In this paper we consider a parallel algorithm that detects the maximizer of unimodal function f(x) computable at every point on unbounded interval (0, ∞). The algorithm consists of two modes: scanning and detecting....In this paper we consider a parallel algorithm that detects the maximizer of unimodal function f(x) computable at every point on unbounded interval (0, ∞). The algorithm consists of two modes: scanning and detecting. Search diagrams are introduced as a way to describe parallel searching algorithms on unbounded intervals. Dynamic programming equations, combined with a series of liner programming problems, describe relations between results for every pair of successive evaluations of function f in parallel. Properties of optimal search strategies are derived from these equations. The worst-case complexity analysis shows that, if the maximizer is located on a priori unknown interval (n-1], then it can be detected after cp(n)=「2log「p/2」+1(n+1)」-1 parallel evaluations of f(x), where p is the number of processors.展开更多
The artificial bee colony (ABC) algorithm is a sim- ple and effective global optimization algorithm which has been successfully applied in practical optimization problems of various fields. However, the algorithm is...The artificial bee colony (ABC) algorithm is a sim- ple and effective global optimization algorithm which has been successfully applied in practical optimization problems of various fields. However, the algorithm is still insufficient in balancing ex- ploration and exploitation. To solve this problem, we put forward an improved algorithm with a comprehensive search mechanism. The search mechanism contains three main strategies. Firstly, the heuristic Gaussian search strategy composed of three different search equations is proposed for the employed bees, which fully utilizes and balances the exploration and exploitation of the three different search equations by introducing the selectivity probability P,. Secondly, in order to improve the search accuracy, we propose the Gbest-guided neighborhood search strategy for onlooker bees to improve the exploitation performance of ABC. Thirdly, the self- adaptive population perturbation strategy for the current colony is used by random perturbation or Gaussian perturbation to en- hance the diversity of the population. In addition, to improve the quality of the initial population, we introduce the chaotic opposition- based learning method for initialization. The experimental results and Wilcoxon signed ranks test based on 27 benchmark func- tions show that the proposed algorithm, especially for solving high dimensional and complex function optimization problems, has a higher convergence speed and search precision than ABC and three other current ABC-based algorithms.展开更多
By extending the Levy wavefunction constrained search to Fock Space,one can define a wavefunction constrained search for electron densities in systems having noninteger number of electrons.For pure-state v-representab...By extending the Levy wavefunction constrained search to Fock Space,one can define a wavefunction constrained search for electron densities in systems having noninteger number of electrons.For pure-state v-representable densities,the results are equivalent to what one would obtain with the zero-temperature grand canonical ensemble.In other cases,the wavefunction constrained search in Fock space presents an upper bound to the grand canonical ensemble functional.One advantage of the Fock-space wavefunction constrained search functional over the zero-temperature grand-canonical ensemble constrained search functional is that certain specific excited states(i.e.,those that are not ground-statev-representable) are the stationary points of the Fock-space functional.However,a potential disadvantage of the Fock-space constrained search functional is that it is not convex.展开更多
In this paper, a new algorithm for solving multi-modal function optimization problems-two-level subspace evolutionary algorithm is proposed. In the first level, the improved GT algorithm is used to do global recombina...In this paper, a new algorithm for solving multi-modal function optimization problems-two-level subspace evolutionary algorithm is proposed. In the first level, the improved GT algorithm is used to do global recombination search so that the whole population can be separated into several niches according to the position of solutions; then, in the second level, the niche evolutionary strategy is used for local search in the subspaces gotten in the first level till solutions of the problem are found. The new algorithm has been tested on some hard problems and some good results are obtained.展开更多
A previously published new rotation function has been improved by using a dynamic correlation coefficient as well as two new scoring functions of relative entropy and mean-square-residues to make the rotation function...A previously published new rotation function has been improved by using a dynamic correlation coefficient as well as two new scoring functions of relative entropy and mean-square-residues to make the rotation function more robust and independent of a specific set of weights for scoring and ranking. The previously described new rotation function calculates the rotation function of molecular replacement by matching the search model directly with the Patterson vector map. The signal-to-noise ratio for the correct match was increased by averaging all the matching peaks. Several matching scores were employed to evaluate the goodness of matching. These matching scores were then combined into a single total score by optimizing a set of weights using the linear regression method. It was found that there exists an optimal set of weights that can be applied to the global rotation search and the correct solution can be ranked in the top 100 or less. However, this set of optimal weights in general is dependent on the search models and the crystal structures with different space groups and cell parameters. In this work, we try to solve this problem by designing a dynamic correlation coefficient. It is shown that the dynamic correlation coefficient works for a variety of space groups and cell parameters in the global search of rotation function. We also introduce two new matching scores: relative entropy and mean-square-residues. Last but not least, we discussed a valid method for the optimization of the adjustable parameters for matching vectors.展开更多
针对跳点搜索算法(jump point search,JPS)在路径规划过程中出现的穿越墙角的不安全行为,提出了一种基于蜂窝栅格地图的跳点搜索算法(honeycomb raster map-JPS,H-JPS)。构建蜂窝栅格地图代替传统栅格地图,在JPS算法的基础上结合蜂窝栅...针对跳点搜索算法(jump point search,JPS)在路径规划过程中出现的穿越墙角的不安全行为,提出了一种基于蜂窝栅格地图的跳点搜索算法(honeycomb raster map-JPS,H-JPS)。构建蜂窝栅格地图代替传统栅格地图,在JPS算法的基础上结合蜂窝栅格修改了剪枝规则与跳点判断规则,再利用蜂窝栅格特点设计了新的启发式函数来提高搜索效率,通过找寻最远节点的节点更新规则来优化生成的轨迹。利用Matlab仿真平台验证算法的搜索效率和安全性,结果表明,相较于传统JPS算法,采用H-JPS算法进行路径规划能够完全消除危险节点,路径规划时间和长度分别缩短了41.9%和11.1%,显著提高了搜索效率。展开更多
In this paper, we present a nonmonotone algorithm for solving nonsmooth composite optimization problems. The objective function of these problems is composited by a nonsmooth convex function and a differentiable funct...In this paper, we present a nonmonotone algorithm for solving nonsmooth composite optimization problems. The objective function of these problems is composited by a nonsmooth convex function and a differentiable function. The method generates the search directions by solving quadratic programming successively, and makes use of the nonmonotone line search instead of the usual Armijo-type line search. Global convergence is proved under standard assumptions. Numerical results are given.展开更多
A simplified group search optimizer algorithm denoted as"SGSO"for large scale global optimization is presented in this paper to obtain a simple algorithm with superior performance on high-dimensional problem...A simplified group search optimizer algorithm denoted as"SGSO"for large scale global optimization is presented in this paper to obtain a simple algorithm with superior performance on high-dimensional problems.The SGSO adopts an improved sharing strategy which shares information of not only the best member but also the other good members,and uses a simpler search method instead of searching by the head angle.Furthermore,the SGSO increases the percentage of scroungers to accelerate convergence speed.Compared with genetic algorithm(GA),particle swarm optimizer(PSO)and group search optimizer(GSO),SGSO is tested on seven benchmark functions with dimensions 30,100,500 and 1 000.It can be concluded that the SGSO has a remarkably superior performance to GA,PSO and GSO for large scale global optimization.展开更多
The purpose of this study was to address the challenges in predicting and classifying accuracy in modeling Container Dwell Time (CDT) using Artificial Neural Networks (ANN). This objective was driven by the suboptimal...The purpose of this study was to address the challenges in predicting and classifying accuracy in modeling Container Dwell Time (CDT) using Artificial Neural Networks (ANN). This objective was driven by the suboptimal outcomes reported in previous studies and sought to apply an innovative approach to improve these results. To achieve this, the study applied the Fusion of Activation Functions (FAFs) to a substantial dataset. This dataset included 307,594 container records from the Port of Tema from 2014 to 2022, encompassing both import and transit containers. The RandomizedSearchCV algorithm from Python’s Scikit-learn library was utilized in the methodological approach to yield the optimal activation function for prediction accuracy. The results indicated that “ajaLT”, a fusion of the Logistic and Hyperbolic Tangent Activation Functions, provided the best prediction accuracy, reaching a high of 82%. Despite these encouraging findings, it’s crucial to recognize the study’s limitations. While Fusion of Activation Functions is a promising method, further evaluation is necessary across different container types and port operations to ascertain the broader applicability and generalizability of these findings. The original value of this study lies in its innovative application of FAFs to CDT. Unlike previous studies, this research evaluates the method based on prediction accuracy rather than training time. It opens new avenues for machine learning engineers and researchers in applying FAFs to enhance prediction accuracy in CDT modeling, contributing to a previously underexplored area.展开更多
为更精确地预测航班过站时间,将全国机场按照规模差异及不同地理位置所导致的客流量差异和天气差异对航班过站时间造成的不同影响进行分类,基于各类机场航班数据,构建混合轻量级梯度提升机算法(LightGBM)模型对航班过站时间分类预测。...为更精确地预测航班过站时间,将全国机场按照规模差异及不同地理位置所导致的客流量差异和天气差异对航班过站时间造成的不同影响进行分类,基于各类机场航班数据,构建混合轻量级梯度提升机算法(LightGBM)模型对航班过站时间分类预测。引入自适应鲁棒损失函数(adaptive robust loss function,ARLF)改进LightGBM模型损失函数,降低航班数据中存在离群值的影响;通过改进的麻雀搜索算法对改进后的LightGBM模型进行参数寻优,形成混合LightGBM模型。采用全国2019年全年航班数据进行验证,实验结果验证了方法的可行性。展开更多
文摘In this paper we consider a parallel algorithm that detects the maximizer of unimodal function f(x) computable at every point on unbounded interval (0, ∞). The algorithm consists of two modes: scanning and detecting. Search diagrams are introduced as a way to describe parallel searching algorithms on unbounded intervals. Dynamic programming equations, combined with a series of liner programming problems, describe relations between results for every pair of successive evaluations of function f in parallel. Properties of optimal search strategies are derived from these equations. The worst-case complexity analysis shows that, if the maximizer is located on a priori unknown interval (n-1], then it can be detected after cp(n)=「2log「p/2」+1(n+1)」-1 parallel evaluations of f(x), where p is the number of processors.
基金supported by the Aviation Science Foundation of China(20105196016)the Postdoctoral Science Foundation of China(2012M521807)
文摘The artificial bee colony (ABC) algorithm is a sim- ple and effective global optimization algorithm which has been successfully applied in practical optimization problems of various fields. However, the algorithm is still insufficient in balancing ex- ploration and exploitation. To solve this problem, we put forward an improved algorithm with a comprehensive search mechanism. The search mechanism contains three main strategies. Firstly, the heuristic Gaussian search strategy composed of three different search equations is proposed for the employed bees, which fully utilizes and balances the exploration and exploitation of the three different search equations by introducing the selectivity probability P,. Secondly, in order to improve the search accuracy, we propose the Gbest-guided neighborhood search strategy for onlooker bees to improve the exploitation performance of ABC. Thirdly, the self- adaptive population perturbation strategy for the current colony is used by random perturbation or Gaussian perturbation to en- hance the diversity of the population. In addition, to improve the quality of the initial population, we introduce the chaotic opposition- based learning method for initialization. The experimental results and Wilcoxon signed ranks test based on 27 benchmark func- tions show that the proposed algorithm, especially for solving high dimensional and complex function optimization problems, has a higher convergence speed and search precision than ABC and three other current ABC-based algorithms.
文摘By extending the Levy wavefunction constrained search to Fock Space,one can define a wavefunction constrained search for electron densities in systems having noninteger number of electrons.For pure-state v-representable densities,the results are equivalent to what one would obtain with the zero-temperature grand canonical ensemble.In other cases,the wavefunction constrained search in Fock space presents an upper bound to the grand canonical ensemble functional.One advantage of the Fock-space wavefunction constrained search functional over the zero-temperature grand-canonical ensemble constrained search functional is that certain specific excited states(i.e.,those that are not ground-statev-representable) are the stationary points of the Fock-space functional.However,a potential disadvantage of the Fock-space constrained search functional is that it is not convex.
基金Supported by the National Natural Science Foundation of China (70071042,60073043,60133010)
文摘In this paper, a new algorithm for solving multi-modal function optimization problems-two-level subspace evolutionary algorithm is proposed. In the first level, the improved GT algorithm is used to do global recombination search so that the whole population can be separated into several niches according to the position of solutions; then, in the second level, the niche evolutionary strategy is used for local search in the subspaces gotten in the first level till solutions of the problem are found. The new algorithm has been tested on some hard problems and some good results are obtained.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10674172 and 10874229)
文摘A previously published new rotation function has been improved by using a dynamic correlation coefficient as well as two new scoring functions of relative entropy and mean-square-residues to make the rotation function more robust and independent of a specific set of weights for scoring and ranking. The previously described new rotation function calculates the rotation function of molecular replacement by matching the search model directly with the Patterson vector map. The signal-to-noise ratio for the correct match was increased by averaging all the matching peaks. Several matching scores were employed to evaluate the goodness of matching. These matching scores were then combined into a single total score by optimizing a set of weights using the linear regression method. It was found that there exists an optimal set of weights that can be applied to the global rotation search and the correct solution can be ranked in the top 100 or less. However, this set of optimal weights in general is dependent on the search models and the crystal structures with different space groups and cell parameters. In this work, we try to solve this problem by designing a dynamic correlation coefficient. It is shown that the dynamic correlation coefficient works for a variety of space groups and cell parameters in the global search of rotation function. We also introduce two new matching scores: relative entropy and mean-square-residues. Last but not least, we discussed a valid method for the optimization of the adjustable parameters for matching vectors.
文摘针对跳点搜索算法(jump point search,JPS)在路径规划过程中出现的穿越墙角的不安全行为,提出了一种基于蜂窝栅格地图的跳点搜索算法(honeycomb raster map-JPS,H-JPS)。构建蜂窝栅格地图代替传统栅格地图,在JPS算法的基础上结合蜂窝栅格修改了剪枝规则与跳点判断规则,再利用蜂窝栅格特点设计了新的启发式函数来提高搜索效率,通过找寻最远节点的节点更新规则来优化生成的轨迹。利用Matlab仿真平台验证算法的搜索效率和安全性,结果表明,相较于传统JPS算法,采用H-JPS算法进行路径规划能够完全消除危险节点,路径规划时间和长度分别缩短了41.9%和11.1%,显著提高了搜索效率。
文摘In this paper, we present a nonmonotone algorithm for solving nonsmooth composite optimization problems. The objective function of these problems is composited by a nonsmooth convex function and a differentiable function. The method generates the search directions by solving quadratic programming successively, and makes use of the nonmonotone line search instead of the usual Armijo-type line search. Global convergence is proved under standard assumptions. Numerical results are given.
基金the Science and Technology Planning Project of Hunan Province(No.2011TP4016-3)the Construct Program of the Key Discipline(Technology of Computer Application)in Xiangnan University
文摘A simplified group search optimizer algorithm denoted as"SGSO"for large scale global optimization is presented in this paper to obtain a simple algorithm with superior performance on high-dimensional problems.The SGSO adopts an improved sharing strategy which shares information of not only the best member but also the other good members,and uses a simpler search method instead of searching by the head angle.Furthermore,the SGSO increases the percentage of scroungers to accelerate convergence speed.Compared with genetic algorithm(GA),particle swarm optimizer(PSO)and group search optimizer(GSO),SGSO is tested on seven benchmark functions with dimensions 30,100,500 and 1 000.It can be concluded that the SGSO has a remarkably superior performance to GA,PSO and GSO for large scale global optimization.
文摘The purpose of this study was to address the challenges in predicting and classifying accuracy in modeling Container Dwell Time (CDT) using Artificial Neural Networks (ANN). This objective was driven by the suboptimal outcomes reported in previous studies and sought to apply an innovative approach to improve these results. To achieve this, the study applied the Fusion of Activation Functions (FAFs) to a substantial dataset. This dataset included 307,594 container records from the Port of Tema from 2014 to 2022, encompassing both import and transit containers. The RandomizedSearchCV algorithm from Python’s Scikit-learn library was utilized in the methodological approach to yield the optimal activation function for prediction accuracy. The results indicated that “ajaLT”, a fusion of the Logistic and Hyperbolic Tangent Activation Functions, provided the best prediction accuracy, reaching a high of 82%. Despite these encouraging findings, it’s crucial to recognize the study’s limitations. While Fusion of Activation Functions is a promising method, further evaluation is necessary across different container types and port operations to ascertain the broader applicability and generalizability of these findings. The original value of this study lies in its innovative application of FAFs to CDT. Unlike previous studies, this research evaluates the method based on prediction accuracy rather than training time. It opens new avenues for machine learning engineers and researchers in applying FAFs to enhance prediction accuracy in CDT modeling, contributing to a previously underexplored area.
文摘为更精确地预测航班过站时间,将全国机场按照规模差异及不同地理位置所导致的客流量差异和天气差异对航班过站时间造成的不同影响进行分类,基于各类机场航班数据,构建混合轻量级梯度提升机算法(LightGBM)模型对航班过站时间分类预测。引入自适应鲁棒损失函数(adaptive robust loss function,ARLF)改进LightGBM模型损失函数,降低航班数据中存在离群值的影响;通过改进的麻雀搜索算法对改进后的LightGBM模型进行参数寻优,形成混合LightGBM模型。采用全国2019年全年航班数据进行验证,实验结果验证了方法的可行性。