Free glutamate has been known as flavor enhancer. Commercially, free glutamate is available in form of monosodium glutamate (MSG) crystal. Seasoning or premix may also contain free glutamate or MSG. The aim of the pre...Free glutamate has been known as flavor enhancer. Commercially, free glutamate is available in form of monosodium glutamate (MSG) crystal. Seasoning or premix may also contain free glutamate or MSG. The aim of the present study was focus on the determination of the usage and potential/actual exposure of consumers to free glutamate from condiment and seasonings. There were several steps of the study, i.e. survey, laboratory analyses, data analyses, and evaluation of total exposure of free glutamate from condiment and seasonings. The survey was conducted to the 110 households in Bogor (rural) and 112 households in Jakarta (urban). The samples of condiment/seasoning were analyzed by using high performance liquid chromatography (HPLC) with fluorescent detector. The condiment/seasonings were categorized into 15 types, i.e. sweet soy sauce, salty soy sauce, fermented soybean paste, tomato sauce, MSG, premix seasoning, fermented fish/shrimp paste, chili sauce, ready to use seasoning, seasoned flour, dip and sauce, mayonnaise and mustard, spread, oyster and fish sauce, and teriyaki and others. The results of condiment/seasonings survey revealed that sweet soy sauce, MSG, and premix seasoning were used by most of households (±71% or more than 80 households) both in Bogor and Jakarta. The laboratory analyses of free glutamate from condiment/seasonings revealed that the highest free glutamate content was found in MSG (733.29 mg/g). Beside MSG, there were three other condiments that also had high free glutamate content, i.e. premix seasoning (70.77 mg/g in Bogor and 63.66 mg/g in Jakarta), oyster and fish sauce (46.76 mg/g in Bogor), and ready to use seasoning (15.71 mg/g in Jakarta). Although the average condiment/seasonings usage in Bogor (5.39 g/cap/day) was lower than that in Jakarta (9.62 g/cap/day), but the free glutamate intake from condiment/seasonings in Bogor (847.04 mg/cap/day) was higher than that in Jakarta (615.87 mg/cap/day). This was due to the high contribution of MSG that used in higher amount in Bogor.展开更多
Protein hydrolysate prepared from fish and shrimp by-products were used to prepare a seasoning protein hydrolysate (SPH). The effects of pasteurization and storage on total phenolic content (TPC), DPPH radical sca...Protein hydrolysate prepared from fish and shrimp by-products were used to prepare a seasoning protein hydrolysate (SPH). The effects of pasteurization and storage on total phenolic content (TPC), DPPH radical scavenging activity, reducing power, and color of the SPH were investigated. Pasteurization at 90 ℃ for 10 minutes led to a reduction of TPC and DPPH radical scavenging activity and an increase of reducing power of solid fraction of SPH by about 30%, 99%, and 100%, respectively. Consequently it increased TPC DPPH radical scavenging activity, and reducing power of the liquid phase by about 32%, 600%, and 100%, respectively. Storage at 28, 35, or 45 ℃ for 12 weeks altered color values and increased brownness intensity (OD420). The storage led to an apparent increase of the TPC and antioxidative activity of the product. The results indicate the possibility of producing healthy appetizers from protein hydrolysate prepared from by-products of the seafood industry.展开更多
Edible fungi residuals are by-products from the preparation process of edible fungi hot pot soup seasoning.Enzymatic hydrolysate was prepared by cellulase(Cel),papain(Pap)and neutral protease(Nep)as well as their comb...Edible fungi residuals are by-products from the preparation process of edible fungi hot pot soup seasoning.Enzymatic hydrolysate was prepared by cellulase(Cel),papain(Pap)and neutral protease(Nep)as well as their combination,and the reducing sugar content,the degree of hydrolysis(TDH),color,antioxidant capacity,inorganic elements and flavor of enzymatic hydrolysate were evaluated.The properties of enzymatic hydrolysate produced by compound enzymes were better than that of single enzyme,especially for the compound of enzymes Cel and Pap.The reducing sugar of enzymatic hydrolysate prepared by the combination of Cel and Pap increased 6.98 times and with TDH reached 25.80%±1.28%.In addition,edible fungi by-products after enzymatic hydrolysis exhibited yellowish-brown color with higher antioxidant capacity and little change of the volatile flavor.Enzymatic hydrolysate possessed a high retention rate of Na and Mg in the raw material,and there was no potential harm caused by excessive heavy metals(Cd,Pb,As).展开更多
Predicting monsoon climate is one of the major endeavors in climate science and is becoming increasingly challenging due to global warming. The accuracy of monsoon seasonal predictions significantly impacts the lives ...Predicting monsoon climate is one of the major endeavors in climate science and is becoming increasingly challenging due to global warming. The accuracy of monsoon seasonal predictions significantly impacts the lives of billions who depend on or are affected by monsoons, as it is essential for the water cycle, food security, ecology, disaster prevention, and the economy of monsoon regions. Given the extensive literature on Asian monsoon climate prediction, we limit our focus to reviewing the seasonal prediction and predictability of the Asian Summer Monsoon (ASM). However, much of this review is also relevant to monsoon predictions in other seasons and regions. Over the past two decades, considerable progress has been made in the seasonal forecasting of the ASM, driven by an enhanced understanding of the sources of predictability and the dynamics of seasonal variability, along with advanced development in sophisticated models and technologies. This review centers on advances in understanding the physical foundation for monsoon climate prediction (section 2), significant findings and insights into the primary and regional sources of predictability arising from feedback processes among various climate components (sections 3 and 4), the effects of global warming and external forcings on predictability (section 5), developments in seasonal prediction models and techniques (section 6), the challenges and limitations of monsoon climate prediction (section 7), and emerging research trends with suggestions for future directions (section 8). We hope this review will stimulate creative activities to enhance monsoon climate prediction.展开更多
Climate model prediction has been improved by enhancing model resolution as well as the implementation of sophisticated physical parameterization and refinement of data assimilation systems[section 6.1 in Wang et al.(...Climate model prediction has been improved by enhancing model resolution as well as the implementation of sophisticated physical parameterization and refinement of data assimilation systems[section 6.1 in Wang et al.(2025)].In relation to seasonal forecasting and climate projection in the East Asian summer monsoon season,proper simulation of the seasonal migration of rain bands by models is a challenging and limiting factor[section 7.1 in Wang et al.(2025)].展开更多
Vegetation plays an important role in the environmental transport behavior of organic pollutants,however,the different roles of crops and natural vegetation have been ignored in most previous studies.In this study,we ...Vegetation plays an important role in the environmental transport behavior of organic pollutants,however,the different roles of crops and natural vegetation have been ignored in most previous studies.In this study,we developed the BETR-Urban-Rural-Veg model to quantitatively evaluate the influences of both natural vegetation and crops on the multimedia transport processes of Phenanthrene(PHE)and Benzo(a)pyrene(BaP)in mainland of China.The geographic distribution of polycyclic aromatic hydrocarbon(PAH)emissions and concentrations were consistent,displaying higher levels in northern China while lower levels in southern China.Under seasonal simulations,for both natural vegetation and crops,PAH concentrations in winter and spring were 1.5 to 27-fold higher than in summer and autumn,especially for PHE.Owing to the higher leaf area index(LAI)of natural vegetation and harvesting of crops,the filter and sequestration effect of natural vegetation was stronger than crops,while the seasonal changes of PAH concentrations in crops were more significant than natural vegetation.Temperature,precipitation rates and LAI might have important influences on seasonal concentrations and overall persistence of PAHs.PHE was more sensitive to the impacts of seasonal environmental parameters.Under different landscape scenarios,average annual PAH concentrations in natural vegetation were always a little higher than those in crops,and the overall persistence of BaP was greatly affected increasing by 15.15%-16.47%.This improved model provides a useful tool for environmental management.The results of this study are expected to support land use plans and decision-making in China's mainland.展开更多
Climate warming and atmospheric nitrogen(N)deposition have profound influences on the terrestrial biosphere.However,how these two global change drivers affect phytoplankton which are important primary producers in wet...Climate warming and atmospheric nitrogen(N)deposition have profound influences on the terrestrial biosphere.However,how these two global change drivers affect phytoplankton which are important primary producers in wetlands with large carbon stocks and complex hydrological fluctuations remain largely unclear.As part of a two-year field experiment in a freshwater wetland,this study was conducted to investigate the effects of nighttime warming and N addition on phytoplankton biomass in the North China Plain.The results showed that neither nighttime warming nor N addition influenced the Shannon-Wiener index of phytoplankton community.Nighttime warming did not change phytoplankton biomass,likely due to the different warming impacts on dominant phyla and in different seasons.Decreased phytoplankton biomass in spring because of the increased water pH and submerged plant coverage was compensated by the enhanced biomass in autumn due to the reduced dissolved oxygen and submerged plant coverage,leading to the neutral change of phytoplankton biomass under warming.Nitrogen addition elevated phytoplankton biomass by 11.6%,which could be attributed to the enhanced nutrient availability and reduced submerged plant coverage.Positive relationships of methane(CH4)emission rates at the water-air interface with phytoplankton biomass indicated the potentially crucial role of phytoplankton in mediating wetland CH4 cycling through photosynthesis-driven metabolisms.The findings suggested the seasonal variation of phytoplankton and their potential responses to nighttime warming and N deposition,which may provide a more accurate basis for assessing the global change-carbon feedback in wetland ecosystems.展开更多
With the brisk winter season just around the corner,my now 5-year-old's birthday was approaching,and I had a big celebration planned full of presents,cake and a fun day out.However,this year,she had a request of h...With the brisk winter season just around the corner,my now 5-year-old's birthday was approaching,and I had a big celebration planned full of presents,cake and a fun day out.However,this year,she had a request of her own.One frosty evening,she glided up to me and said,"Dad,this year for my birthday,I want to learn how to be a figure skater."展开更多
Effective conservation relies on robust assessments;however,the lack of waterbird data in the Yellow River Basin(YRB)has led to an underestimation of key habitat significance.This study addressed this gap by evaluatin...Effective conservation relies on robust assessments;however,the lack of waterbird data in the Yellow River Basin(YRB)has led to an underestimation of key habitat significance.This study addressed this gap by evaluating YRB wetland conservation importance using waterbirds as indicators and applying Ramsar,Important Bird Areas(IBA),and East Asian-Australasian Flyway(EAAF)criteria.We integrated coordinated surveys with citizen science data,creating a framework that tackles data deficiencies along the under-monitored Central Asian Flyway(CAF).Our analysis identified 75 priority wetlands,supporting 15 threatened species and 49 exceeding global/flyway 1%thresholds,highlighting the basin's biodiversity.We observed strong seasonal habitat use,with high-altitude wetlands vital for breeding and migration,and the Yellow River Delta providing year-round refuge.This research also provided data to refine Baer's Pochard population estimates.Alarmingly,one-third of the identified priority areas,primarily rivers and lakes,remain unprotected.To address this,we recommend systematic surveys,enhanced protected areas,OECMs,and targeted wetland restoration.This study underscores the YRB's role in regional conservation and provides essential data for adaptive management,particularly emphasizing the CAF's importance.展开更多
Imidazole(IM)particles in the atmosphere affect climate,atmospheric chemical reactions,and human health.However,research on IM particles in the Sichuan Basin(SCB),one of the areas of China affected most heavily by haz...Imidazole(IM)particles in the atmosphere affect climate,atmospheric chemical reactions,and human health.However,research on IM particles in the Sichuan Basin(SCB),one of the areas of China affected most heavily by haze,remains very scarce.This study used single-particle aerosol mass spectrometry to investigate IM-containing particles in Chengdu,one of the megacities in the SCB,during summer and winter before and after implemen-tation of the Three-year Action Plan to Win the Blue-Sky Defense War(BSDW).We found that IM-containing particles accounted for 1.2%–12.0%of all detected particles,and they highly mixed with carbonaceous com-ponents,secondary inorganic species,and organic nitrogen.From before to after the BSDW,the proportion of IM-containing particles decreased by 1.8%in summer,but increased by 9.6%in winter.Ammonium/amines and carbonyl compounds were closely related to IM-containing particles;the highest proportion of IM-containing particles occurred in particles mixed with amines and carbonyls.The number fraction of IM-containing particles in all seasons was higher at night than during daytime.The potential source areas of IM-containing particles showed notable narrowing after the BSDW,and the high-value areas were found distributed closer to Chengdu and its surrounding areas.In the winter before the BSDW,most IM-containing particles(>70%)were mixed with organic carbon(OC)particles,and the contributions of OC and mixed organic–elemental carbon(OC-EC)particles increased with aggravation of pollution,whereas OC-EC and Metal particles played a more crucial role in the winter after the BSDW.展开更多
Here we report on simultaneous lidar observations of sporadic Ni(Nis)layers and sporadic Na(Nas)layers in the atmosphere over Yanqing,Beijing(40.42°N,116.02°E)from April 2019 to October 2022.During 343 night...Here we report on simultaneous lidar observations of sporadic Ni(Nis)layers and sporadic Na(Nas)layers in the atmosphere over Yanqing,Beijing(40.42°N,116.02°E)from April 2019 to October 2022.During 343 nights of observation,68 Nis and 56 Nas were observed.The seasonal variation of Nis and Nas was also obtained,with the highest occurrence of Nis being in July(43%)and that of Nas being in June(61%).We found that the seasonal variation of Nis is similar to that of Nas and that both occur more frequently in summer than in winter.In addition,we found 23 events in which Nis and Nas occur simultaneously.The average peak altitude of Nas is approximately 1 km higher than that of Nis,and the peak density ratio of Nas to Nis is approximately 5,which is half the density ratio of the two main layers.Additionally,the strength factor for Nas is smaller than that for Nis.Through data analysis of sporadic E layers(Es),we found that Nis and Nas has a significant correlation with Es.The neutralization rates of Ni^(+)/Na^(+)were calculated according to the dissociative recombination reaction of Ni^(+)/Na^(+)and the WACCM-Ni(Whole Atmosphere Community Climate Model of Ni).The production rates of Ni and Na were estimated to be approximately 1:4.4,which is consistent with the density ratio of Nis to Nas.The results showed that the neutralization reaction of Ni+,Na+,and electrons in Es is the main reason for the formation of the Nis layer and the Nas layer.展开更多
The onset,cessation,and length of the rainy season are crucial for global water resources,agricultural practices,and food security.However,the response of precipitation seasonality to global warming remains uncertain....The onset,cessation,and length of the rainy season are crucial for global water resources,agricultural practices,and food security.However,the response of precipitation seasonality to global warming remains uncertain.In this study,we analyze how global warming levels(GWLs)of 1.5℃ and 2℃ could affect the timing of rainfall onset(RODs),rainfall cessation(RCDs),and the overall duration of the rainy season(LRS)over global land monsoon(GLM)regions using simulations from CMIP6 under the SSP2-4.5 and SSP5-8.5 scenarios.With high model consensus,our results reveal that RODs are projected to occur later over Southern Africa,North Africa,and South America,but earlier over South Asia and Australia,in a warmer climate.The projected early RODs in Australia are more pronounced at the 2℃ GWL under SSP5-8.5.On the other hand,early RCDs are projected over South America and East Asia,while late RCDs are projected over North Africa,with high inter-model agreement.These changes are associated with a future decrease in LRS in most GLM regions.Additionally,we found that continuous warming over 1.5℃ will further reduce the length of the rainy season,especially over the South America,North Africa,and Southern Africa monsoon regions.The findings underscore the urgent need to mitigate global warming.展开更多
Approximately 3.44 billion tons of copper mine tailings(MT)were produced globally in 2018 with an increase of 45%from 2010.Significant efforts are being made to manage these tailings through storage facilities,recycli...Approximately 3.44 billion tons of copper mine tailings(MT)were produced globally in 2018 with an increase of 45%from 2010.Significant efforts are being made to manage these tailings through storage facilities,recycling,and reuse in different industries.Currently,a large portion of tailings are managed through the tailing storage facilities(TSF)where these tailings undergo hydro-thermal-mechanical stresses with seasonal cycles which are not comprehensively understood.This study presents an investigative study to evaluate the performance of control and cement-stabilized copper MT under the influence of seasonal cycles,freeze-thaw(F-T)and wet-dry(W-D)conditions,representing the seasonal variability in the cold and arid regions.The control and cement-stabilized MT samples were subjected to a maximum of 12 F-T and 12 W-D cycles and corresponding micro-and-macro behavior was investigated through scanning electron microscope(SEM),volumetric strain(εvT,wet density(r),moisture content loss,and unconfined compressive strength(UCS)tests.The results indicated the vulnerability of Copper MT to 67%and 75%strength loss reaching residual states with 12 F-T and 8 W-D cycles,respectively.Whereas the stabilized MT retained 39%-55%and 16%-34%strength with F-T and W-D cycles,demonstrating increased durability.This research highlights the impact of seasonal cycles and corresponding strength-deformation characteristics of control and stabilized Copper MT in cold and arid regions.展开更多
The Himalayan monal(Lophophorus impejanus),Nepal’s national bird,is a protected species facing significant conservation challenges.Understanding the distribution and habitat preferences of the Himalayan monal(HM)is c...The Himalayan monal(Lophophorus impejanus),Nepal’s national bird,is a protected species facing significant conservation challenges.Understanding the distribution and habitat preferences of the Himalayan monal(HM)is crucial for its conservation.This study was conducted in the Langtang National Park(LNP),Nepal using the route census method during both winter(November/December 2022)and summer(June 2023)seasons to examine the seasonal variation in HM’s elevational distribution and habitat preference.Further,we assessed their conservation threats by conducting a semi-structured questionnaire survey with the local residents.During the winter period,the HMs preferred grassland habitats,while in the summer,their preference shifted to shrubland and barren area.HM abundance was negatively associated with the Normalized Differential Vegetation Index(NDVI)and the shortest distance from the survey trails in the winter.The HMs actively avoided areas with high anthropogenic pressure.In the summer,they showed a wider elevational range up to 4400 m above sea level(a.s.l.),with a higher sighting frequency between 3600 and 3900 m a.s.l.The questionnaire survey of the local residents revealed that anthropogenic pressure such as poaching and free-ranging livestock grazing are the major threats to the species in the study area.This study provides valuable insight into the complex habitat preferences and critical threats faced by the HMs in LNP and underscores the urgent need for targeted conservation action.展开更多
Halocarbons play a vital role in ozone depletion and global warming,and are regulated by the Montreal Protocol(MP)and its amendments.China has been identified as an important contributor to the halocarbon emissions,bu...Halocarbons play a vital role in ozone depletion and global warming,and are regulated by the Montreal Protocol(MP)and its amendments.China has been identified as an important contributor to the halocarbon emissions,but the regional sources of halocarbons in China are not yet well comprehended.To investigate the characteristics,emissions,and source profiles,this study conducted a field campaign in Xiamen,a coastal city in southeastern China.Higher enhancements were found in the unregulated halocarbons(CH_(3)Cl,CH_(2)Cl_(2),CHCl_(3))than in the MP eliminated species(CCl_(4),CH_(3)Br)and theMP controlled species(HCFCs,HFCs).Many of the measured halocarbons varied seasonally and regionally,depending on the anthropogenic sources and atmospheric transport.Backward trajectory analysis showed that the air masses from inland were polluted over Shandong,Hebei,and northern Fujian in the cold season,while the air masses fromthe sea in the warm season were clean.Different air masses in two seasons were associated with the halocarbon patterns in the study area.Industrial activities,especially solvent usage,were the primary sources of halocarbons.The emission hot spots in Fujian Province were concentrated in Sanming,Fuzhou,and Xiamen,and the unregulated halocarbons made the largest contribution.This study provides an insight for a deep understanding of the characteristics and potential sources of halocarbons,and for strengthened management of halocarbons in China.展开更多
Wetland degradation is an escalating global challenge with profound impacts on animal diversity,particularly during successional processes.Birds,as highly mobile and environmentally sensitive organisms,serve as effect...Wetland degradation is an escalating global challenge with profound impacts on animal diversity,particularly during successional processes.Birds,as highly mobile and environmentally sensitive organisms,serve as effective indicators of ecological change.While previous studies have primarily focused on local community structures and species diversity during a specific season,there is a need to extend the research timeframe and explore broader spatial variations.Additionally,expanding from simple species diversity indices to more multidimensional diversity indices would provide a more comprehensive understanding of wetland health and resilience.To address these gaps,we investigated the effects of wetland degradation on bird diversity across taxonomic,phylogenetic,and functional dimensions in the Zoige Wetland,a plateau meadow wetland biodiversity hotspot.Surveys were conducted during both breeding(summer)and overwintering(winter)seasons across 20 transects in 5 sampling areas,representing 4 degradation levels(pristine,low,medium,and high).Our study recorded a total of 106 bird species from 32 families and 14 orders,revealing distinct seasonal patterns in bird community composition and diversity.Biodiversity indices were significantly higher in pristine and low-degraded wetlands,particularly benefiting waterfowl(Anseriformes,Ciconiiformes)and wading birds(Charadriiformes)in winter,when these areas provided superior food resources and habitat conditions.In contrast,medium and highly degraded wetlands supported increased numbers of terrestrial birds(Passeriformes)and raptors(Accipitriformes,Falconiformes).Seasonal differences in taxonomic,phylogenetic,and functional diversity indices highlighted the contrasting ecological roles of wetlands during breeding and overwintering periods.Furthermore,indicator species analysis revealed key species associated with specific degradation levels and seasons,providing valuable insights into wetland health.This study underscores the importance of spatiotemporal dynamics in understanding avian responses to wetland degradation.By linking seasonal patterns of bird diversity to habitat conditions,our findings contribute to conservation efforts and provide a framework for assessing wetland degradation and its ecological impacts.展开更多
A remarkable marine heatwave,known as the“Blob”,occurred in the Northeast Pacific Ocean from late 2013 to early 2016,which displayed strong warm anomalies extending from the surface to a depth of 300 m.This study em...A remarkable marine heatwave,known as the“Blob”,occurred in the Northeast Pacific Ocean from late 2013 to early 2016,which displayed strong warm anomalies extending from the surface to a depth of 300 m.This study employed two assimilation schemes based on the global Climate Forecast System of Nanjing University of Information Science(NUIST-CFS 1.0)to investigate the impact of ocean data assimilation on the seasonal prediction of this extreme marine heatwave.The sea surface temperature(SST)nudging scheme assimilates SST only,while the deterministic ensemble Kalman filter(EnKF)scheme assimilates observations from the surface to the deep ocean.The latter notably improves the forecasting skill for subsurface temperature anomalies,especially at the depth of 100-300 m(the lower layer),outperforming the SST nudging scheme.It excels in predicting both horizontal and vertical heat transport in the lower layer,contributing to improved forecasts of the lower-layer warming during the Blob.These improvements stem from the assimilation of subsurface observational data,which are important in predicting the upper-ocean conditions.The results suggest that assimilating ocean data with the EnKF scheme significantly enhances the accuracy in predicting subsurface temperature anomalies during the Blob and offers better understanding of its underlying mechanisms.展开更多
Physical and chemical processes observed in the mesosphere and thermosphere above the Earth’s low latitudes are complex and highly interrelated to activity in the low-latitude ionosphere.Metallic sodium detected by l...Physical and chemical processes observed in the mesosphere and thermosphere above the Earth’s low latitudes are complex and highly interrelated to activity in the low-latitude ionosphere.Metallic sodium detected by lidar can yield clues to dynamic and chemical processes in these spatial layers above the Earth’s atmosphere.This paper is based on sodium layer data collected at two low-latitude stations,one in the northern hemisphere and one in the southern.The low-latitude sodium layer exhibits conspicuous seasonal variations in shape,density,and altitude;these variations are similar between Earth’s hemispheres:sodium layer density at both stations reaches its seasonal maximum in autumn and minimum in summer.However,maximal Na density over Brazil is greater than that over Hainan.Nocturnal variations of Na density above the two low-latitude stations are also similar;at both,maxima are observed before sunrise.Some variations of the Na layer over Brazil that differ from those observed in the northern hemisphere may be related to the South Atlantic Magnetic Anomaly(SAMA)or fountain effect.We suggest that low-latitude Na layer data may provide useful additional evidence that could significantly improve the low-latitude part of the WACCM-Na model.展开更多
Forest ecosystems play key roles in mitigating human-induced climate change through enhanced carbon uptake;however,frequently occurring climate extremes and human activities have considerably threatened the stability ...Forest ecosystems play key roles in mitigating human-induced climate change through enhanced carbon uptake;however,frequently occurring climate extremes and human activities have considerably threatened the stability of forests.At the same time,detailed accounts of disturbances and forest responses are not yet well quantified in Asia.This study employed the Breaks For Additive Seasonal and Trend method-an abrupt-change detection method-to analyze the Enhanced Vegetation Index time series in East Asia,South Asia,and Southeast Asia.This approach allowed us to detect forest disturbance and quantify the resilience after disturbance.Results showed that 20%of forests experienced disturbance with an increasing trend from 2000 to 2022,and Southeast Asian countries were more severely affected by disturbances.Specifically,95%of forests had robust resilience and could recover from disturbance within a few decades.The resilience of forests suffering from greater magnitude of disturbance tended to be stronger than forests with lower disturbance magnitude.In summary,this study investigated the resilience of forests across the low and middle latitudes of Asia over the past two decades.The authors found that most forests exhibited good resilience after disturbance and about two-thirds had recovered to a better state in 2022.The findings of this study underscore the complex relationship between disturbance and resilience,contributing to comprehension of forest resilience through satellite remote sensing.展开更多
文摘Free glutamate has been known as flavor enhancer. Commercially, free glutamate is available in form of monosodium glutamate (MSG) crystal. Seasoning or premix may also contain free glutamate or MSG. The aim of the present study was focus on the determination of the usage and potential/actual exposure of consumers to free glutamate from condiment and seasonings. There were several steps of the study, i.e. survey, laboratory analyses, data analyses, and evaluation of total exposure of free glutamate from condiment and seasonings. The survey was conducted to the 110 households in Bogor (rural) and 112 households in Jakarta (urban). The samples of condiment/seasoning were analyzed by using high performance liquid chromatography (HPLC) with fluorescent detector. The condiment/seasonings were categorized into 15 types, i.e. sweet soy sauce, salty soy sauce, fermented soybean paste, tomato sauce, MSG, premix seasoning, fermented fish/shrimp paste, chili sauce, ready to use seasoning, seasoned flour, dip and sauce, mayonnaise and mustard, spread, oyster and fish sauce, and teriyaki and others. The results of condiment/seasonings survey revealed that sweet soy sauce, MSG, and premix seasoning were used by most of households (±71% or more than 80 households) both in Bogor and Jakarta. The laboratory analyses of free glutamate from condiment/seasonings revealed that the highest free glutamate content was found in MSG (733.29 mg/g). Beside MSG, there were three other condiments that also had high free glutamate content, i.e. premix seasoning (70.77 mg/g in Bogor and 63.66 mg/g in Jakarta), oyster and fish sauce (46.76 mg/g in Bogor), and ready to use seasoning (15.71 mg/g in Jakarta). Although the average condiment/seasonings usage in Bogor (5.39 g/cap/day) was lower than that in Jakarta (9.62 g/cap/day), but the free glutamate intake from condiment/seasonings in Bogor (847.04 mg/cap/day) was higher than that in Jakarta (615.87 mg/cap/day). This was due to the high contribution of MSG that used in higher amount in Bogor.
文摘Protein hydrolysate prepared from fish and shrimp by-products were used to prepare a seasoning protein hydrolysate (SPH). The effects of pasteurization and storage on total phenolic content (TPC), DPPH radical scavenging activity, reducing power, and color of the SPH were investigated. Pasteurization at 90 ℃ for 10 minutes led to a reduction of TPC and DPPH radical scavenging activity and an increase of reducing power of solid fraction of SPH by about 30%, 99%, and 100%, respectively. Consequently it increased TPC DPPH radical scavenging activity, and reducing power of the liquid phase by about 32%, 600%, and 100%, respectively. Storage at 28, 35, or 45 ℃ for 12 weeks altered color values and increased brownness intensity (OD420). The storage led to an apparent increase of the TPC and antioxidative activity of the product. The results indicate the possibility of producing healthy appetizers from protein hydrolysate prepared from by-products of the seafood industry.
基金supports from the National Key R&D Program of China(No.2018YFD0700303)Jiangsu Province(China)Key Project in Agriculture(Contract No.BE2015310217)+1 种基金Jiangsu Province Key Laboratory Project of Advanced Food Manufacturing Equipment and Technology(No.FMZ202003)National First-Class Discipline Program of Food Science and Technology(No.JUFSTR20180205),all of which enabled us to carry out this study.
文摘Edible fungi residuals are by-products from the preparation process of edible fungi hot pot soup seasoning.Enzymatic hydrolysate was prepared by cellulase(Cel),papain(Pap)and neutral protease(Nep)as well as their combination,and the reducing sugar content,the degree of hydrolysis(TDH),color,antioxidant capacity,inorganic elements and flavor of enzymatic hydrolysate were evaluated.The properties of enzymatic hydrolysate produced by compound enzymes were better than that of single enzyme,especially for the compound of enzymes Cel and Pap.The reducing sugar of enzymatic hydrolysate prepared by the combination of Cel and Pap increased 6.98 times and with TDH reached 25.80%±1.28%.In addition,edible fungi by-products after enzymatic hydrolysis exhibited yellowish-brown color with higher antioxidant capacity and little change of the volatile flavor.Enzymatic hydrolysate possessed a high retention rate of Na and Mg in the raw material,and there was no potential harm caused by excessive heavy metals(Cd,Pb,As).
基金supported by the National Natural Science Foundation of China(Grant No.U2342208)support from NSF/Climate Dynamics Award#2025057。
文摘Predicting monsoon climate is one of the major endeavors in climate science and is becoming increasingly challenging due to global warming. The accuracy of monsoon seasonal predictions significantly impacts the lives of billions who depend on or are affected by monsoons, as it is essential for the water cycle, food security, ecology, disaster prevention, and the economy of monsoon regions. Given the extensive literature on Asian monsoon climate prediction, we limit our focus to reviewing the seasonal prediction and predictability of the Asian Summer Monsoon (ASM). However, much of this review is also relevant to monsoon predictions in other seasons and regions. Over the past two decades, considerable progress has been made in the seasonal forecasting of the ASM, driven by an enhanced understanding of the sources of predictability and the dynamics of seasonal variability, along with advanced development in sophisticated models and technologies. This review centers on advances in understanding the physical foundation for monsoon climate prediction (section 2), significant findings and insights into the primary and regional sources of predictability arising from feedback processes among various climate components (sections 3 and 4), the effects of global warming and external forcings on predictability (section 5), developments in seasonal prediction models and techniques (section 6), the challenges and limitations of monsoon climate prediction (section 7), and emerging research trends with suggestions for future directions (section 8). We hope this review will stimulate creative activities to enhance monsoon climate prediction.
文摘Climate model prediction has been improved by enhancing model resolution as well as the implementation of sophisticated physical parameterization and refinement of data assimilation systems[section 6.1 in Wang et al.(2025)].In relation to seasonal forecasting and climate projection in the East Asian summer monsoon season,proper simulation of the seasonal migration of rain bands by models is a challenging and limiting factor[section 7.1 in Wang et al.(2025)].
基金supported by the National Natural Science Foundation of China(Nos.42107420,U23A20157,and U1910207)Shanxi Province Science Foundation for Young Scholars(No.20210302124363).
文摘Vegetation plays an important role in the environmental transport behavior of organic pollutants,however,the different roles of crops and natural vegetation have been ignored in most previous studies.In this study,we developed the BETR-Urban-Rural-Veg model to quantitatively evaluate the influences of both natural vegetation and crops on the multimedia transport processes of Phenanthrene(PHE)and Benzo(a)pyrene(BaP)in mainland of China.The geographic distribution of polycyclic aromatic hydrocarbon(PAH)emissions and concentrations were consistent,displaying higher levels in northern China while lower levels in southern China.Under seasonal simulations,for both natural vegetation and crops,PAH concentrations in winter and spring were 1.5 to 27-fold higher than in summer and autumn,especially for PHE.Owing to the higher leaf area index(LAI)of natural vegetation and harvesting of crops,the filter and sequestration effect of natural vegetation was stronger than crops,while the seasonal changes of PAH concentrations in crops were more significant than natural vegetation.Temperature,precipitation rates and LAI might have important influences on seasonal concentrations and overall persistence of PAHs.PHE was more sensitive to the impacts of seasonal environmental parameters.Under different landscape scenarios,average annual PAH concentrations in natural vegetation were always a little higher than those in crops,and the overall persistence of BaP was greatly affected increasing by 15.15%-16.47%.This improved model provides a useful tool for environmental management.The results of this study are expected to support land use plans and decision-making in China's mainland.
基金supported by the Science and Technology Project of Hebei Education Department(No.QN2023028)the Natural Science Foundation of Hebei Province(No.C2022201042)+1 种基金the High-level Talent Research Funding Project of Hebei University(Nos.521000981405 and 521000981186)the Collaborative Innovation Center for Baiyangdian Basin Ecological Protection and Beijing-Tianjin-Hebei Sustainable Development.
文摘Climate warming and atmospheric nitrogen(N)deposition have profound influences on the terrestrial biosphere.However,how these two global change drivers affect phytoplankton which are important primary producers in wetlands with large carbon stocks and complex hydrological fluctuations remain largely unclear.As part of a two-year field experiment in a freshwater wetland,this study was conducted to investigate the effects of nighttime warming and N addition on phytoplankton biomass in the North China Plain.The results showed that neither nighttime warming nor N addition influenced the Shannon-Wiener index of phytoplankton community.Nighttime warming did not change phytoplankton biomass,likely due to the different warming impacts on dominant phyla and in different seasons.Decreased phytoplankton biomass in spring because of the increased water pH and submerged plant coverage was compensated by the enhanced biomass in autumn due to the reduced dissolved oxygen and submerged plant coverage,leading to the neutral change of phytoplankton biomass under warming.Nitrogen addition elevated phytoplankton biomass by 11.6%,which could be attributed to the enhanced nutrient availability and reduced submerged plant coverage.Positive relationships of methane(CH4)emission rates at the water-air interface with phytoplankton biomass indicated the potentially crucial role of phytoplankton in mediating wetland CH4 cycling through photosynthesis-driven metabolisms.The findings suggested the seasonal variation of phytoplankton and their potential responses to nighttime warming and N deposition,which may provide a more accurate basis for assessing the global change-carbon feedback in wetland ecosystems.
文摘With the brisk winter season just around the corner,my now 5-year-old's birthday was approaching,and I had a big celebration planned full of presents,cake and a fun day out.However,this year,she had a request of her own.One frosty evening,she glided up to me and said,"Dad,this year for my birthday,I want to learn how to be a figure skater."
基金The Science and Technology Basic Resources Survey Project,No.2021FY101002Wetland Protection and Restoration in China Funded by the Palson Institute and Laoniu Foundation,UNDP-GEF Flyway Project,No.PIMS ID:6110。
文摘Effective conservation relies on robust assessments;however,the lack of waterbird data in the Yellow River Basin(YRB)has led to an underestimation of key habitat significance.This study addressed this gap by evaluating YRB wetland conservation importance using waterbirds as indicators and applying Ramsar,Important Bird Areas(IBA),and East Asian-Australasian Flyway(EAAF)criteria.We integrated coordinated surveys with citizen science data,creating a framework that tackles data deficiencies along the under-monitored Central Asian Flyway(CAF).Our analysis identified 75 priority wetlands,supporting 15 threatened species and 49 exceeding global/flyway 1%thresholds,highlighting the basin's biodiversity.We observed strong seasonal habitat use,with high-altitude wetlands vital for breeding and migration,and the Yellow River Delta providing year-round refuge.This research also provided data to refine Baer's Pochard population estimates.Alarmingly,one-third of the identified priority areas,primarily rivers and lakes,remain unprotected.To address this,we recommend systematic surveys,enhanced protected areas,OECMs,and targeted wetland restoration.This study underscores the YRB's role in regional conservation and provides essential data for adaptive management,particularly emphasizing the CAF's importance.
基金supported by Sichuan Science and Technology Program(No.2024NSFSC0060)the National Natural Science Foundation of China(No.U23A2030)the Basic Research Cultivation Support Plan of Southwest Jiaotong University(No.2682023ZTPY016).
文摘Imidazole(IM)particles in the atmosphere affect climate,atmospheric chemical reactions,and human health.However,research on IM particles in the Sichuan Basin(SCB),one of the areas of China affected most heavily by haze,remains very scarce.This study used single-particle aerosol mass spectrometry to investigate IM-containing particles in Chengdu,one of the megacities in the SCB,during summer and winter before and after implemen-tation of the Three-year Action Plan to Win the Blue-Sky Defense War(BSDW).We found that IM-containing particles accounted for 1.2%–12.0%of all detected particles,and they highly mixed with carbonaceous com-ponents,secondary inorganic species,and organic nitrogen.From before to after the BSDW,the proportion of IM-containing particles decreased by 1.8%in summer,but increased by 9.6%in winter.Ammonium/amines and carbonyl compounds were closely related to IM-containing particles;the highest proportion of IM-containing particles occurred in particles mixed with amines and carbonyls.The number fraction of IM-containing particles in all seasons was higher at night than during daytime.The potential source areas of IM-containing particles showed notable narrowing after the BSDW,and the high-value areas were found distributed closer to Chengdu and its surrounding areas.In the winter before the BSDW,most IM-containing particles(>70%)were mixed with organic carbon(OC)particles,and the contributions of OC and mixed organic–elemental carbon(OC-EC)particles increased with aggravation of pollution,whereas OC-EC and Metal particles played a more crucial role in the winter after the BSDW.
基金supported by the Specialized Research Fund for State Key Laboratories,Chinese Meridian Project,the Specialized Research Fund for the State Key Laboratory of Solar Activity and Space Weather,postgraduate Education Reform and Quality Improvement Project of Henan Province(Grant No.YJS2024JD32)Natural Science Foundation Project of Henan Province(Grant No.242300420253)National Natural Science Foundation of China for Young Scientists(Grant No.42504156)funding.
文摘Here we report on simultaneous lidar observations of sporadic Ni(Nis)layers and sporadic Na(Nas)layers in the atmosphere over Yanqing,Beijing(40.42°N,116.02°E)from April 2019 to October 2022.During 343 nights of observation,68 Nis and 56 Nas were observed.The seasonal variation of Nis and Nas was also obtained,with the highest occurrence of Nis being in July(43%)and that of Nas being in June(61%).We found that the seasonal variation of Nis is similar to that of Nas and that both occur more frequently in summer than in winter.In addition,we found 23 events in which Nis and Nas occur simultaneously.The average peak altitude of Nas is approximately 1 km higher than that of Nis,and the peak density ratio of Nas to Nis is approximately 5,which is half the density ratio of the two main layers.Additionally,the strength factor for Nas is smaller than that for Nis.Through data analysis of sporadic E layers(Es),we found that Nis and Nas has a significant correlation with Es.The neutralization rates of Ni^(+)/Na^(+)were calculated according to the dissociative recombination reaction of Ni^(+)/Na^(+)and the WACCM-Ni(Whole Atmosphere Community Climate Model of Ni).The production rates of Ni and Na were estimated to be approximately 1:4.4,which is consistent with the density ratio of Nis to Nas.The results showed that the neutralization reaction of Ni+,Na+,and electrons in Es is the main reason for the formation of the Nis layer and the Nas layer.
基金supported by the Australian Research Council(Grant No.CE230100012)。
文摘The onset,cessation,and length of the rainy season are crucial for global water resources,agricultural practices,and food security.However,the response of precipitation seasonality to global warming remains uncertain.In this study,we analyze how global warming levels(GWLs)of 1.5℃ and 2℃ could affect the timing of rainfall onset(RODs),rainfall cessation(RCDs),and the overall duration of the rainy season(LRS)over global land monsoon(GLM)regions using simulations from CMIP6 under the SSP2-4.5 and SSP5-8.5 scenarios.With high model consensus,our results reveal that RODs are projected to occur later over Southern Africa,North Africa,and South America,but earlier over South Asia and Australia,in a warmer climate.The projected early RODs in Australia are more pronounced at the 2℃ GWL under SSP5-8.5.On the other hand,early RCDs are projected over South America and East Asia,while late RCDs are projected over North Africa,with high inter-model agreement.These changes are associated with a future decrease in LRS in most GLM regions.Additionally,we found that continuous warming over 1.5℃ will further reduce the length of the rainy season,especially over the South America,North Africa,and Southern Africa monsoon regions.The findings underscore the urgent need to mitigate global warming.
基金the W.M.Keck Center for Nano-Scale Imaging in the Department of Chemistry and Biochemistry at the University of Arizona(Grant No.RRID:SCR_022884),with funding from the W.M.Keck Foundation Grant.
文摘Approximately 3.44 billion tons of copper mine tailings(MT)were produced globally in 2018 with an increase of 45%from 2010.Significant efforts are being made to manage these tailings through storage facilities,recycling,and reuse in different industries.Currently,a large portion of tailings are managed through the tailing storage facilities(TSF)where these tailings undergo hydro-thermal-mechanical stresses with seasonal cycles which are not comprehensively understood.This study presents an investigative study to evaluate the performance of control and cement-stabilized copper MT under the influence of seasonal cycles,freeze-thaw(F-T)and wet-dry(W-D)conditions,representing the seasonal variability in the cold and arid regions.The control and cement-stabilized MT samples were subjected to a maximum of 12 F-T and 12 W-D cycles and corresponding micro-and-macro behavior was investigated through scanning electron microscope(SEM),volumetric strain(εvT,wet density(r),moisture content loss,and unconfined compressive strength(UCS)tests.The results indicated the vulnerability of Copper MT to 67%and 75%strength loss reaching residual states with 12 F-T and 8 W-D cycles,respectively.Whereas the stabilized MT retained 39%-55%and 16%-34%strength with F-T and W-D cycles,demonstrating increased durability.This research highlights the impact of seasonal cycles and corresponding strength-deformation characteristics of control and stabilized Copper MT in cold and arid regions.
基金an MSc thesis research grant from the Zoological Society of London(ZSL)Nepal.RCK’s effort was supported in part by the Office of Research Infrastructure Programs(ORIP)of the National Institutes of Health through grant number P51OD010425 to the Washington National Primate Research Center,USA。
文摘The Himalayan monal(Lophophorus impejanus),Nepal’s national bird,is a protected species facing significant conservation challenges.Understanding the distribution and habitat preferences of the Himalayan monal(HM)is crucial for its conservation.This study was conducted in the Langtang National Park(LNP),Nepal using the route census method during both winter(November/December 2022)and summer(June 2023)seasons to examine the seasonal variation in HM’s elevational distribution and habitat preference.Further,we assessed their conservation threats by conducting a semi-structured questionnaire survey with the local residents.During the winter period,the HMs preferred grassland habitats,while in the summer,their preference shifted to shrubland and barren area.HM abundance was negatively associated with the Normalized Differential Vegetation Index(NDVI)and the shortest distance from the survey trails in the winter.The HMs actively avoided areas with high anthropogenic pressure.In the summer,they showed a wider elevational range up to 4400 m above sea level(a.s.l.),with a higher sighting frequency between 3600 and 3900 m a.s.l.The questionnaire survey of the local residents revealed that anthropogenic pressure such as poaching and free-ranging livestock grazing are the major threats to the species in the study area.This study provides valuable insight into the complex habitat preferences and critical threats faced by the HMs in LNP and underscores the urgent need for targeted conservation action.
基金supported by the National Natural Science Foundation of China(Nos.42030707,72394404)the International Partnership Program of the Chinese Academy of Sciences(No.121311KYSB20190029)the Fundamental Research Fund for the Central Universities(Nos.20720210083,20720210082).
文摘Halocarbons play a vital role in ozone depletion and global warming,and are regulated by the Montreal Protocol(MP)and its amendments.China has been identified as an important contributor to the halocarbon emissions,but the regional sources of halocarbons in China are not yet well comprehended.To investigate the characteristics,emissions,and source profiles,this study conducted a field campaign in Xiamen,a coastal city in southeastern China.Higher enhancements were found in the unregulated halocarbons(CH_(3)Cl,CH_(2)Cl_(2),CHCl_(3))than in the MP eliminated species(CCl_(4),CH_(3)Br)and theMP controlled species(HCFCs,HFCs).Many of the measured halocarbons varied seasonally and regionally,depending on the anthropogenic sources and atmospheric transport.Backward trajectory analysis showed that the air masses from inland were polluted over Shandong,Hebei,and northern Fujian in the cold season,while the air masses fromthe sea in the warm season were clean.Different air masses in two seasons were associated with the halocarbon patterns in the study area.Industrial activities,especially solvent usage,were the primary sources of halocarbons.The emission hot spots in Fujian Province were concentrated in Sanming,Fuzhou,and Xiamen,and the unregulated halocarbons made the largest contribution.This study provides an insight for a deep understanding of the characteristics and potential sources of halocarbons,and for strengthened management of halocarbons in China.
基金supported by the Southwest Minzu University Research Startup Funds (No.16011221038,RQD2022021)Double World-Class Project (No.CX2023010)。
文摘Wetland degradation is an escalating global challenge with profound impacts on animal diversity,particularly during successional processes.Birds,as highly mobile and environmentally sensitive organisms,serve as effective indicators of ecological change.While previous studies have primarily focused on local community structures and species diversity during a specific season,there is a need to extend the research timeframe and explore broader spatial variations.Additionally,expanding from simple species diversity indices to more multidimensional diversity indices would provide a more comprehensive understanding of wetland health and resilience.To address these gaps,we investigated the effects of wetland degradation on bird diversity across taxonomic,phylogenetic,and functional dimensions in the Zoige Wetland,a plateau meadow wetland biodiversity hotspot.Surveys were conducted during both breeding(summer)and overwintering(winter)seasons across 20 transects in 5 sampling areas,representing 4 degradation levels(pristine,low,medium,and high).Our study recorded a total of 106 bird species from 32 families and 14 orders,revealing distinct seasonal patterns in bird community composition and diversity.Biodiversity indices were significantly higher in pristine and low-degraded wetlands,particularly benefiting waterfowl(Anseriformes,Ciconiiformes)and wading birds(Charadriiformes)in winter,when these areas provided superior food resources and habitat conditions.In contrast,medium and highly degraded wetlands supported increased numbers of terrestrial birds(Passeriformes)and raptors(Accipitriformes,Falconiformes).Seasonal differences in taxonomic,phylogenetic,and functional diversity indices highlighted the contrasting ecological roles of wetlands during breeding and overwintering periods.Furthermore,indicator species analysis revealed key species associated with specific degradation levels and seasons,providing valuable insights into wetland health.This study underscores the importance of spatiotemporal dynamics in understanding avian responses to wetland degradation.By linking seasonal patterns of bird diversity to habitat conditions,our findings contribute to conservation efforts and provide a framework for assessing wetland degradation and its ecological impacts.
基金supported by the National Natural Science Foundation of China [grant number 42030605]the National Key R&D Program of China [grant number 2020YFA0608004]。
文摘A remarkable marine heatwave,known as the“Blob”,occurred in the Northeast Pacific Ocean from late 2013 to early 2016,which displayed strong warm anomalies extending from the surface to a depth of 300 m.This study employed two assimilation schemes based on the global Climate Forecast System of Nanjing University of Information Science(NUIST-CFS 1.0)to investigate the impact of ocean data assimilation on the seasonal prediction of this extreme marine heatwave.The sea surface temperature(SST)nudging scheme assimilates SST only,while the deterministic ensemble Kalman filter(EnKF)scheme assimilates observations from the surface to the deep ocean.The latter notably improves the forecasting skill for subsurface temperature anomalies,especially at the depth of 100-300 m(the lower layer),outperforming the SST nudging scheme.It excels in predicting both horizontal and vertical heat transport in the lower layer,contributing to improved forecasts of the lower-layer warming during the Blob.These improvements stem from the assimilation of subsurface observational data,which are important in predicting the upper-ocean conditions.The results suggest that assimilating ocean data with the EnKF scheme significantly enhances the accuracy in predicting subsurface temperature anomalies during the Blob and offers better understanding of its underlying mechanisms.
基金supported by the NSFC (42374204, 42004143,42364012)the Project of Stable Support for Youth Team in Basic Research Field,Chinese Academy of Sciences (Grant No.YSBR-018)+3 种基金the Scientific Projects of Hainan Province(KJRC2023C05, ZDYF2021GXJS040)the Innovational Fund for Scientific and Technological Personnel of Hainan Provincethe Chinese Meridian ProjectPandeng Program of National Space Science Center,Chinese Academy of Sciences
文摘Physical and chemical processes observed in the mesosphere and thermosphere above the Earth’s low latitudes are complex and highly interrelated to activity in the low-latitude ionosphere.Metallic sodium detected by lidar can yield clues to dynamic and chemical processes in these spatial layers above the Earth’s atmosphere.This paper is based on sodium layer data collected at two low-latitude stations,one in the northern hemisphere and one in the southern.The low-latitude sodium layer exhibits conspicuous seasonal variations in shape,density,and altitude;these variations are similar between Earth’s hemispheres:sodium layer density at both stations reaches its seasonal maximum in autumn and minimum in summer.However,maximal Na density over Brazil is greater than that over Hainan.Nocturnal variations of Na density above the two low-latitude stations are also similar;at both,maxima are observed before sunrise.Some variations of the Na layer over Brazil that differ from those observed in the northern hemisphere may be related to the South Atlantic Magnetic Anomaly(SAMA)or fountain effect.We suggest that low-latitude Na layer data may provide useful additional evidence that could significantly improve the low-latitude part of the WACCM-Na model.
基金jointly supported by the National Natural Science Foundation of China [grant number 42265012]the Funding by the Fengyun Application Pioneering Project [grant number FY-APP-ZX-2022.0221]。
文摘Forest ecosystems play key roles in mitigating human-induced climate change through enhanced carbon uptake;however,frequently occurring climate extremes and human activities have considerably threatened the stability of forests.At the same time,detailed accounts of disturbances and forest responses are not yet well quantified in Asia.This study employed the Breaks For Additive Seasonal and Trend method-an abrupt-change detection method-to analyze the Enhanced Vegetation Index time series in East Asia,South Asia,and Southeast Asia.This approach allowed us to detect forest disturbance and quantify the resilience after disturbance.Results showed that 20%of forests experienced disturbance with an increasing trend from 2000 to 2022,and Southeast Asian countries were more severely affected by disturbances.Specifically,95%of forests had robust resilience and could recover from disturbance within a few decades.The resilience of forests suffering from greater magnitude of disturbance tended to be stronger than forests with lower disturbance magnitude.In summary,this study investigated the resilience of forests across the low and middle latitudes of Asia over the past two decades.The authors found that most forests exhibited good resilience after disturbance and about two-thirds had recovered to a better state in 2022.The findings of this study underscore the complex relationship between disturbance and resilience,contributing to comprehension of forest resilience through satellite remote sensing.