期刊文献+
共找到6,197篇文章
< 1 2 250 >
每页显示 20 50 100
Call for Papers from Agricultural Products Processing and Storage
1
《肉类研究》 北大核心 2026年第1期I0017-I0017,共1页
Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim ... Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics. 展开更多
关键词 NUTRITION SCIENCE open access journal agricultural products processing storage technology ENGINEERING agricultural product
在线阅读 下载PDF
Advancing Energy Development with MBene: Chemical Mechanism, AI, and Applications in Energy Storage and Harvesting
2
作者 Jai Kumar Nadeem Hussain Solangi +5 位作者 Rana R.Neiber Fangyuan Bai Victor Charles Pengfei Zhai Zhuanpei Wang Xiaowei Yang 《Nano-Micro Letters》 2026年第3期569-629,共61页
MXene derivatives are notable two-dimensional nanomaterials with numerous prospective applications in the domains of energy development.MXene derivative,MBene,diversifies its focus on energy storage and harvesting due... MXene derivatives are notable two-dimensional nanomaterials with numerous prospective applications in the domains of energy development.MXene derivative,MBene,diversifies its focus on energy storage and harvesting due to its exceptional electrical conductivity,structural flexibility,and mechanical properties.This comprehensive review describes the sandwich-like structure of the synthesized MBene,derived from its multilayered parent material and its distinct chemical framework to date.The fields of focus encompass the investigation of novel MBenes,the study of phase-changing mechanisms,and the examination of hex-MBenes,ortho-MBenes,tetra-MBenes,tri-MBenes,and MXenes with identical transition metal components.A critical analysis is also provided on the electrochemical mechanism and performance of MBene in energy storage(Li/Na/Mg/Ca/Li–S batteries and supercapacitors),as well as conversion and harvesting(CO_(2) reduction,and nitrogen reduction reactions).The persistent difficulties associated with conducting experimental synthesis and establishing artificial intelligence-based forecasts are extensively deliberated alongside the potential and forthcoming prospects of MBenes.This review provides a single platform for an overview of the MBene’s potential in energy storage and harvesting. 展开更多
关键词 MBene MXene Energy storage CO_(2)reduction Nitrogen reduction reactions Artificial intelligence
在线阅读 下载PDF
Dynamic Boundary Optimization via IDBO-VMD:A Novel Power Allocation Strategy for Hybrid Energy Storage with Enhanced Grid Stability
3
作者 Zujun Ding Qi Xiang +10 位作者 Chengyi Li Mengyu Ma Chutong Zhang Xinfa Gu Jiaming Shi Hui Huang Aoyun Xia Wenjie Wang Wan Chen Ziluo Yu Jie Ji 《Energy Engineering》 2026年第1期527-552,共26页
In order to address environmental pollution and resource depletion caused by traditional power generation,this paper proposes an adaptive iterative dynamic-balance optimization algorithm that integrates the Improved D... In order to address environmental pollution and resource depletion caused by traditional power generation,this paper proposes an adaptive iterative dynamic-balance optimization algorithm that integrates the Improved Dung Beetle Optimizer(IDBO)with VariationalMode Decomposition(VMD).The IDBO-VMD method is designed to enhance the accuracy and efficiency of wind-speed time-series decomposition and to effectively smooth photovoltaic power fluctuations.This study innovatively improves the traditional variational mode decomposition(VMD)algorithm,and significantly improves the accuracy and adaptive ability of signal decomposition by IDBO selfoptimization of key parameters K and a.On this basis,Fourier transform technology is used to define the boundary point between high frequency and low frequency signals,and a targeted energy distribution strategy is proposed:high frequency fluctuations are allocated to supercapacitors to quickly respond to transient power fluctuations;Lowfrequency components are distributed to lead-carbon batteries,optimizing long-term energy storage and scheduling efficiency.This strategy effectively improves the response speed and stability of the energy storage system.The experimental results demonstrate that the IDBO-VMD algorithm markedly outperforms traditional methods in both decomposition accuracy and computational efficiency.Specifically,it effectively reduces the charge–discharge frequency of the battery,prolongs battery life,and optimizes the operating ranges of the state-of-charge(SOC)for both leadcarbon batteries and supercapacitors.In addition,the energy management strategy based on the algorithm not only improves the overall energy utilization efficiency of the system,but also shows excellent performance in the dynamic management and intelligent scheduling of renewable energy generation. 展开更多
关键词 Energy efficiency hybrid energy storage system intelligent algorithm power fluctuation mitigation renewable energy
在线阅读 下载PDF
Lignocellulose‑Mediated Gel Polymer Electrolytes Toward Next‑Generation Energy Storage
4
作者 Hongbin Yang Liyu Zhu +5 位作者 Wei Li Yinjiao Tang Xiaomin Li Ting Xu Kun Liu Chuanling Si 《Nano-Micro Letters》 2026年第3期290-329,共40页
The pursuit of high energy density and sustainable energy storage devices has been the target of many researchers.However,safety issues such as the susceptibility of conventional liquid electrolytes to leakage and fla... The pursuit of high energy density and sustainable energy storage devices has been the target of many researchers.However,safety issues such as the susceptibility of conventional liquid electrolytes to leakage and flammability,as well as performance degradation due to uncontrollable dendrite growth in liquid electrolytes,have been limiting the further development of energy storage devices.In this regard,gel polymer electrolytes(GPEs)based on lignocellulosic(cellulose,hemicellulose,lignin)have attracted great interest due to their high thermal stability,excellent electrolyte wettability,and natural abundance.Therefore,in this critical review,a comprehensive overview of the current challenges faced by GPEs is presented,followed by a detailed description of the opportunities and advantages of lignocellulosic materials for the fabrication of GPEs for energy storage devices.Notably,the key properties and corresponding construction strategies of GPEs for energy storage are analyzed and discussed from the perspective of lignocellulose for the first time.Moreover,the future challenges and prospects of lignocellulose-mediated GPEs in energy storage applications are also critically reviewed and discussed.We sincerely hope this review will stimulate further research on lignocellulose-mediated GPEs in energy storage and provide meaningful directions for the strategy of designing advanced GPEs. 展开更多
关键词 Lignocellulosic materials Gel electrolytes Energy storage devices BATTERIES
在线阅读 下载PDF
Nanosized Anatase TiO_(2) with Exposed(001)Facet for High-Capacity Mg^(2+)Ion Storage in Magnesium Ion Batteries
5
作者 Rong Li Liuyan Xia +6 位作者 Jili Yue Junhan Wu Xuxi Teng Jun Chen Guangsheng Huang Jingfeng Wang Fusheng Pan 《Nano-Micro Letters》 2026年第1期438-457,共20页
Micro-sized anatase TiO_(2) displays inferior capacity as cathode material for magnesium ion batteries because of the higher diffusion energy barrier of Mg^(2+)in anatase TiO_(2) lattice.Herein,we report that nanosize... Micro-sized anatase TiO_(2) displays inferior capacity as cathode material for magnesium ion batteries because of the higher diffusion energy barrier of Mg^(2+)in anatase TiO_(2) lattice.Herein,we report that nanosized anatase TiO_(2) exposed(001)facet doubles the capacity compared to the micro-sized sample ascribed to the interfacial Mg^(2+)ion storage.First-principles calculations reveal that the diffusion energy barrier of Mg^(2+)on the(001)facet is significantly lower than those in the bulk phase and on(100)facet,and the adsorption energy of Mg^(2+)on the(001)facet is also considerably lower than that on(100)facet,which guarantees superior interfacial Mg^(2+)storage of(001)facet.Moreover,anatase TiO_(2) exposed(001)facet displays a significantly higher capacity of 312.9 mAh g^(−1) in Mg-Li dual-salt electrolyte compared to 234.3 mAh g^(−1) in Li salt electrolyte.The adsorption energies of Mg^(2+)on(001)facet are much lower than the adsorption energies of Li+on(001)facet,implying that the Mg^(2+)ion interfacial storage is more favorable.These results highlight that controlling the crystal facet of the nanocrystals effectively enhances the interfacial storage of multivalent ions.This work offers valuable guidance for the rational design of high-capacity storage systems. 展开更多
关键词 Magnesium ion batteries High capacity Nanosized anatase TiO_(2) Crystal facet Interfacial ion storage
在线阅读 下载PDF
Coordinated Source-Network-Storage Inertia Control Strategy Based on Wind Power Transmission via MMC-HVDC System
6
作者 Mengxuan Shi Lintao Li +3 位作者 Dejun Shao Xiaojie Pan Xingyu Shi Yuxun Wang 《Energy Engineering》 2026年第1期493-510,共18页
In wind power transmission via modular multilevel converter based high voltage direct current(MMCHVDC)systems,under traditional control strategies,MMC-HVDCcannot provide inertia support to the receiving-end grid(REG)d... In wind power transmission via modular multilevel converter based high voltage direct current(MMCHVDC)systems,under traditional control strategies,MMC-HVDCcannot provide inertia support to the receiving-end grid(REG)during disturbances.Moreover,due to the frequency decoupling between the two ends of the MMCHVDC,the sending-end wind farm(SEWF)cannot obtain the frequency variation information of the REG to provide inertia response.Therefore,this paper proposes a novel coordinated source-network-storage inertia control strategy based on wind power transmission via MMC-HVDC system.First,the grid-side MMC station(GS-MMC)maps the frequency variations of the REG to direct current(DC)voltage variations through the frequency mapping control,and uses submodule capacitor energy to provide inertial power.Then,the wind farm-side MMC station(WF-MMC)restores the DC voltage variations to frequency variations through the frequency restoration control and power loss compensation,providing real-time frequency information for the wind farm.Finally,based on real-time frequency information,thewind farmutilizes the rotor kinetic energy and energy storage to provide fast and lasting power support through the wind-storage coordinated inertia control strategy.Meanwhile,when the wind turbines withdraw from the inertia response phase,the energy storage can increase the power output to compensate for the power deficit,preventing secondary frequency drops.Furthermore,this paper uses small-signal analysis to determine the appropriate values for the key parameters of the proposed control strategy.A simulation model of the wind power transmission via MMCHVDC system is built in MATLAB/Simulink environment to validate and evaluate the proposed method.The results show that the proposed coordinated control strategy can effectively improve the system inertia level and avoid the secondary frequency drop under the load sudden increase condition. 展开更多
关键词 Wind and storage coordination modular multilevel converter inertia response coordinated control
在线阅读 下载PDF
Solid–State Hydrogen Storage Materials with Excellent Selective Hydrogen Adsorption in the Presence of Alkanes,Oxygen,and Carbon Dioxide by Atomic Layer Amorphous Al_(2)O_(3)Encapsulation
7
作者 Fanqi Bu Zhenyu Wang +8 位作者 Ali Wajid Rui Zhai Ting Liu Yaohua Li Xin Ji Xin Liu Shujiang Ding Yonghong Cheng Jinying Zhang 《Nano-Micro Letters》 2026年第3期180-195,共16页
Metal hydrides with high hydrogen density provide promising hydrogen storage paths for hydrogen transportation.However,the requirement of highly pure H_(2)for re-hydrogenation limits its wide application.Here,amorphou... Metal hydrides with high hydrogen density provide promising hydrogen storage paths for hydrogen transportation.However,the requirement of highly pure H_(2)for re-hydrogenation limits its wide application.Here,amorphous Al_(2)O_(3)shells(10 nm)were deposited on the surface of highly active hydrogen storage material particles(MgH_(2)-ZrTi)by atomic layer deposition to obtain MgH_(2)-ZrTi@Al_(2)O_(3),which have been demonstrated to be air stable with selective adsorption of H_(2)under a hydrogen atmosphere with different impurities(CH_(4),O_(2),N_(2),and CO_(2)).About 4.79 wt%H_(2)was adsorbed by MgH_(2)-ZrTi@10nmAl_(2)O_(3)at 75℃under 10%CH_(4)+90%H_(2)atmosphere within 3 h with no kinetic or density decay after 5 cycles(~100%capacity retention).Furthermore,about 4 wt%of H_(2)was absorbed by MgH_(2)-ZrTi@10nmAl_(2)O_(3)under 0.1%O_(2)+0.4%N_(2)+99.5%H_(2)and 0.1%CO_(2)+0.4%N_(2)+99.5%H_(2)atmospheres at 100℃within 0.5 h,respectively,demonstrating the selective hydrogen absorption of MgH_(2)-ZrTi@10nmAl_(2)O_(3)in both oxygen-containing and carbon dioxide-containing atmospheres hydrogen atmosphere.The absorption and desorption curves of MgH_(2)-ZrTi@10nmAl_(2)O_(3)with and without absorption in pure hydrogen and then in 21%O_(2)+79%N_(2)for 1 h were found to overlap,further confirming the successful shielding effect of Al_(2)O_(3)shells against O_(2)and N_(2).The MgH_(2)-ZrTi@10nmAl_(2)O_(3)has been demonstrated to be air stable and have excellent selective hydrogen absorption performance under the atmosphere with CH_(4),O_(2),N_(2),and CO_(2). 展开更多
关键词 Hydrogen storage Magnesium hydrides Selective hydrogen adsorption Air stability Amorphous Al_(2)O_(3)shells
在线阅读 下载PDF
Evaluation of the Suitability of China's Offshore Basins for CO_(2) Geological Storage
8
作者 YUAN Yong LI Qing +6 位作者 CHEN Jianwen CAO Ke WANG Jianqiang ZHAO Hualin LAN Tianyu ZHANG Penghui LUO Di 《Journal of Ocean University of China》 2025年第6期1545-1560,共16页
Offshore carbon dioxide(CO_(2))geological storage is a promising strategy for reducing carbon emissions and supporting sustainable development in coastal regions within a carbon neutrality framework.However,only a few... Offshore carbon dioxide(CO_(2))geological storage is a promising strategy for reducing carbon emissions and supporting sustainable development in coastal regions within a carbon neutrality framework.However,only a few works have focused on offshore basins in China.To address this gap,this study established a dual indicator system that comprises necessary and critical indices and is integrated with the analytic hierarchy process.A coupled analysis was then performed to evaluate the suitability of 10 offshore sedimentary basins in China for CO_(2)geological storage.The necessary indicator system focuses on storage potential,geological conditions,and engineering feasibility.Meanwhile,the critical indicator system emphasizes the safety of storage projects and the viability of drilling operations.Evaluation results revealed that China's offshore basins have undergone two geological evolution stages,namely,the rifting and post-rifting phases,leading to the formation of a dual-layer structure characterized by faulted lower layers and sagged upper layers.These basins have thick and widespread Cenozoic strata,generally low seismic activity,and medium-to-low geothermal gradients.They form five reservoir-caprock systems with favorable geological conditions for CO_(2)storage.The Pearl River Mouth,East China Sea Shelf,and Bohai Basins emerged as primary candidates that offer substantial storage potential to support carbon neutrality goals in the Bohai Rim Economic Zone,Yangtze River Delta Economic Zone,and Guangdong-Hong Kong-Macao Greater Bay Area.The Beibu Gulf and South Yellow Sea Basins were identified as secondary candidates,and the Qiongdongnan and Yinggehai Basins were considered potential alternatives. 展开更多
关键词 offshore saline aquifer storage CO_(2)storage geological conditions offshore geological CO_(2) storage suitability offshore basins in China
在线阅读 下载PDF
Forecast uncertainties real-time data-driven compensation scheme for optimal storage control
9
作者 Arbel Yaniv Yuval Beck 《Data Science and Management》 2025年第1期59-71,共13页
This study introduces a real-time data-driven battery management scheme designed to address uncertainties in load and generation forecasts,which are integral to an optimal energy storage control system.By expanding on... This study introduces a real-time data-driven battery management scheme designed to address uncertainties in load and generation forecasts,which are integral to an optimal energy storage control system.By expanding on an existing algorithm,this study resolves issues discovered during implementation and addresses previously overlooked concerns,resulting in significant enhancements in both performance and reliability.The refined real-time control scheme is integrated with a day-ahead optimization engine and forecast model,which is utilized for illustrative simulations to highlight its potential efficacy on a real site.Furthermore,a comprehensive comparison with the original formulation was conducted to cover all possible scenarios.This analysis validated the operational effectiveness of the scheme and provided a detailed evaluation of the improvements and expected behavior of the control system.Incorrect or improper adjustments to mitigate forecast uncertainties can result in suboptimal energy management,significant financial losses and penalties,and potential contract violations.The revised algorithm optimizes the operation of the battery system in real time and safeguards its state of health by limiting the charging/discharging cycles and enforcing adherence to contractual agreements.These advancements yield a reliable and efficient real-time correction algorithm for optimal site management,designed as an independent white box that can be integrated with any day-ahead optimization control system. 展开更多
关键词 storage optimal scheduling Real-time storage control PV-plus-storage management Forecast uncertainty compensation
在线阅读 下载PDF
V–Ti‑Based Solid Solution Alloys for Solid‑State Hydrogen Storage 被引量:2
10
作者 Shaoyang Shen Yongan Li +3 位作者 Liuzhang Ouyang Lan Zhang Min Zhu Zongwen Liu 《Nano-Micro Letters》 2025年第7期453-482,共30页
This review details the advancement in the development of V–Ti-based hydrogen storage materials for using in metal hydride(MH)tanks to supply hydrogen to fuel cells at relatively ambient temperatures and pressures.V... This review details the advancement in the development of V–Ti-based hydrogen storage materials for using in metal hydride(MH)tanks to supply hydrogen to fuel cells at relatively ambient temperatures and pressures.V–Tibased solid solution alloys are excellent hydrogen storage materials among many metal hydrides due to their high reversible hydrogen storage capacity which is over 2 wt%at ambient temperature.The preparation methods,structure characteristics,improvement methods of hydrogen storage performance,and attenuation mechanism are systematically summarized and discussed.The relationships between hydrogen storage properties and alloy compositions as well as phase structures are discussed emphatically.For large-scale applications on MH tanks,it is necessary to develop low-cost and high-performance V–Ti-based solid solution alloys with high reversible hydrogen storage capacity,good cyclic durability,and excellent activation performance. 展开更多
关键词 Hydrogen storage V-Ti-based solid solution alloys Metal hydride tank Hydrogen storage properties Cyclic stability
在线阅读 下载PDF
A CO_(2) storage potential evaluation method for saline aquifers in a petroliferous basin 被引量:5
11
作者 LI Yang WANG Rui +2 位作者 ZHAO Qingmin XUE Zhaojie ZHOU Yinbang 《Petroleum Exploration and Development》 SCIE 2023年第2期484-491,共8页
According to the requirements for large-scale project implementation, a four-scale and three-level CO_(2)storage potential evaluation method is proposed for saline aquifers in a petroliferous basin in China, consideri... According to the requirements for large-scale project implementation, a four-scale and three-level CO_(2)storage potential evaluation method is proposed for saline aquifers in a petroliferous basin in China, considering geological,engineering and economic factors. The four scales include basin scale, depression scale, play scale and trap scale, and the three levels include theoretical storage capacity, engineering storage capacity, and economic storage capacity. The theoretical storage capacity can be divided into four trapping mechanisms, i.e. structural & stratigraphic trapping, residual trapping, solubility trapping and mineral trapping, depending upon the geological parameters, reservoir conditions and fluid properties in the basin. The engineering storage capacity is affected by the injectivity, storage security pressure, well number, and injection time.The economic storage capacity mainly considers the carbon pricing yield, drilling investment, and operation cost, based on the break-even principle. Application of the method for saline aquifer in the Gaoyou sag of the Subei Basin reveals that the structural & stratigraphic trapping occupies the largest proportion of the theoretical storage capacity, followed by the solubility trapping and the residual trapping, and the mineral trapping takes the lowest proportion. The engineering storage capacity and the economic storage capacity are significantly lower than the theoretical storage capacity when considering the constrains of injectivity, security and economy, respectively accounting for 21.0% and 17.6% of the latter. 展开更多
关键词 petroliferous basin saline aquifer CO_(2)storage potential CO_(2)storage mechanism theoretical storage capacity engineering storage capacity economic storage capacity
在线阅读 下载PDF
Experimental and theoretical study on high hydrogen storage performance of Mg(NH_(2))_(2)-2LiH composite system driven by nano CeO_(2) oxygen vacancies 被引量:1
12
作者 Haoyuan Zheng Yuxiao Jia +10 位作者 Chen Jin Hang Che Chia-TseLee Guang Liu Li Wang Yuyuan Zhao Shixuan He Haizhen Liu Xinhua Wang Yifeng Yu Mi Yan 《Journal of Materials Science & Technology》 2025年第20期173-185,共13页
The magnesium based metal hydrogen storage composite system Mg(NH_(2))_(2)-2LiH has a theoretical hydro-gen storage capacity of 5.6 wt.%and is a promising hydrogen storage material for vehicles.However,its application... The magnesium based metal hydrogen storage composite system Mg(NH_(2))_(2)-2LiH has a theoretical hydro-gen storage capacity of 5.6 wt.%and is a promising hydrogen storage material for vehicles.However,its application is limited due to serious thermodynamic and kinetic barriers.Introducing efficient catalysts is an effective method to improve the hydrogen storage performance of Mg(NH_(2))_(2)-2LiH.This article in-vestigates for the first time the use of nano rare earth oxide CeO_(2)(~44.5 nm)as an efficient modifier,achieving comprehensive regulation of the hydrogen storage performance of Mg(NH_(2))_(2)-2LiH composite system through oxygen vacancy driven catalysis.The modification mechanism of nano CeO_(2) is also sys-tematically studied using density functional theory(DFT)calculations and experimental results.Research has shown that the comprehensive hydrogen storage performance of the Mg(NH_(2))_(2)-2LiH-5 wt.%CeO_(2) composite system is optimal,with high hydrogen absorption and desorption kinetics and reversible per-formance.The initial hydrogen absorption and desorption temperatures of the composite system were significantly reduced from 110/130℃to 65/80℃,and the release of by-product ammonia was signifi-cantly inhibited.Under the conditions of 170℃/50 min and 180℃/100 min,4.37 wt.%of hydrogen can be rapidly absorbed and released.After 10 cycles of hydrogen release,the hydrogen cycle retention rate increased from 85%to nearly 100%.Further mechanistic studies have shown that the nano CeO_(2-x) gen-erated in situ during hydrogen evolution can effectively weaken the Mg-N and N-H bonds of Mg(NH_(2))_(2),exhibiting good catalytic effects.Meanwhile,oxygen vacancies provide a fast pathway for the diffusion of hydrogen atoms in the composite system.In addition,nano CeO_(2-x) can effectively inhibit the polycrys-talline transformation of the hydrogen evolving product Li_(2)MgN_(2)H_(2) in the system at high temperatures,reducing the difficulty of re-hydrogenation of the system.This study provides an innovative perspective for the efficient modification of magnesium based metal hydrogen storage composite materials using rare earth based catalysts,and also provides a reference for regulating the comprehensive hydrogen storage performance of hydrogen storage materials using rare earth catalysts with oxygen vacancies. 展开更多
关键词 Hydrogen storage Rare earth oxide Magnesium based material CeO_(2) Hydrogen storage mechanism
原文传递
Temperature Control Performance and Cooling Release Characteristics of PCM in Large Space:Case Study of Cold Storage 被引量:1
13
作者 Zhengrong Shi Hai Hong +1 位作者 Yanming Shen Jingyong Cai 《Energy Engineering》 2025年第3期885-903,共19页
Phase Change Material(PCM)-based cold energy storage system(CESS)can effectively utilize the peak and valley power resources to reduce the excessive dependence on the power grid.In this study,a PCM-based CESS was desi... Phase Change Material(PCM)-based cold energy storage system(CESS)can effectively utilize the peak and valley power resources to reduce the excessive dependence on the power grid.In this study,a PCM-based CESS was designed for cold storage applications.The optimal number of PCM plates was determined through numerical simulations to meet the required cold storage temperature and control time.Additionally,the air temperature field,flow field,and melting characteristics of the PCMplates during the cooling release process were analyzed.The effects of plate positioning and thickness on the cooling release performance were further investigated.The results indicated that when 64PCMplateswere used,the duration formaintaining temperatures below−18℃increased from0.6 h to approximately 16.94 h.During the cooling release process,the temperature field in the cold storage exhibited stratification,and the melting of the PCM plates was non-uniform.Placing the PCM plates at the top or within the interlayers without cargo above proved more effective,with their cooling release power being approximately twice that of the PCM plates placed in the interlayers with cargo above.Furthermore,reducing the thickness of the PCMplates from15 to 7.5mmresulted in a 3.6-h increase in the time below−18℃and a 4.5-h reduction in the time required to reach 80%liquid phase fraction. 展开更多
关键词 Cold storage cold energy storage system PCM plates cooling release characteristics
在线阅读 下载PDF
Drivers of Groundwater Storage Dynamics in China's Ordos Mining Region:Integrating Natural and Anthropogenic Influences 被引量:1
14
作者 LIU Zhiqiang ZHANG Shengwei +5 位作者 FAN Wenjie HUANG Lei ZHANG Xiaojing LUO Meng YANG Lin ZHANG Zhiqi 《Chinese Geographical Science》 2025年第4期693-706,I0001,I0002,共16页
Clarifying the mechanisms through which coal mining affects groundwater storage(GWS)variations is crucial for water resource conservation and sustainable development.The Ordos Mining Region in China,a key energy base ... Clarifying the mechanisms through which coal mining affects groundwater storage(GWS)variations is crucial for water resource conservation and sustainable development.The Ordos Mining Region in China,a key energy base in China with significant strategic importance,has undergone intensive coal mining activities that have substantially disrupted regional groundwater circulation.This study integrated data from the Gravity Recovery and Climate Experiment Satellite(GRACE)and Famine Early Warning Systems Network(FEWS NET)Land Data Assimilation System(FLDAS)models,combined with weighted downscaling methodology and water balance principles,to reconstruct high-resolution(0.01°)terrestrial water storage(TWS)and GWS changes in the Ordos Mining Region,China from April 2002 to December 2021.The accuracy of GWS variations were validated through pumping test measurements.Subsequently,Geodetector analysis was implemented to quantify the contributions of natural and anthropogenic factors to groundwater storage dynamics.Key findings include:1)TWS in the study area showed a fluctuating but overall decreasing trend,with a total reduction of 8901.11 mm during study period.The most significant annual decrease occurred in 2021,reaching 1696.77 mm.2)GWS exhibited an accelerated decline,with an average annual change rate of 44.35 mm/yr,totaling a decrease of 887.05 mm.The lowest annual groundwater storage level was recorded in 2020,reaching 185.69 mm.3)Precipitation(PRE)contributed the most to GWS variation(q=0.52),followed by coal mining water consumption(MWS)(q=0.41).The interaction between PRE and MWS exhibited a nonlinear enhancement effect on GWS changes(0.54).The synergistic effect of natural hydrological factors has a great influence on the change of GWS,but coal mining water consumption will continue to reduce GWS.These findings provide critical references for the management and regulation of groundwater resource in mining regions. 展开更多
关键词 groundwater reserves groundwater storage(GWS) terrestrial water storage(TWS) Gravity Recovery and Climate Experiment Satellite(GRACE) Famine Early Warning Systems Network(FEWS NET)Land Data Assimilation System(FLDAS) Ordos Mining Region China
在线阅读 下载PDF
Can Batteries Meet the Looming Demand for Grid-Scale Storage?
15
作者 Chris Palmer 《Engineering》 2025年第8期8-11,共4页
On 16 January 2025,flames erupted,and smoke rose more than 300 m in Moss Landing,CA,USA,at what was until early 2024 the world’s largest battery energy storage system(BESS)[1].Prompted by the potential danger of expo... On 16 January 2025,flames erupted,and smoke rose more than 300 m in Moss Landing,CA,USA,at what was until early 2024 the world’s largest battery energy storage system(BESS)[1].Prompted by the potential danger of exposure to toxic gases from the blaze[2],local authorities closed schools and the coast’s iconic Highway 1,evacuated hundreds living close to the facility,and instructed residents of the nearby communities of Santa Cruz and Salinas to stay indoors and keep their doors and windows shut.The burning lithium-ion batteries(LIB)also raised concerns about contamina-tion of communities and farmland in the area. 展开更多
关键词 EVACUATION BATTERIES smoke grid scale storage toxic gases battery energy storage system bess prompted flames contamination
在线阅读 下载PDF
Editorial for special issue on high -entropy and multicomponent-doped materials for energy applications: Innovations in energy conversion and storage
16
作者 Konrad Świerczek Kun Zheng +2 位作者 Liuting Zhang Yihan Ling Mingjiong Zhou 《International Journal of Minerals,Metallurgy and Materials》 2025年第11期2593-2597,共5页
Foreword It is our great privilege,as vip Editors of the International Journal of Minerals,Metallurgy and Materials(IJMMM),to present this special issue on“High-Entropy and Multicomponent-Doped Materials for Energy... Foreword It is our great privilege,as vip Editors of the International Journal of Minerals,Metallurgy and Materials(IJMMM),to present this special issue on“High-Entropy and Multicomponent-Doped Materials for Energy Applications:Innovations in Energy Conversion and Storage.”This collection highlights the latest research developments in the preparation,optimizing properties,and exploring potential applications of high-entropy materials(HEMs)and other com-pounds with increased configurational entropy. 展开更多
关键词 energy applications innovations configurational entropy energy storage high entropy materials energy conversion energy conversion storage multicomponent doped materials
在线阅读 下载PDF
Impact of salt dome morphology on geological storage volumetric estimations:Implications for prospect-scale assessment
17
作者 C.Nur Schub Lorena G.Moscardelli Jonathan P.Schuba 《Energy Geoscience》 2025年第4期29-40,共12页
Geological storage in salt caverns plays a critical role in managing energy resources,yet regional assessments often fall short in accounting for specific salt dome morphological variations that can significantly infl... Geological storage in salt caverns plays a critical role in managing energy resources,yet regional assessments often fall short in accounting for specific salt dome morphological variations that can significantly influence cavern engineering and storage capacity.To address this gap,we developed a refined approach to modeling salt domes,incorporating primary axis tilt,ellipticity,and conic taper.These geometric modifications are applied to a cylindrical baseline salt dome model to assess the effects on total salt volume,workable salt volume,and cavern storage potential.Case studies of four salt domes from the East Texas Salt Basin—Mount Sylvan,Boggy Creek,Steen,and Hainesville—validate the observed trends from the models.Our findings reveal that positive cone taper and primary axis tilt configurations enhance storage potential,leading to significant increases in potential cavern volume,while ellipticity and negative cone taper result in reduced storage capacities.The study underscores the importance of refining volumetric assessments by accounting for detailed morphologic variations,providing a more accurate framework for site-specific geological storage evaluations.Additionally,we discuss challenges related to intra-salt heterogeneities,including intra-salt deformation and mineralogical impurities,highlighting the need for improved site characterization to optimize the safety and efficiency of subsurface storage systems.This work contributes to the development of scalable and reliable geological storage infrastructure,essential for meeting future energy demands. 展开更多
关键词 Hydrogen storage Underground storage Salt cavern Salt dome Structural modeling Volumetric estimation
在线阅读 下载PDF
Chak-hao,Forbidden Rice of Manipur and Its Sustainable Protection from Post-Harvest Storage Pests Using Indigenous Botanical Plant Powders
18
作者 Arati NINGOMBAM Aruna BEEMROTE +9 位作者 Romila AKOIJAM Sushmita THOKCHOM C.H.BASUDHA C.H.SONIA C.H.PREMABATI N.Ajitkumar SINGH L.Langlentombi CHANU Y.Prabhabati DEVI H.Lembisana DEVI A.Gangarani DEVI 《Rice science》 2025年第3期298-302,I0031,I0032,共7页
Chak-hao,the Forbidden Rice from Manipur,India,is an aromatic,purplish-black rice variety that has been awarded a geographical indication tag to preserve and promote its traditional cultivation in Manipur,India.Althou... Chak-hao,the Forbidden Rice from Manipur,India,is an aromatic,purplish-black rice variety that has been awarded a geographical indication tag to preserve and promote its traditional cultivation in Manipur,India.Although Chak-hao is a hardy landrace with field tolerance to biotic stress,its grains are highly susceptible to storage pest infestations,particularly those caused by the rice weevil(Sitophilus oryzae).This severely compromises its commercial storage quality,as pest damage reduces both nutritional value and quantity. 展开更多
关键词 geographical indication tag chak hao PESTS rice weevil sitophilus oryzae forbidden rice sustainable protection post harvest storage storage pest infestationsparticularly
在线阅读 下载PDF
Advanced cellulose-based materials for flexible energy storage systems
19
作者 Zehong Chen Hongzhi Zheng +12 位作者 Jiwang Yi Tanglong Liu Haihong Lai Shuai Zhang Wei Huang Yunlong Yin Xiaofang Huang Yifan Tong Dianen Liang Runsen Li Linxin Zhong Chaoqun Zhang Huili Zhang 《Resources Chemicals and Materials》 2025年第3期116-145,共30页
The rapid development of portable electronics,wearable technologies,and healthcare monitoring systems necessitates the innovation of flexible energy storage systems.Considering environmental pollution and the depletio... The rapid development of portable electronics,wearable technologies,and healthcare monitoring systems necessitates the innovation of flexible energy storage systems.Considering environmental pollution and the depletion of fossil resources,the utilization of renewable resources to engineer advanced flexible materials has become especially crucial.Cellulose,the most abundant natural polymer,has emerged as a promising precursor for advanced functional materials due to its unique structure and properties.Typically,the easy processability,tunable chemical structure,self-assembly behavior,mechanical strength,and reinforcing capability enable its utilization as binder,substrate,hybrid electrode,separator,and electrolyte reservoir for flexible energy storage devices.This review comprehensively summarizes the design,fabrication,and mechanical and electrochemical performances of cellulose-based materials.The structure and unique properties of cellulose are first briefly introduced.Then,the construction of cellulose-based materials in the forms of 1D fibers/filaments,2D films/membranes,3D hydrogels and aerogels is discussed,and the merits of cellulose in these materials are emphasized.After that,the various advanced applications in supercapacitors,lithium-ion batteries,lithium-sulfur batteries,sodium-ion batteries,metal-air batteries,and Zn-ion batteries are presented in detail.Finally,an outlook of the potential challenges and future perspectives in advanced cellulose-based materials for flexible energy storage systems is discussed. 展开更多
关键词 cellulose based materials portable electronicswearable natural polymerhas healthcare monitoring systems flexible energy storage systems flexible energy storage systemsconsidering advanced functional materials advanced flexible materials
在线阅读 下载PDF
Application of a Regional Data Set of the Housing Sector for Hydrogen Storage-Supported Energy System Planning
20
作者 Steffen Schedler Michael Bareev-Rudy +1 位作者 Stefanie Meilinger Tanja Clees 《Energy Engineering》 2025年第5期1755-1770,共16页
Germany aims to achieve a national climate-neutral energy system by 2045.The residential sector still accounts for 29%of end energy consumption,with 74%attributed to the direct use of fossil fuels for heating and hot ... Germany aims to achieve a national climate-neutral energy system by 2045.The residential sector still accounts for 29%of end energy consumption,with 74%attributed to the direct use of fossil fuels for heating and hot water.In order to reduce fossil energy use in the household sector,great efforts are being made to design new energy concepts that expand the use of renewable energies to supply electricity andheat.Onepossibility is toconvertparts of the natural gas grid to a hydrogen-based gas grid to deliver and store energy for urban quarters of buildings,especially with older building stock where electrification of heat via heat pumps is difficult due to technical,acoustical,and economic reasons.A comprehensive dataset was generated by a bottom-up analysis with open governmental and statistical data to determine regional building types regarding energy demand,solar potential,and existing grid infrastructure.The buildings’connections to the electricity,gas,and district heating networks are considered.From this,a representative sample dataset was chosen as input for a newly developed energy system model based on energy flow simulation.The model simulates the interaction of hydrogen generation(HG)(from excess solar energy by electrolysis),storage in a metal-hydride storage(MHS)tank,and hydrogen use in a connected fuel cell(FC),forming a local PVPtGtHP(Photovoltaic Power-to-Gas-to-Heat-and-Power)network.Next to the seasonal hydrogen storage path(HSP),a battery will complete the system to forma hybrid energy storage system(HESS).Paired with seasonal time series for PV power,electricity and heat demand,and a model for connection to grid infrastructure,the simulation of different hydrogen applications and MHS placements aims to analyze operating times and energy share of the systems’equipment and existing infrastructure.The method to obtain the data set together with the simulationmodel presented can be used by energy planners for cities,communities,and building developers to analyze the potentials of a quarter or region and plan a transition towards a more energy-efficient and sustainable energy system. 展开更多
关键词 Hydrogen storage hybrid energy storage system simulation housing sector energy share
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部