目的为了适应铸造CAE技术的网络化趋势,满足铸造CAE系统前置处理模块对STL模型高级渲染的功能性需求,开发一款足以媲美OpenGL渲染环境下复杂三维图形渲染效果的Web版的STL模型查看器程序——STLViewer。方法仿效Windows桌面程序的运行...目的为了适应铸造CAE技术的网络化趋势,满足铸造CAE系统前置处理模块对STL模型高级渲染的功能性需求,开发一款足以媲美OpenGL渲染环境下复杂三维图形渲染效果的Web版的STL模型查看器程序——STLViewer。方法仿效Windows桌面程序的运行方式和界面风格,选择单页面设计方案。选用Visual Studio 2019开发平台,利用HTML5、CSS3和JavaScript技术设计程序界面。深入研究基于WebGL的STL模型可视化技术,按照依托场景环境活动模型渲染的技术路线,进行STLViewer各功能模块的开发。结果设计并实现了STLViewer,该程序功能完整性良好、内部逻辑结构合理高效。STLViewer融隐式交互和显式交互于一体,具有本地STL模型的随机性访问、活动模型的多样化交互、模型姿态的智能化跟踪、视图动画的多方式呈现、模型导出的便捷化操作等特点,实现了网络环境下STL模型的高级渲染功能。结论STLViewer作为一款性能卓越的STL模型查看器程序,既可辅助用户制订合理的网格剖分方案,又能带来优良的用户体验,在实际应用中得到了良好效果。展开更多
在信息化蓬勃发展的今日,大量云计算资源的高效管理是运维领域的重要难题。准确的负载预测是应对这一难题的关键技术。针对该问题提出一种基于局部加权回归周期趋势分解算法(Seasonal and Trend decomposition using Loess,STL)、Holt-W...在信息化蓬勃发展的今日,大量云计算资源的高效管理是运维领域的重要难题。准确的负载预测是应对这一难题的关键技术。针对该问题提出一种基于局部加权回归周期趋势分解算法(Seasonal and Trend decomposition using Loess,STL)、Holt-Winters模型和深度自回归模型(DeepAR)的组合预测模型STL-DeepAR-HW。先采用快速傅里叶变换和自相关函数提取数据的周期性特征,以提取到的最优周期对数据做STL分解,将数据分解为趋势项、季节项和余项;并用DeepAR和Holt-Winters分别预测趋势项和季节项,最后组合得到预测结果。在公开数据集AzurePublicDataset上进行实验,结果表明,与Transformer、Stacked-LSTM以及Prophet等模型相比,该组合模型在负载预测中具有更高的准确性和适用性。展开更多
对水质情况进行准确评估和预测对水污染防控至关重要,然而,由于水质受多种因素的影响,其时间序列数据常常具有趋势性、季节性和长期依赖关系,传统的预测方法往往无法很好地捕捉这些特征。为了解决这些问题,首先基于STL(Seasonal and Tre...对水质情况进行准确评估和预测对水污染防控至关重要,然而,由于水质受多种因素的影响,其时间序列数据常常具有趋势性、季节性和长期依赖关系,传统的预测方法往往无法很好地捕捉这些特征。为了解决这些问题,首先基于STL(Seasonal and Trend Decomposition using Loess)和TCN(Temporal Convolutional Network)构建STL-TCN水质预测模型。其中,通过STL模型对水质时间序列数据进行趋势和季节性分解,有效地提取时序数据的周期性特征;利用TCN模型中并行结构和残差连接有效捕捉时间序列数据的长期依赖关系,对分解后的数据进行多步预测。然后,选用福建省浪石断面河流的氨氮数据来验证STL-TCN水质预测模型的预测效果,并与基于长短时记忆网络(LSTM)和门控循环单元结构(GRU)的水质预测模型进行对比实验。实验结果表明,STL-TCN水质预测模型12步预测的MAE平均值达到0.0343、RMSE平均值达到0.0494、R^(2)平均值达到0.94737,相对LSTM和GRU,MAE平均提高7.8%和8.1%、RMSE平均提高2.2%和1.8%、R^(2)平均提高7.9%和7.8%。说明STL-TCN水质预测模型能够有效提高水质预测的准确性和稳定性,可以作为辅助水环境管理和决策的一种有效手段。展开更多
文摘目的为了适应铸造CAE技术的网络化趋势,满足铸造CAE系统前置处理模块对STL模型高级渲染的功能性需求,开发一款足以媲美OpenGL渲染环境下复杂三维图形渲染效果的Web版的STL模型查看器程序——STLViewer。方法仿效Windows桌面程序的运行方式和界面风格,选择单页面设计方案。选用Visual Studio 2019开发平台,利用HTML5、CSS3和JavaScript技术设计程序界面。深入研究基于WebGL的STL模型可视化技术,按照依托场景环境活动模型渲染的技术路线,进行STLViewer各功能模块的开发。结果设计并实现了STLViewer,该程序功能完整性良好、内部逻辑结构合理高效。STLViewer融隐式交互和显式交互于一体,具有本地STL模型的随机性访问、活动模型的多样化交互、模型姿态的智能化跟踪、视图动画的多方式呈现、模型导出的便捷化操作等特点,实现了网络环境下STL模型的高级渲染功能。结论STLViewer作为一款性能卓越的STL模型查看器程序,既可辅助用户制订合理的网格剖分方案,又能带来优良的用户体验,在实际应用中得到了良好效果。
文摘在信息化蓬勃发展的今日,大量云计算资源的高效管理是运维领域的重要难题。准确的负载预测是应对这一难题的关键技术。针对该问题提出一种基于局部加权回归周期趋势分解算法(Seasonal and Trend decomposition using Loess,STL)、Holt-Winters模型和深度自回归模型(DeepAR)的组合预测模型STL-DeepAR-HW。先采用快速傅里叶变换和自相关函数提取数据的周期性特征,以提取到的最优周期对数据做STL分解,将数据分解为趋势项、季节项和余项;并用DeepAR和Holt-Winters分别预测趋势项和季节项,最后组合得到预测结果。在公开数据集AzurePublicDataset上进行实验,结果表明,与Transformer、Stacked-LSTM以及Prophet等模型相比,该组合模型在负载预测中具有更高的准确性和适用性。
文摘对水质情况进行准确评估和预测对水污染防控至关重要,然而,由于水质受多种因素的影响,其时间序列数据常常具有趋势性、季节性和长期依赖关系,传统的预测方法往往无法很好地捕捉这些特征。为了解决这些问题,首先基于STL(Seasonal and Trend Decomposition using Loess)和TCN(Temporal Convolutional Network)构建STL-TCN水质预测模型。其中,通过STL模型对水质时间序列数据进行趋势和季节性分解,有效地提取时序数据的周期性特征;利用TCN模型中并行结构和残差连接有效捕捉时间序列数据的长期依赖关系,对分解后的数据进行多步预测。然后,选用福建省浪石断面河流的氨氮数据来验证STL-TCN水质预测模型的预测效果,并与基于长短时记忆网络(LSTM)和门控循环单元结构(GRU)的水质预测模型进行对比实验。实验结果表明,STL-TCN水质预测模型12步预测的MAE平均值达到0.0343、RMSE平均值达到0.0494、R^(2)平均值达到0.94737,相对LSTM和GRU,MAE平均提高7.8%和8.1%、RMSE平均提高2.2%和1.8%、R^(2)平均提高7.9%和7.8%。说明STL-TCN水质预测模型能够有效提高水质预测的准确性和稳定性,可以作为辅助水环境管理和决策的一种有效手段。