acetic acid(HAc)as an additive to control the size and morphology of the resulting crystals.We demonstrate that after activation under vaccum at 100... MIL-53(Fe)was synthesized using a“modulator approach”that utilizes acetic acid(HAc)as an additive to control the size and morphology of the resulting crystals.We demonstrate that after activation under vaccum at 100℃,the MIL-53(Fe)functions well for H2S selective oxidation.The introduction of acetic acid in the presence of benzene-1,4-dicarboxylic acid(H2BDC)would result in a series of MIL-53(Fe)nanocrystals(denoted as MIL-53(Fe)-xH,x stands for the volume of added HAc with morphology evoluting from irregular particles to short hexagonal columns.The vacuum treatment facilitates the removal of acetate groups,thus generating Fe3+Lewis acid sites.Consequently,the resulted MIL-53(Fe)-xH exhibits good catalytic activity(98%H2S conversion and 92%sulfur selectivity)at moderate reaction temperatures(100–190℃).The MIL-53(Fe)-5H is superior to the traditional iron-based catalysts,showing stable performance in a test period of 55 h. 展开更多
关键词 Fe-metal-organic frameworks Hydrogen sulfide selective oxidation Controllable synthesis Acetic acid MODULATION
在线阅读 下载PDF
Preparation and characterization of Ce_(1-x)Fe_xO_2 complex oxides and its catalytic activity for methane selective oxidation 被引量:7
9
作者 李孔斋 王华 +1 位作者 魏永刚 刘明春 《Journal of Rare Earths》 SCIE EI CAS CSCD 2008年第2期245-249,共5页
A series of Ce1-xFexO2 (x=0, 0.2, 0.4, 0.6, 0.8, 1) complex oxide catalysts were prepared using the coprecipitation method. The catalysts were characterized by means of XRD and H2-TPR. The reactions between methane ... A series of Ce1-xFexO2 (x=0, 0.2, 0.4, 0.6, 0.8, 1) complex oxide catalysts were prepared using the coprecipitation method. The catalysts were characterized by means of XRD and H2-TPR. The reactions between methane and lattice oxygen from the complex oxides were investigated. The characteristic results revealed that the combination of Ce and Fe oxide in the catalysts could lower the temperature necessary to reduce the cerium oxide. The catalytic activity for selective CH4 oxidation was strongly influenced by dropped Fe species. Adding the appropriate amount of Fe2O3 to CeO2 could promote the action between CH4 and CeO2. Dispersed Fe2O3 first returned to the original state and would then virtually form the Fe species on the catalyst, which could be considered as the active site for selective CH4 oxidation. The appearance of carbon formation was significant and the oxidation of carbon appeared to be the rate-determining step; the amounts of surface reducible oxygen species in CeO2 were also relevant to the activity. Among all the catalysts, Ce0.6Fe0.402 exhibited the best activity, which converted 94.52% of CH4 at 900 ℃. 展开更多
关键词 Ce1-xFexO2 complex oxides H2-TPR lattice oxygen methane selective oxidation rare earths
在线阅读 下载PDF
Selective Oxidation of Light Hydrocarbons Using Lattice Oxygen Instead of Molecular Oxygen 被引量:5
10
作者 沈师孔 李然家 +1 位作者 周吉萍 余长春 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2003年第6期649-655,共7页
In this paper, selective oxidation of n-butane to maleic anhydride (MA) and partial oxidation of methane to synthesis gas with lattice oxygen instead of molecular oxygen are investigated. For the oxidation of butane t... In this paper, selective oxidation of n-butane to maleic anhydride (MA) and partial oxidation of methane to synthesis gas with lattice oxygen instead of molecular oxygen are investigated. For the oxidation of butane to MA in the absence of molecular oxygen, the Ce-Fe promoted VPO catalyst has more available lattice oxygen and provides higher conversion and selectivity than that of the unpromoted one. It is supposed that the introduction of Ce-Fe complex oxides improves redox performance of VPO catalyst and increases the activity of lattice oxygen. For partial oxidation of methane to synthesis gas over LaFeO3 and La0.8Sr0.2FeO3 oxides, the reaction with flow switched between 11% O2-Ar and 11% CH4-He at 900℃ was carried out. The results show that methane can be oxidized to CO and H2 with selectivity over 93% by the lattice oxygen of the catalyst in an appropriate reaction condition, while the lost lattice oxygen can be supplemented by air re-oxidation. It is viable for the lattice oxygen of the LaFeO3 and La0.8Sr0.2FeO3 catalyst instead of molecular oxygen to react with methane to synthesis gas in the redox mode. 展开更多
关键词 selective oxidation lattice oxygen N-BUTANE maleic anhydride Ce-Fe promoted VPO catalysts METHANE synthesis gas La1-xSrxFeO3 perovskite catalysts
在线阅读 下载PDF
2,5-Diformylfuran production by photocatalytic selective oxidation of 5-hydroxymethylfurfural in water using MoS_(2)/CdIn_(2)S_(4) flower-like heterojunctions 被引量:5
11
作者 Qian Zhu Yan Zhuang +7 位作者 Hongqing Zhao Peng Zhan Cong Ren Changsheng Su Wenqiang Ren Jiawen Zhang Di Cai Peiyong Qin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第2期180-191,共12页
The selective oxidation of 5-hydroxymethylfurfural(HMF) into 2,5-diformylfuran(DFF) is an important reaction for renewable biomass building blocks. Compared with thermal catalytic processes, photocatalytic production ... The selective oxidation of 5-hydroxymethylfurfural(HMF) into 2,5-diformylfuran(DFF) is an important reaction for renewable biomass building blocks. Compared with thermal catalytic processes, photocatalytic production of DFF from HMF has attracted tremendous attention. Herein, the MoS_(2)/CdIn_(2)S_(4)(MC)flower-like heterojunctions were prepared and considered as photocatalysts for selective oxidation of HMF into DFF under visible-light irradiation in aqueous solution. Results demonstrated MoS_(2) in MC heterojunction could promote the separation of photoexcited electron-hole pairs, while the amount of MoS_(2) dropping was proved influenced on the photocatalytic performance. 80.93% of DFF selectivity was realized when using 12.5% MC as photocatalyst. In addition, the MC catalyst also showed great potential in transformation of other biomass derived benzyl-and furyl-alcohols. The catalytic mechanism suggested that ·O_(2)^(-) was the decisive active radical for HMF oxidation. Therefore, the MC heterojunction could be applied in photocatalytic conversion of biomass to valuable chemicals under ambient condition. 展开更多
关键词 2 5-Diformylfuran(DFF) Photocatalysis MoS_(2)/CdIn_(2)S_(4)(MC) selective oxidation Visible light irradiation
在线阅读 下载PDF
Selective oxidation of methane to formaldehyde by oxygen over silica-supported iron catalysts 被引量:4
12
作者 Jieli He Yang Li Dongli An Qinghong Zhang Ye Wang 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2009年第3期288-294,共7页
FeOx-SiO2 catalysts prepared by a sol-gel method were studied for the selective oxidation of methane by oxygen. A single-pass formaldehyde yield of 2.0% was obtained over the FeOx-SiO2 with an iron content of 0.5 wt% ... FeOx-SiO2 catalysts prepared by a sol-gel method were studied for the selective oxidation of methane by oxygen. A single-pass formaldehyde yield of 2.0% was obtained over the FeOx-SiO2 with an iron content of 0.5 wt% at 898 K. This 0.5 wt% FeOx-SiO2 catalyst demonstrated significantly higher catalytic performances than the 0.5 wt% FeOx/SiO2 prepared by an impregnation method. The correlation between the catalytic performances and the characterizations with UV-Vis and H2-TPR suggested that the higher dispersion of iron species in the catalyst prepared by the sol-gel method was responsible for its higher catalytic activity for formaldehyde formation. The modification of the FeOx-SiO2 by phosphorus enhanced the formaldehyde selectivity, and a single-pass formaldehyde yield of 2.4% could be attained over a P-FeOx-SiO2 catalyst (P/Fe = 0.5) at 898 K. Raman spectroscopic measurements indicated the formation of FePO4 nanoclusters in this catalyst, which were more selective toward formaldehyde formation. 展开更多
关键词 selective oxidation METHANE FORMALDEHYDE iron catalyst sol-gel method
在线阅读 下载PDF
Selective Oxidation of Isobutylene over Cs-promoted Mo-Bi-Co-Fe-Ce-O Catalyst 被引量:4
13
作者 王蕾 李增喜 +2 位作者 张锁江 张香平 赵威 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2005年第5期705-708,共4页
Cs-promoted Mo-Bi-Co-Fe-Ce-O catalyst for the selective oxidation of isobutylene to methacrolein had been studied in a fixed bed micro-reactor. The selectivity to methacrolein was significantly improved by the additio... Cs-promoted Mo-Bi-Co-Fe-Ce-O catalyst for the selective oxidation of isobutylene to methacrolein had been studied in a fixed bed micro-reactor. The selectivity to methacrolein was significantly improved by the addition of Cs, which could probably enhance the dehydrogenation ability and weaken the oxygenation ability of the catalyst based on temperature programmed reduction (TPR) analysis investigation. The kinetic studies indicated that the oxidation of isobutylene to methacrolein followed the first-order kinetic behavior. 展开更多
关键词 ISOBUTYLENE selective oxidation complex catalyst KINETICS
在线阅读 下载PDF
Selective Oxidation of CO in Excess H_2 over Ru/Al_2O_3 Catalysts Modified with Metal Oxide 被引量:4
14
作者 Xirong Chen Hanbo Zou +2 位作者 Shengzhou Chen Xinfa Dong Weiming Lin 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2007年第4期409-414,共6页
The Ru/Al2O3 catalysts modified with metal oxide (K20 and La2O3) were prepared v/a incipient wetness impregnation method from RuCl3.nH2O mixed with nitrate loading on Al2O3 support. The activity of catalysts was eva... The Ru/Al2O3 catalysts modified with metal oxide (K20 and La2O3) were prepared v/a incipient wetness impregnation method from RuCl3.nH2O mixed with nitrate loading on Al2O3 support. The activity of catalysts was evaluated under simulative conditions for the preferential oxidation of CO (CO-PROX) from the hydrogen-rich gas streams produced by reforming gas, and the performances of catalysts were investigated by XRD and TPR. The results showed that the activity temperature of the modified catalysts Ru-K20/Al2O3 and Ru-La2O3/Al2O3 were lowered approximately 30℃ compared with pure Ru/Al2O3, and the activity temperature range was widened. The conversion of CO on Ru-K20/Al2O3 and Ru-La2O3/Al2O3 was above 99% at 140-160℃, suitable to remove CO in a hydrogen-rich gas and the selectivity of Ru-La2O3/Al2O3 was higher than that of Ru-K2O/Al2O3in the active temperature range. Slight methanation reaction was detected at 220℃ and above. 展开更多
关键词 hydrogen-rich gas ruthenium based catalysts CO removal selective oxidation metal oxide
在线阅读 下载PDF
Small-sized cuprous oxide species on silica boost acrolein formation via selective oxidation of propylene 被引量:3
15
作者 Ling-Ling Guo Jing Yu +6 位作者 Wei-Wei Wang Jia-Xu Liu Hong-Chen Guo Chao Ma Chun-Jiang Jia Jun-Xiang Chen Rui Si 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第2期320-333,共14页
Oxide-supported copper-containing materials have attracted considerable research attention as promising candidates for acrolein formation.Nevertheless,the elucidation of the structure-performance relationships for the... Oxide-supported copper-containing materials have attracted considerable research attention as promising candidates for acrolein formation.Nevertheless,the elucidation of the structure-performance relationships for these systems remains a scientific challenge.In this work,copper oxide clusters deposited on a high-surface-area silica support were synthesized via a deposition-precipitation approach and exhibited remarkable catalytic reactivity(up to 25.5%conversion and 66.8%selectivity)in the propylene-selective oxidation of acrolein at 300℃.Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy combined with X-ray absorption fine structure measurements of the catalyst before and after the reaction confirmed the transformation of the small-sized copper oxide(CuO)clusters into cuprous oxide(Cu2O)clusters.With the aid of in situ X-ray diffraction and in situ dual beam Fourier transform infrared spectroscopy(DB-FTIR),the allyl intermediate(CH2=CHCH2*)was clearly observed,along with the as-formed Cu2O species.The intermediate can react with oxygen atoms from neighboring Cu2O species to form acrolein during the catalytic process,and the small-sized Cu2O clusters play a crucial role in the generation of acrolein via the selective oxidation of propylene. 展开更多
关键词 Propylene selective oxidation Cuprous oxide cluster Acrolein formation Active species In situ characterization
在线阅读 下载PDF
Biomass-based N doped carbon as metal-free catalyst for selective oxidation of D-xylose into D-xylonic acid 被引量:3
16
作者 Zengyong Li Yiming Huang +5 位作者 Xiao Chi Di Li Linxin Zhong Xuehui Li Chuanfu Liu Xinwen Peng 《Green Energy & Environment》 SCIE EI CSCD 2022年第6期1310-1317,共8页
Rational design and facile preparation of low-cost and efficient catalysts for the selective converting of biomass-derived monosaccharides into high value-added chemicals is highly demanded,yet challenging.Herein,we f... Rational design and facile preparation of low-cost and efficient catalysts for the selective converting of biomass-derived monosaccharides into high value-added chemicals is highly demanded,yet challenging.Herein,we first demonstrate a N doped defect-rich carbon(NC-800-5)as metal-free catalyst for the selective oxidation of D-xylose into D-xylonic acid in alkaline aqueous solution at 100℃ for 30 min,with 57.4%yield.The doped graphitic N is found to be the active site and hydroxyl ion participating in the oxidation of D-xylose.Hydroxyl ion and D-xylose first adsorb on NC-800-5 surface,and the aldehyde group of D-xylose is catalyzed to form germinal diols ion.Then,C–H bond break to yield carboxylic group.Furthermore,NC-800-5 catalyst shows high stability in recycled test. 展开更多
关键词 Biomass carbon Metal-free catalysts D-XYLOSE Sugar acid selective oxidation
在线阅读 下载PDF
Selective oxidation of propane to acrylic acid over mixed metal oxide catalysts 被引量:3
17
作者 Wei Zheng Zhenxing Yu +5 位作者 Ping Zhang Yuhang Zhang Hongying Fu Xiaoli Zhang Qiquan Sun Xinguo Hu 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2008年第2期191-194,共4页
The effects of metal atomic ratio, water content, oxygen content, and calcination temperature on the catalytic performances of MoVTeNbO mixed oxide catalyst system for the selective oxidation of propane to acrylic aci... The effects of metal atomic ratio, water content, oxygen content, and calcination temperature on the catalytic performances of MoVTeNbO mixed oxide catalyst system for the selective oxidation of propane to acrylic acid have been investigated and discussed. Among the catalysts studied, it was found that the MoVTeNbO catalyst calcined at a temperature of 600 ℃ showed the best performance in terms of propane conversion and selectivity for acrylic acid under an atmosphere of nitrogen. An effective MoVTeNbO oxide catalyst for propane selective oxidation to acrylic acid was obtained with a combination of a preferred metal atomic ratio (Mo1V0.31Te0.23Nb0.12). The optimum reaction condition for the selective oxidation of propane was the molar ratio of C3H8 :O2 : H2O : N2 = 4.4: 12.8 : 15.3 : 36.9. Under such conditions, the conversion of propane and the maximum yield of acrylic acid reached about 50% and 21%, respectively. 展开更多
关键词 propane oxidation catalysts preparation acrylic acid selective oxidation
在线阅读 下载PDF
Highly efficient cobalt-doped carbon nitride polymers for solvent-free selective oxidation of cyclohexane 被引量:4
18
作者 Yu Fu Wangcheng Zhan +3 位作者 Yanglong Guo Yun Guo Yunsong Wang Guanzhong Lu 《Green Energy & Environment》 SCIE 2017年第2期142-150,共9页
Selective oxidation of saturated hydrocarbons with molecular oxygen has been of great interest in catalysis, and the development of highly efficient catalysts for this process is a crucial challenge. A new kind of het... Selective oxidation of saturated hydrocarbons with molecular oxygen has been of great interest in catalysis, and the development of highly efficient catalysts for this process is a crucial challenge. A new kind of heterogeneous catalyst, cobalt-doped carbon nitride polymer(g-C_3N_4),was harnessed for the selective oxidation of cyclohexane. X-ray diffraction, Fourier transform infrared spectra and high resolution transmission electron microscope revealed that Co species were highly dispersed in g-C_3N_4 matrix and the characteristic structure of polymeric g-C_3N_4 can be retained after Co-doping, although Co-doping caused the incomplete polymerization to some extent. Ultraviolet-visible, Raman and X-ray photoelectron spectroscopy further proved the successful Co doping in g-C_3N_4 matrix as the form of Co(Ⅱ)-N bonds. For the selective oxidation of cyclohexane, Co-doping can markedly promote the catalytic performance of g-C_3N_4 catalyst due to the synergistic effect of Co species and gC_3N_4 hybrid. Furthermore, the content of Co largely affected the activity of Co-doped g-C_3N_4 catalysts, among which the catalyst with 9.0 wt%Co content exhibited the highest yield(9.0%) of cyclohexanone and cyclohexanol, as well as a high stability. Meanwhile, the reaction mechanism over Co-doped g-C_3N_4 catalysts was elaborated. 展开更多
关键词 selective oxidation of cyclohexane Oxygen oxidant Carbon nitride CO-DOPING
在线阅读 下载PDF
Preparation and characterization of Ce_(1-x)Ni_xO_2 as oxygen carrier for selective oxidation methane to syngas in absence of gaseous oxygen 被引量:2
19
作者 魏永刚 王华 +2 位作者 李孔斋 祝星 杜云鹏 《Journal of Rare Earths》 SCIE EI CAS CSCD 2010年第S1期357-361,共5页
A citric acid complex method was employed to prepare Ce/Ni mixed oxides with various Ce/Ni ratios useful for selective oxidation methane to syngas in the absence of gaseous oxygen,and the catalytic activity measuremen... A citric acid complex method was employed to prepare Ce/Ni mixed oxides with various Ce/Ni ratios useful for selective oxidation methane to syngas in the absence of gaseous oxygen,and the catalytic activity measurement was investigated in a fixed bed reactor at 800 oC.The prepared oxygen carriers were characterized by various characterization techniques such as TG-DSC,XRD and TPR.The results of TG-DSC indicated that the Ce1-xNixO2 precursor generated a stable phase after the heat-treatment at temperatures above 800 oC.The XRD characterization suggested that some Ce-Ni solid solution was formed when Ni2+ ions was incorporated into the lattice of CeO2,and it led to the generation of O-vacancy which could improve the oxygen mobility in the lattice of oxygen carriers.It was found that Ce0.8Ni0.2O2 gave the highest activity in the selective oxidation methane to syngas reaction,and the average methane conversion,CO and H2 selectivity reached to 82.31%,82.41% and 87.64%,respectively.The reason could be not only attributed to the fitting amount of NiO dispersed on the CeO2 surface and bulk but also to actual lattice oxygen amount increased in oxygen carrier. 展开更多
关键词 CERIA nickel oxygen carrier selective oxidation methane SYNGAS solid solution rare earths
原文传递
Effect of pretreatment methods on the performance of Cu-Zr-Ce-O catalyst for CO selective oxidation 被引量:3
20
作者 Hanbo Zou Shengzhou Chen Weiming Lin 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2008年第2期208-211,共4页
The Cu-Zr-Ce-O catalysts prepared using the coprecipitation method exhibited better catalytic performance for CO selective oxidation. The Cu-Zr-Ce-O catalysts pretreated with different methods were studied by CO-TPR a... The Cu-Zr-Ce-O catalysts prepared using the coprecipitation method exhibited better catalytic performance for CO selective oxidation. The Cu-Zr-Ce-O catalysts pretreated with different methods were studied by CO-TPR and XPS techniques. The results showed that the Cu-Zr-Ce-O catalyst pretreated with oxygen exhibited the best catalytic performance and had the widest operating temperature window, with CO conversion above 99% from 160 to 200 ℃. The O2 pretreatment caused an enrichment of the oxygen storaged on the Cu active species and promoted the conversion of adsorbed oxygen into surface lattice oxygen. It also improved the amount of Cu+/Cu^2+ ionic pair, and then facilitated the formation of CuO active species on the catalyst for selective CO oxidation. 展开更多
关键词 pretreatment methods CO selective oxidation Cu-Zr-Ce-O catalyst
在线阅读 下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部