期刊文献+
共找到1,002篇文章
< 1 2 51 >
每页显示 20 50 100
Cross-section design of the flow channels in membrane electrode assembly electrolyzer for CO_(2) reduction reaction through numerical simulations 被引量:1
1
作者 Lili Zhang Hui Gao +7 位作者 Gong Zhang Yuning Dong Kai Huang Zifan Pang Tuo Wang Chunlei Pei Peng Zhang Jinlong Gong 《Chinese Chemical Letters》 2025年第1期332-337,共6页
Membrane electrode assembly(MEA)is widely considered to be the most promising type of electrolyzer for the practical application of electrochemical CO_(2) reduction reaction(CO_(2)RR).In MEAs,a square-shaped cross-sec... Membrane electrode assembly(MEA)is widely considered to be the most promising type of electrolyzer for the practical application of electrochemical CO_(2) reduction reaction(CO_(2)RR).In MEAs,a square-shaped cross-section in the flow channel is normally adopted,the configuration optimization of which could potentially enhance the performance of the electrolyzer.This paper describes the numerical simulation study on the impact of the flow-channel cross-section shapes in the MEA electrolyzer for CO_(2)RR.The results show that wide flow channels with low heights are beneficial to the CO_(2)RR by providing a uniform flow field of CO_(2),especially at high current densities.Moreover,the larger the electrolyzer,the more significant the effect is.This study provides a theoretical basis for the design of high-performance MEA electrolyzers for CO_(2)RR. 展开更多
关键词 Electrochemical reduction of CO_(2) Membrane electrode assembly Mass transfer Gas diffusion electrode Computational fluid dynamics
原文传递
Integrated CO_(2)capture and electrochemical reduction:From mechanism understanding to gas diffusion electrode and catalyst design
2
作者 Xinyu Zhang Ming Sun +3 位作者 Yao Wang Hanya Zhang Juan Du Aibing Chen 《Journal of Energy Chemistry》 2025年第7期81-100,共20页
Integrating the CO_(2)capture process with the CO_(2)electrochemical reduction process into a single system can eliminate the need for storage and transportation following CO_(2)capture.This integrated process offers ... Integrating the CO_(2)capture process with the CO_(2)electrochemical reduction process into a single system can eliminate the need for storage and transportation following CO_(2)capture.This integrated process offers several advantages over multi-step cascade processes,including reduced costs and enhanced CO_(2)utilization.However,the integrated CO_(2)capture and electrochemical reduction(CCER)process encounters several challenges,including the low CO_(2)adsorption performance of the gas diffusion electrode(GDE)and catalyst,as well as the poor activity and selectivity of the catalyst for the electrochemical reduction of CO_(2).This review aims to systematically summarize the fundamentals of the CCER process.Based on an in-depth understanding of the CO_(2)mass transfer,adsorption,and electrochemical reduction processes,GDE design strategies based on the modulation of wettability and structure are discussed to enhance the CO_(2)capture capability at the GDE level.At the catalyst level,catalyst design strategies based on the introduction of CO_(2)capture sites and the construction of CO_(2)mass transfer channels were analyzed,and catalyst design strategies for enhanced CO_(2)capture were proposed.This review summarizes the most common catalysts for CO_(2)electrochemical reduction,such as Ni-based,Bi-based,and Cubased catalysts,and analyzes their design strategies based on reaction pathways for generating specific products.Finally,the problems and challenges of the CCER process are summarized and proposed,which provide ideas for the further application of this technology in the future. 展开更多
关键词 CO_(2)capture Electrochemical reduction Gasdiffusion electrode CATALYST Application
在线阅读 下载PDF
Rapid Outgassing of Hydrophilic TiO_(2) Electrodes Achieves Long-Term Stability of Anion Exchange Membrane Water Electrolyzers
3
作者 Shajahan Shaik Jeonghyeon Kim +8 位作者 Mrinal Kanti Kabiraz Faraz Aziz Joon Yong Park Bhargavi Rani Anne Mengfan Li Hongwen Huang Ki Min Nam Daeseong Jo Sang-Il Choi 《Nano-Micro Letters》 2025年第8期219-236,共18页
The state-of-the-art anion-exchange membrane water electrolyzers(AEMWEs)require highly stable electrodes for prolonged operation.The stability of the electrode is closely linked to the effective evacuation of H_(2) or... The state-of-the-art anion-exchange membrane water electrolyzers(AEMWEs)require highly stable electrodes for prolonged operation.The stability of the electrode is closely linked to the effective evacuation of H_(2) or O_(2) gas generated from electrode surface during the electrolysis.In this study,we prepared a superhydrophilic electrode by depositing porous nickel–iron nanoparticles on annealed TiO_(2) nanotubes(NiFe/ATNT)for rapid outgassing of such nonpolar gases.The super-hydrophilic NiFe/ATNT electrode exhibited an overpotential of 235 mV at 10 mA cm^(−2) for oxygen evolution reaction in 1.0 M KOH solution,and was utilized as the anode in the AEMWE to achieve a current density of 1.67 A cm^(−2) at 1.80 V.In addition,the AEMWE with NiFe/ATNT electrode,which enables effective outgassing,showed record stability for 1500 h at 0.50 A cm^(−2) under harsh temperature conditions of 80±3℃. 展开更多
关键词 TiO_(2)nanotubes NIFE Super-hydrophilic electrode Oxygen evolution reaction Anion-exchange membrane water electrolyzer
在线阅读 下载PDF
Cryoporometry for short T_(2) samples:A T_(1) filter method applied to battery electrode characterization
4
作者 Marc Fleury Thibaud Chevalier +2 位作者 Benjamin Nicot Quentin Denoyelle Julien Bernard 《Magnetic Resonance Letters》 2025年第3期10-22,共13页
The pore size distribution is often an important parameter for transport processes in porous media.Cryoporometry experiments can provide such data in the meso and macropore size up to 1 mm providing the sample tempera... The pore size distribution is often an important parameter for transport processes in porous media.Cryoporometry experiments can provide such data in the meso and macropore size up to 1 mm providing the sample temperature is finely controlled.We use a Peltier based system inserted directly into the NMR probe to control the temperature within 0.05℃and impose temperature ramps down to 0.002℃/min,necessary to characterize the largest pore sizes.The pore size information in the macropore range cannot be obtained from gas adsorption techniques while mercury injection is questionable for the material considered here.For porous materials made of paramagnetic minerals such as lithium-iron phosphate(LiFePO_(4),LFP)or nickel-manganese-cobalt oxides(NMC)and saturated with octamethylcyclotetrasiloxane(OMCTS),the T_(2)relaxation times are very short such as protons from the liquid and frozen phases cannot be separated.Hence the usual cryoporometry experiment cannot be performed.Instead,we propose to use the T_(1)contrast to separate these phases.The method is studied in detail along with some temperature effects linked with the T_(1)variation of the bulk frozen OMCTS.We show an example on two cathode materials part of industrial battery product. 展开更多
关键词 Low field NMR Cryoporometry Short T_(2)relaxation times Liquidesolid separation Battery electrode Pore size distribution
在线阅读 下载PDF
Solid-solution Ru_(x)Cu_(1-x)O_(2) nanocrystals:A promising negative electrode for high-energy-density aqueous hybrid supercapacitors
5
作者 Xuting Li Xiaotang Meng +3 位作者 Qian Zhang Jinfeng Sun Linrui Hou Changzhou Yuan 《Journal of Materials Science & Technology》 2025年第7期10-19,共10页
The low specific capacitances(SCs)of traditional carbonaceous negative electrodes significantly limit the enhancement in energy density of aqueous hybrid supercapacitors(AHCs).It is still hugely challengeable to explo... The low specific capacitances(SCs)of traditional carbonaceous negative electrodes significantly limit the enhancement in energy density of aqueous hybrid supercapacitors(AHCs).It is still hugely challengeable to explore a candidate with large SCs,which can stably operate in the negative potential region mean-while.For this propose,we design and fabricate solid-solution Ru_(x)Cu_(1-x)O_(2) nanocrystals(NCs),which exhibit competitive SCs and electrochemical stability within the potential range from-0.9 V to 0.0 V in the aqueous KOH electrolyte.The incorporation of Cu enhances the electrochemical utilization of RuO_(2),reaction kinetics,electronic conductivity,and hydrogen evolution overpotentials,which are all highly dependent upon the added contents of Cu species.The optimized Ru_(0.8)Cu_(0.2)O_(2)(RuCu82)electrode of a high mass loading of 5 mg cm^(-2) reveals the best electrochemical capacitances in terms of reversible SCs and capacitance degradation at room temperature and-20℃.Furthermore,the reversible K^(+)-(de)intercalation induced pseudocapacitance is proposed for electrochemical charge storage process of RuCu82.In particu-lar,remarkable specific energy of 59.1 Wh kg-1 at 400 W kg-1 and excellent cycling stability are achieved in the assembled NiCoO_(2)//RuCu82 AHCs.Our contribution here presents a new promising negative elec-trode platform with high SCs and electrochemical stability for next-generation AHCs. 展开更多
关键词 Aqueous hybrid supercapacitors Negative electrodes Solid-solution Ru_(0.8)Cu_(0.2)O_(2) Faradaic redox reaction High energy density
原文传递
Accurate cadmium(Ⅱ)detection with single crystalline α-Fe_(2)O_(3) nano-hexagonal modified screen-printed carbon electrode
6
作者 Selvakumar Palanisamy Murugan Velmurugan +4 位作者 G.Bharath Matteo Chiesa Rajesh Madhu Fedor V Kusmartsev Sridharan Balu 《Journal of Environmental Sciences》 2025年第8期635-644,共10页
Even in small concentrations,toxic metals like lead,cadmium,and mercury are dangerous to the environment and human health.Environmental monitoring depends on precisely identifying these heavy metals,particularly cadmi... Even in small concentrations,toxic metals like lead,cadmium,and mercury are dangerous to the environment and human health.Environmental monitoring depends on precisely identifying these heavy metals,particularly cadmium ions(Cd(Ⅱ)).In this study,we present a novel screen-printed carbon electrode(SPCE)modified with single crystallineα-Fe_(2)O_(3)nano-hexagons that functions as a sensor for detecting Cd(Ⅱ).The performance of the fabricated sensor was thoroughly assessed and compared with unmodified SPCE using the voltammetric method.The crystalline structure of the synthesizedα-Fe_(2)O_(3)nano-hexagons was confirmed through XRD,and surface analysis revealed an average diameter and thickness of 86 nm and 9 nm,respectively.Theα-Fe_(2)O_(3)modified SPCE yields a 7-fold enhanced response(at pH 5.0 vs.Ag/AgCl)to Cd(Ⅱ)than bare SPCE.The modified electrode effectively detects Cd(Ⅱ)with a linear response range of up to 333.0μmol/L and a detection limit of 0.65 nmol/L under ideal circumstances.This newly fabricated sensor offers significant potential for environmental monitoring applications by providing outstanding practicality,anti-interference ability,and repeatability for detecting Cd(Ⅱ)in water samples. 展开更多
关键词 α-Fe_(2)O_(3)nano-hexagons Screen-Printed Carbon electrode Electroanalysis Heavy metal ions detection Cadmium ion sensor Differential pulse voltammetry
原文传递
Electrochemical oxidation of aniline by a novel Ti/TiO_xH_y/Sb-SnO_2 electrode 被引量:10
7
作者 李晓良 徐浩 延卫 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第11期1860-1870,共11页
Electrochemical oxidation of aniline in aqueous solution was investigated over a novel Ti/TiOxHy/Sb-SnO2 electrode prepared by the electrodeposition method.Scanning electron microscopy,X-ray diffraction,and electroche... Electrochemical oxidation of aniline in aqueous solution was investigated over a novel Ti/TiOxHy/Sb-SnO2 electrode prepared by the electrodeposition method.Scanning electron microscopy,X-ray diffraction,and electrochemical measurements were used to characterize its morphology,crystal structure,and electrochemical properties.Removal of aniline by the Ti/TiOxHy/Sb-SnO2electrode was investigated by ultraviolet-Visible spectroscopy and chemical oxygen demand(COD)analysis under different conditions,including current densities,initial concentrations of aniline,pH values,concentrations of chloride ions,and types of reactor.It was found that a higher current density,a lower initial concentration of aniline,an acidic solution,the presence of chloride ions(0.2wt%NaCl),and a three-dimensional(3D) reactor promoted the removal efficiency of aniline.Electrochemical degradation of aniline followed pseudo-first-order kinetics.The aniline(200 mL of 100mg·L-(-1)) and COD removal efficiencies reached 100%and 73.5%,respectively,at a current density of 20 mA·cm-(-2),pH of 7.0,and supporting electrolyte of 0.5 wt%Na2SO4 after 2 h electrolysis in a 3D reactor.These results show that aniline can be significantly removed on the Ti/TiOxHy/Sb-SnO2electrode,which provides an efficient way for elimination of aniline from aqueous solution. 展开更多
关键词 ANILINE Ti/TiOxHy/sb-sno2 electrode Electrochemical oxidation Chloride ions Three-dimensional reactor
在线阅读 下载PDF
Effect of Sb dopant amount on the structure and electrocatalytic capability of Ti/Sb-SnO_2 electrodes in the oxidation of 4-chlorophenol 被引量:22
8
作者 KONG Jiang-tao SHI Shao-yuan +1 位作者 ZHU Xiu-ping NI Jin-ren 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2007年第11期1380-1386,共7页
Ti/Sb-SnO2 anodes were prepared by thermal decomposition to examine the influence of the amount of Sb dopant on the structure and electrocatalytic capability of the electrodes in the oxidation of 4-chlorophenol. The p... Ti/Sb-SnO2 anodes were prepared by thermal decomposition to examine the influence of the amount of Sb dopant on the structure and electrocatalytic capability of the electrodes in the oxidation of 4-chlorophenol. The physicochemical properties of the Sb-SnO2 coating were markedly influenced by different amounts of Sb dopant. The electrodes, which contained 5% Sb dopant in the coating, presented a much more homogenous surface and much smaller mud-cracks, compared with Ti/Sb-SnO2 electrodes containing 10% or 15% Sb dopant, which exibited larger mud cracks and pores on the surface. However, the main microstructure remained unchanged with the addition of the Sb dopant. No new crystal phase was observed by X-ray diffraction (XRD). The electrochemical oxidation of 4-chlorophenol on the Ti/SnO2 electrode with 5% Sb dopant was inclined to electrochemical combustion; while for those containing more Sb dopant, intermediate species were accumulated. The electrodes with 5% Sb dopant showed the highest efficiency in the bulk electrolysis of 4-chlorophenol at a current density of 20 mA/cm^2 for 180 min; and the removal rates of 4-chlorophenol and COD were 51.0% and 48.9%, respectively. 展开更多
关键词 4-CHLOROPHENOL cyclic voltammogram electrochemical oxidation Sb dopant Ti/sb-sno2 electrode
在线阅读 下载PDF
A visible-light-assisted Pd/TiO_(2)gas sensor with carbon nanotubes electrodes for trace formaldehyde detection 被引量:2
9
作者 Can Liu Qiao-Qiao Zou +1 位作者 Bin Liu Yong Zhang 《Rare Metals》 SCIE EI CAS CSCD 2024年第1期257-266,共10页
Owing to the ppb-level detection standard toward the toxic and harmful gas,the detection of trace gases has become an important subject in the field of indoor environment management.However,the traditional resistive g... Owing to the ppb-level detection standard toward the toxic and harmful gas,the detection of trace gases has become an important subject in the field of indoor environment management.However,the traditional resistive gas sensors hardly meet the requirement due to the weak signal generated by trace gas molecules that are difficult to capture.Herein,a visible-light-assisted Pd/TiO_(2)gas sensor is proposed to endow the effective detection of trace formaldehyde(HCHO)gas without heating temperature.Benefiting from the enhanced photocatalytic properties of TiO_(2)by Pd decoration,the visible-light-assisted Pd/TiO_(2)gas sensor can detect the HCHO gas as low as80×10^(–9)at room temperature.The successful preparation of nanoscale TiO_(2)sensing layer is facilitated by the ultrathin carbon nanotube interdigital electrode in the gas sensor,which avoids the discontinuity of the sensing layer caused by the excessive thickness of the traditional metal electrode.In addition,the whole preparation process of the Pd/TiO_(2)gas sensor with carbon nanotube electrodes is compatible with mainstream CMOS fabrication technology,which is expected to realize the batch fabrication and micro-integrated application of gas sensors.It is expected that our work can provide a new strategy for the batch preparation of high-performance trace HCHO gas sensors and their future applications in portable electronic devices such as smartphones. 展开更多
关键词 Visible-light-assisted gas sensor Pd/TiO_(2) Trace HCHO detection Carbon nanotubes electrodes
原文传递
High-Performance Stretchable Gallium Battery for Wearable Electronics,Through Synthesis of Foam Electrodes
10
作者 Elahe Parvini Abdollah Hajalilou +2 位作者 Manuel Reis Carneiro Pedro Alhais Lopes Mahmoud Tavakoli 《Energy & Environmental Materials》 2025年第4期80-86,共7页
The demand for sustainable and stretchable thin-film printed batteries for bioelectronics,wearables,and e-textiles is rapidly increasing.Recently,we developed a fully 3D-printed soft-matter thin-film Ga-Ag_(2)O batter... The demand for sustainable and stretchable thin-film printed batteries for bioelectronics,wearables,and e-textiles is rapidly increasing.Recently,we developed a fully 3D-printed soft-matter thin-film Ga-Ag_(2)O battery with 3R characteristics:resilient to mechanical strain,repairable after damage,and recyclable.This battery achieved a record-breaking areal capacity of 26.37 mAh cm-2,increasing to 30.32 mAh cm^(-2) after 10 cycles under 100%strain.This performance stems from the synergistic effects of gallium’s liquid metal properties and the styrene-isoprene-styrene polymer in the anode.Gallium’s high specific capacity(1153.2 mAh g^(-1)),deformability,and self-healing abilities,supported by its supercooled liquid phase,significantly enhance the battery’s resilience and efficiency.However,the cathode’s lower theoretical capacity,due to Ag_(2)O(231.31 mAh g^(-1)),remains a limitation.Traditional Ag_(2)O-carbon black-styrene-isoprene-styrene cathodes experience rapid capacity decay as only the surface area of the active materials interacts with the electrolyte.To overcome this,we designed a carbon-filled Ag_(2)O foam electrode using a sacrificial sugar template,increasing the effective surface area.This optimization enhanced ion-exchange efficiency,specific capacity,and cyclability,achieving a specific capacity of 221.16 mAh g^(-1).Consequently,the Ga-Ag_(2)O stretchable battery attained a record areal capacity of 40.91 mAh cm^(-2)—double that of nonfoam electrodes—and exhibited fivefold improved charge-discharge cycles.Using ultrastretchable Ag-EGaIn-styrene-isoprene-styrene and carbon black-styrene-isoprene-styrene current collectors,the battery’s specific capacity increased by 33%under 50%strain.Integrated into a soft-matter smart wristband for temperature monitoring,the battery demonstrated its promise for wearable electronics. 展开更多
关键词 Ag2O-CB-SIS composite electrochemical performance foam fabrication liquid metal battery porous electrode materials
在线阅读 下载PDF
Micro/nano-manufacturing of bioinspired blood-repellent surfaces for extreme application in surgical electrodes
11
作者 Kaikai Li Yingxi Xie +5 位作者 Pengyu Shen Min Yu Jiao Gao Junming Bi Long Wang Longsheng Lu 《International Journal of Extreme Manufacturing》 2025年第4期435-449,共15页
Surgical electrodes are frequently associated with disadvantages such as high surface adhesion and severe thermal damage to adjacent normal tissues,which threaten operation quality and patient safety.In this study,by ... Surgical electrodes are frequently associated with disadvantages such as high surface adhesion and severe thermal damage to adjacent normal tissues,which threaten operation quality and patient safety.In this study,by mimicking the micromorphology and bio-anti-adhesion of shark skin,we proposed a strategy that utilized nanoscale aluminium oxide(Al_(2)O_(3))films deposited on bioinspired shark skin(BSS)microstructures to design a composite surface(Al_(2)O_(3)@BSS)and integrated it into both flat sides of the surgical electrodes.Micro/nano-manufacturing of the Al_(2)O_(3)@BSS surface was sequentially accomplished using nanosecond laser texturing,atomic layer deposition,and low-temperature annealing,endowing it with excellent blood-repellent properties.Visualisation experiments revealed that the tensile stress gradient of the blood coagulum with increasing thickness under a thermal field prompted it to separate from the Al_(2)O_(3)@BSS surface,resulting in anti-adhesion.Furthermore,it was observed for the first time that Al_(2)O_(3) films could transiently excite discharge along a dielectric surface(DADS)to ablate tissues while suppressing Joule heat,thereby minimising thermal damage.A combination of ex vivo tissue and living mouse experiments demonstrated that the Al_(2)O_(3)@BSS electrodes exhibited optimal comprehensive performance in terms of anti-adhesion,damage minimisation,and drag reduction.In addition,the Al_(2)O_(3)@BSS electrodes possessed remarkable antibacterial efficacy against E.coli and S.aureus.The proposed strategy can meet the extreme application requirements of surgical electrodes to improve operation quality and offer valuable insights for future studies. 展开更多
关键词 surgical electrode Al_(2)O_(3)films bioinspired shark skin microstructures blood-repellent properties ANTI-ADHESION damage minimisation
在线阅读 下载PDF
Designing Membrane Electrode Assembly for Electrochemical CO_(2)Reduction:a Review
12
作者 Xuerong Wang Shulin Zhao +4 位作者 Tao Guo Luyao Yang Qianqian Zhao Yuping Wu Yuhui Chen 《Transactions of Tianjin University》 EI CAS 2024年第2期117-129,共13页
Currently, the electrochemical CO_(2) reduction reaction (CO_(2) RR) can realize the resource conversion of CO_(2) , which is a promising approach to carbon resource use. Important advancements have been made in explo... Currently, the electrochemical CO_(2) reduction reaction (CO_(2) RR) can realize the resource conversion of CO_(2) , which is a promising approach to carbon resource use. Important advancements have been made in exploring the CO_(2) RR performance and mechanism because of the rational design of electrolyzer systems, such as H-cells, flow cells, and catalysts. Considering the future development direction of this technology and large-scale application needs, membrane electrode assembly (MEA) systems can improve energy use efficiency and achieve large-scale CO_(2) conversion, which is considered the most promising technology for industrial applications. This review will concentrate on the research progress and present situation of the MEA component structure. This paper begins with the composition and construction of a gas diff usion electrode. Then, the application of ion-exchange membranes in MEA is introduced. Furthermore, the eff ects of pH and the anion and cation of the anolyte on MEA performance are explored. Additionally, we present the anode reaction type in MEA. Finally, the challenges in this field are summarized, and upcoming trends are projected. This review should offer researchers a clearer picture of MEA systems and provide important, timely, and valuable insights into rational electrolyzer design to facilitate further development of CO_(2) electrochemical reduction. 展开更多
关键词 CO_(2)reduction ELECTROCATALYSIS Membrane electrode assembly
在线阅读 下载PDF
Effect of nano-graphite on mechanical properties and oxidation resistance of ZrB_(2)-SiC-graphite electrode ceramics
13
作者 Bo-lin Yang Chang-liu Kuang +3 位作者 Zheng-long Liu Chao Yu Cheng-ji Deng Jun Ding 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2024年第6期1502-1513,共12页
ZrB_(2)-based ceramic composites were prepared by spark plasma sintering using ZrB_(2) powder prepared by molten salt method as raw material and SiC and nano-graphite as additives.The effects of nano-graphite addition... ZrB_(2)-based ceramic composites were prepared by spark plasma sintering using ZrB_(2) powder prepared by molten salt method as raw material and SiC and nano-graphite as additives.The effects of nano-graphite addition on the physical properties and oxidation resistance of ZrB_(2)-based ceramic samples were investigated.The results show that the addition of an appropriate amount of nano-graphite can effectively improve the density of ZrB_(2)-based ceramic composites and improve the physical properties of the materials.The flexural strength of the ceramic sample with 8 vol.%nano-graphite reached 418.54 MPa,which was 53.14% higher than that of ZrB_(2)-SiC ceramic material(273.31 MPa),and its oxidation resistance was also significantly improved.It demonstrats that the addition of an appropriate amount of nano-graphite can effectively improve the physical properties and oxidation resistance of ZrB_(2)-SiC ceramic composites.Via prolonging its service life in application and promoting the development of ZrB_(2)-based ceramic composites,it is of great significance for clean steel smelting. 展开更多
关键词 ZrB_(2)-SiC-graphite electrode ceramic ZrB_(2)-based ceramic composite NANO-GRAPHITE Physical property Oxidation resistance
原文传递
Novel Perovskite Oxide Hybrid Nanofibers Embedded with Nanocatalysts for Highly Efficient and Durable Electrodes in Direct CO_(2) Electrolysis
14
作者 Akromjon Akhmadjonov Kyung Taek Bae Kang Taek Lee 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期214-230,共17页
The unique characteristics of nanofibers in rational electrode design enable effec-tive utilization and maximizing material properties for achieving highly efficient and sustainable CO_(2) reduction reactions( CO_(2)R... The unique characteristics of nanofibers in rational electrode design enable effec-tive utilization and maximizing material properties for achieving highly efficient and sustainable CO_(2) reduction reactions( CO_(2)RRs)in solid oxide elec-trolysis cells(SOECs).However,practical appli-cation of nanofiber-based electrodes faces chal-lenges in establishing sufficient interfacial contact and adhesion with the dense electrolyte.To tackle this challenge,a novel hybrid nanofiber electrode,La_(0.6)Sr_(0.4)Co_(0.15)Fe_(0.8)Pd_(0.05)O_(3-δ)(H-LSCFP),is developed by strategically incorporating low aspect ratio crushed LSCFP nanofibers into the excess porous interspace of a high aspect ratio LSCFP nanofiber framework synthesized via electrospinning technique.After consecutive treatment in 100% H_(2) and CO_(2) at 700°C,LSCFP nanofibers form a perovskite phase with in situ exsolved Co metal nanocatalysts and a high concentration of oxygen species on the surface,enhancing CO_(2) adsorption.The SOEC with the H-LSCFP electrode yielded an outstanding current density of 2.2 A cm^(-2) in CO_(2) at 800°C and 1.5 V,setting a new benchmark among reported nanofiber-based electrodes.Digital twinning of the H-LSCFP reveals improved contact adhesion and increased reaction sites for CO_(2)RR.The present work demonstrates a highly catalytically active and robust nanofiber-based fuel electrode with a hybrid structure,paving the way for further advancements and nanofiber applications in CO_(2)-SOECs. 展开更多
关键词 NANOFIBERS Fuel electrodes Digital twinning CO_(2)reduction reaction Solid oxide electrolysis cells
在线阅读 下载PDF
Interface and energy band manipulation of Bi2O3-Bi2S3 electrode enabling advanced magnesium-ion storage
15
作者 Qiang Tang Yingze Song +4 位作者 Xuan Cao Cheng Yang Dong Wang Tingting Qin Wei Zhang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第9期3543-3552,共10页
Rechargeable magnesium-ion(Mg-ion)batteries have attracted wide attention for energy storage.However,magnesium anode is still limited by the irreversible Mg plating/stripping procedure.Herein,a well-designed binary Bi... Rechargeable magnesium-ion(Mg-ion)batteries have attracted wide attention for energy storage.However,magnesium anode is still limited by the irreversible Mg plating/stripping procedure.Herein,a well-designed binary Bi_(2)O_(3)-Bi_(2)S_(3)(BO-BS)heterostructure is fulfilled by virtue of the cooperative interface and energy band engineering targeted fast Mg-ion storage.The built-in electronic field resulting from the asymmetrical electron distribution at the interface of electron-rich S center at Bi_(2)S_(3) side and electron-poor O center at Bi_(2)O_(3) side effectively accelerates the electrochemical reaction kinetics in the Mg-ion battery system.Moreover,the as-designed heterogenous interface also benefits to maintaining the electrode integrity.With these advantages,the BO-BS electrode displays a remarkable capacity of 150.36 mAh g^(−1) at 0.67 A g^(-1) and a superior cycling stability.This investigation would offer novel insights into the rational design of functional heterogenous electrode materials targeted the fast reaction kinetics for energy storage systems. 展开更多
关键词 Magnesium-ion battery Bi2O3-Bi2S3 heterostructure Interface and energy band engineering Electrochemical reaction kinetics electrode integrity
在线阅读 下载PDF
Synergistic Coupling of Sulfide Electrolyte and Integrated 3D FeS_(2)Electrode Toward Long-Cycling All-Solid-State Lithium Batteries
16
作者 Wenyi Liu Yongzhi Zhao +4 位作者 Chengjun Yi Weifei Hu Jiale Xia Yuanyuan Li Jinping Liu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第5期68-76,共9页
FeS_(2)cathode is promising for all-solid-state lithium batteries due to its ultra-high capacity,low cost,and environmental friendliness.However,the poor performances,induced by limited electrode-electrolyte interface... FeS_(2)cathode is promising for all-solid-state lithium batteries due to its ultra-high capacity,low cost,and environmental friendliness.However,the poor performances,induced by limited electrode-electrolyte interface,severe volume expansion,and polysulfide shuttle,hinder the application of FeS_(2)in all-solid-state lithium batteries.Herein,an integrated 3D FeS_(2)electrode with full infiltration of Li6PS5Cl sulfide electrolytes is designed to address these challenges.Such a 3D integrated design not only achieves intimate and maximized interfacial contact between electrode and sulfide electrolytes,but also effectively buffers the inner volume change of FeS_(2)and completely eliminates the polysulfide shuttle through direct solid-solid conversion of Li2S/S.Besides,the vertical 3D arrays guarantee direct electron transport channels and horizontally shortened ion diffusion paths,endowing the integrated electrode with a remarkably reduced interfacial impedance and enhanced reaction kinetics.Benefiting from these synergies,the integrated all-solid-state lithium battery exhibits the largest reversible capacity(667 mAh g^(-1)),best rate performance,and highest capacity retention of 82%over 500 cycles at 0.1 C compared to both a liquid battery and non-integrated all-solid-state lithium battery.The cycling performance is among the best reported for FeS_(2)-based all-solid-state lithium batteries.This work presents an innovative synergistic strategy for designing long-cycling high-energy all-solid-state lithium batteries,which can be readily applied to other battery systems,such as lithium-sulfur batteries. 展开更多
关键词 3D electrolyte infiltration all-solid-state batteries FeS_(2)nanosheets arrays integrated 3D electrodes sulfide electrolytes
在线阅读 下载PDF
High Seebeck Coefficient Thermally Chargeable Supercapacitor with Synergistic Effect of Multichannel Ionogel Electrolyte and Ti_(3)C_(2)T_(x) MXene-Based Composite Electrode
17
作者 Zhongming Chen Zhijian Du +3 位作者 La Li Kai Jiang Di Chen Guozhen Shen 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第6期367-377,共11页
Thermally chargeable supercapacitors can collect low-grade heat generated by the human body and convert it into electricity as a power supply unit for wearable electronics.However,the low Seebeck coefficient and heat-... Thermally chargeable supercapacitors can collect low-grade heat generated by the human body and convert it into electricity as a power supply unit for wearable electronics.However,the low Seebeck coefficient and heat-to-electricity conversion efficiency hinder further application.In this paper,we designed a high-performance thermally chargeable supercapacitor device composed of ZnMn_(2)O_(4)@Ti_(3)C_(2)T_(x)MXene composites(ZMO@Ti_(3)C_(2)T_(x) MXene)electrode and UIO-66 metal–organic framework doped multichannel polyvinylidene fluoridehexafluoro-propylene ionogel electrolyte,which realized the thermoelectric conversion and electrical energy storage at the same time.This thermally chargeable supercapacitor device exhibited a high Seebeck coefficient of 55.4 mV K^(−1),thermal voltage of 243 mV,and outstanding heat-to-electricity conversion efficiency of up to 6.48%at the temperature difference of 4.4 K.In addition,this device showed excellent charge–discharge cycling stability at high-temperature differences(3 K)and low-temperature differences(1 K),respectively.Connecting two thermally chargeable supercapacitor units in series,the generated output voltage of 500 mV further confirmed the stability of devices.When a single device was worn on the arm,a thermal voltage of 208.3 mV was obtained indicating the possibility of application in wearable electronics. 展开更多
关键词 ionogel electrode Soret effect thermally chargeable supercapacitor Ti_(3)C_(2)T_(x)MXene UIO-66 MOF
在线阅读 下载PDF
Preparation and electrochemical energy storage properties study of NiCo_(2)S_(4) electrode materials
18
作者 KANG Haojie SHEN Hanjiang +4 位作者 LIU Yun LI Gefei MA Xinyang ZHANG Hongju ZHANG Li 《分子科学学报》 2024年第6期540-545,共6页
In this work,porous hollow spherical NiCo_(2)S_(4) nanomaterials composed of loosely porous nanowires on the surface were prepared using nickel foam as the substrate through a secondary hydrother-mal reaction method.T... In this work,porous hollow spherical NiCo_(2)S_(4) nanomaterials composed of loosely porous nanowires on the surface were prepared using nickel foam as the substrate through a secondary hydrother-mal reaction method.The synthesized materials were then characterized using techniques such as X-ray powder diffraction,scanning electron microscopy and energy-dispersive X-ray spectroscopy.Finally,elec-trochemical performance tests were conducted on the synthesized cobalt-nickel bimetallic compound elec-trode materials,the specific capacitance of the synthesized NiCo_(2)S_(4) nanomaterial reached 3.20 F·cm-2,Moreover,the specific capacitance remained 95.8%of its initial value after 500 cycles.The electrochemical performance was superior to that of the prepared NiCo2O4 nanomaterial.The results suggest that the prepared NiCo_(2)S_(4) with special structure could be a great potential as a material for supercapacitor electrodes. 展开更多
关键词 SUPERCAPACITOR NiCo_(2)S_(4) electrode material hydrothermal method
原文传递
Influence of nano-CeO_2 on coating structure and properties of electrodeposited Al/α-PbO_2/β-PbO_2 被引量:4
19
作者 陈阵 余强 +2 位作者 廖登辉 郭忠诚 武剑 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第5期1382-1389,共8页
Al/α-PbO2/β-PbO2 composite electrodes doped with rare earth oxide (CeO2) were prepared by anodic oxidation method investigate the influence of nano-CeO2 dopants on the properties of Al/α-PbO2/β-PbO2-CeO2 electro... Al/α-PbO2/β-PbO2 composite electrodes doped with rare earth oxide (CeO2) were prepared by anodic oxidation method investigate the influence of nano-CeO2 dopants on the properties of Al/α-PbO2/β-PbO2-CeO2 electrodes and the impact of α-PbO2 as the intermediate layer. The results show that using α-PbO2 as the intermediate layer will benefit the crystallization of β-PbO2 and β-PbO2 is more suitable as the surface layer than α-PbO2. CeO2 dopants change the crystallite size and crystal structure, enhance the catalytic activity, and even change the deposition mechanism of PbO2. The doping of CeO2 in the PbO2 electrodes can enhance the electro-catalytic activity, which is helpful for oxygen evolution, and therefore reduce the cell voltage. 展开更多
关键词 rare earth CEO2 composite electrode material α-PbO2 β-PbO2 cell voltage inert anode
在线阅读 下载PDF
Structures and electrochemical hydrogen storage performance of Si added A_2B_7-type alloy electrodes 被引量:6
20
作者 张羊换 任慧平 +3 位作者 蔡颖 杨泰 张国芳 赵栋梁 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第2期406-414,共9页
In order to ameliorate the electrochemical hydrogen storage performance of La-Mg-Ni system A2B7-type electrode alloys, a small amount of Si was added. The La0.8Mg0.2Ni3.3Co0.2Six (x=0-0.2) electrode alloys were prep... In order to ameliorate the electrochemical hydrogen storage performance of La-Mg-Ni system A2B7-type electrode alloys, a small amount of Si was added. The La0.8Mg0.2Ni3.3Co0.2Six (x=0-0.2) electrode alloys were prepared by casting and annealing. The effects of adding Si on the structure and electrochemical hydrogen storage characteristics of the alloys were investigated systematically. The results indicate that the as-cast and annealed alloys hold multiple structures, involving two major phases of (La, Mg)2Ni7 with a Ce2Ni7-type hexagonal structure and LaNi5 with a CaCu5-type hexagonal structure as well as one residual phase LaNi3. The addition of Si results in a decrease in (La, Mg)2Ni7 phase and an increase in LaNi5 phase without changing the phase structure of the alloys. What is more, it brings on an obvious effect on electrochemical hydrogen storage characteristics of the alloys. The discharge capacities of the as-cast and annealed alloys decline with the increase of Si content, but their cycle stabilities clearly grow under the same condition. Furthermore, the measurements of the high rate discharge ability, the limiting current density, hydrogen diffusion coefficient as well as electrochemical impedance spectra all indicate that the electrochemical kinetic properties of the electrode alloys first increase and then decrease with the rising of Si content. 展开更多
关键词 A2B7-type electrode alloy Si additive STRUCTURE electrochemical characteristics
在线阅读 下载PDF
上一页 1 2 51 下一页 到第
使用帮助 返回顶部