In conventional higher-order topological insulators(HOTIs),the emergence of topological states can be explained by using the nonzero bulk polarization index.However,corner states emerge in HOTIs with incomplete bounda...In conventional higher-order topological insulators(HOTIs),the emergence of topological states can be explained by using the nonzero bulk polarization index.However,corner states emerge in HOTIs with incomplete boundary unit cells(i.e.,boundary defects)even though the bulk polarization is zero,which challenges the conventional understanding of HOTIs.Here,based on a Kekul´e-distorted honeycomb lattice with incomplete unit cells,we reveal that incomplete unit cells exhibit fractional charges through the analysis of Wannier centers by developing a compensation method and creating the concept of Wannier center domain(WCD)which is the smallest region that one Wannier center occupies.This method compensates for the missing parts of these boundary incomplete unit cells with additional WCDs to make them complete.The compensated WCDs automatically carry the corresponding charge,and this charge together with that of the incomplete unit cell constitutes the total charge of the complete unit cell after compensation.We conclude that the emergence of corner states is attributed to the filling anomaly,which is a fundamental mechanism.Our results refresh the understanding of HOTIs,especially those with structural discontinuities,and provide a novel design for topological states which have application value in producing optical functional devices.展开更多
BACKGROUND The prevalence of negative emotional states,such as anxiety and depression,has increased annually.Although personal habits are known to influence emotional regulation,the precise mechanisms underlying this ...BACKGROUND The prevalence of negative emotional states,such as anxiety and depression,has increased annually.Although personal habits are known to influence emotional regulation,the precise mechanisms underlying this relationship remain unclear.AIM To investigate emotion regulation habits impact on students negative emotions during lockdown,using the coronavirus disease 2019 pandemic as a case example.METHODS During the coronavirus disease 2019 lockdown,an online cross-sectional survey was conducted at a Chinese university.Emotional states were assessed using the Depression,Anxiety,and Stress Scale-21(DASS-21),while demographic data and emotion regulation habits were collected concurrently.Data analysis was performed using SPSS version 27.0 and includedχ^(2)-tests for intergroup comparisons,Spearman’s rank-order correlation coefficient analysis to examine associations,and stepwise linear regression modeling to explore the relationships between emotion regulation habits and emotional states.Statistical significance was set atα=0.05.RESULTS Among the 494 valid questionnaires analyzed,the prevalence rates of negative emotional states were as follows:Depression(65.0%),anxiety(69.4%),and stress(50.8%).DASS-21 scores(mean±SD)demonstrated significant symptomatology:Total(48.77±34.88),depression(16.21±12.18),anxiety(14.90±11.91),and stress(17.64±12.07).Significant positive intercorrelations were observed among all DASS-21 subscales(P<0.01).Regression analysis identified key predictors of negative emotions(P<0.05):Risk factors included late-night frequency and academic pressure,while protective factors were the frequency of parental contact and the number of same-gender friends.Additionally,compensatory spending and binge eating positively predicted all negative emotion scores(β>0,P<0.01),whereas appropriate recreational activities negatively predicted these scores(β<0,P<0.01).CONCLUSION High negative emotion prevalence occurred among confined students.Recreational activities were protective,while compensatory spending and binge eating were risk factors,necessitating guided emotion regulation.展开更多
Superconducting elect rides have attracted growing attention for their potential to achieve high superconducting transition temperatures(T_(C))under pressure.However,many known elect rides are chemically reactive and ...Superconducting elect rides have attracted growing attention for their potential to achieve high superconducting transition temperatures(T_(C))under pressure.However,many known elect rides are chemically reactive and unstable,making high-quality single-crystal growth,characterization,and measurements difficult,and most do not exhibit superconductivity at ambient pressure.In contrast,La_(3) In stands out for its ambient-pressure superconductivity(T_(C)∼9.4 K)and the availability of high-quality single crystals.Here,we investigate its low-energy electronic structure using angle-resolved photoemission spectroscopy and first-principles calculations.The bands near the Fermi energy(E_(F))are mainly derived from La 5d and In 5p orbitals.A saddle point is directly observed at the Brillouin zone(BZ)boundary,while a three-dimensional Van Hove singularity crosses E_(F) at the BZ corner.First-principles calculations further reveal topological Dirac surface states within the bulk energy gap above E_(F).The coexistence of a high density of states and in-gap topological surface states near𝐸F suggests that La3In offers a promising platform for tuning superconductivity and exploring possible topological superconducting phases through doping or external pressure.展开更多
The hybridization gap in strained-layer InAs/In_(x)Ga_(1−x) Sb quantum spin Hall insulators(QSHIs)is significantly enhanced compared to binary InAs/GaSb QSHI structures,where the typical indium composition,x,ranges be...The hybridization gap in strained-layer InAs/In_(x)Ga_(1−x) Sb quantum spin Hall insulators(QSHIs)is significantly enhanced compared to binary InAs/GaSb QSHI structures,where the typical indium composition,x,ranges between 0.2 and 0.4.This enhancement prompts a critical question:to what extent can quantum wells(QWs)be strained while still preserving the fundamental QSHI phase?In this study,we demonstrate the controlled molecular beam epitaxial growth of highly strained-layer QWs with an indium composition of x=0.5.These structures possess a substantial compressive strain within the In_(0.5)Ga_(0.5)Sb QW.Detailed crystal structure analyses confirm the exceptional quality of the resulting epitaxial films,indicating coherent lattice structures and the absence of visible dislocations.Transport measurements further reveal that the QSHI phase in InAs/In_(0.5)Ga_(0.5)Sb QWs is robust and protected by time-reversal symmetry.Notably,the edge states in these systems exhibit giant magnetoresistance when subjected to a modest perpendicular magnetic field.This behavior is in agreement with the𝑍2 topological property predicted by the Bernevig–Hughes–Zhang model,confirming the preservation of topologically protected edge transport in the presence of enhanced bulk strain.展开更多
The intrinsic antiferromagnetic topological insulators in the Mn-Bi-Te family,composed of superlattice-like MnBi_(2)Te_(4)/(Bi_(2)Te_(3))_(n)(n=0,1,2,3,...)layered structure,present intriguing states of matter such as...The intrinsic antiferromagnetic topological insulators in the Mn-Bi-Te family,composed of superlattice-like MnBi_(2)Te_(4)/(Bi_(2)Te_(3))_(n)(n=0,1,2,3,...)layered structure,present intriguing states of matter such as quantum anomalous Hall effect and the axion insulator.However,the surface state gap,which is the prerequisite for the observation of these states,remains elusive.Here by molecular beam epitaxy,we obtain two types of MnBi_(4)Te_(7)films with the exclusive Bi_(2)Te_(3)(BT)or MnBi_(2)Te_(4)(MBT)terminations.By scanning tunneling spectroscopy,the mass terms in the surface states are identified on both surface terminations.Experimental results reveal the existence of a hybridization gap of approximately 23 meV in surface states on the BT termination.This gap comes from the hybridization between the surface states and the spin-split states in the adjacent MBT layer.On the MBT termination,an exchange mass term of about 28±2 meV in surface states is identified by taking magnetic-field-dependent Landau level spectra as well as theoretical simulations.In addition,the mass term varies with the field in the film with a heavy BiMn doping level in the Mn layers.These findings demonstrate the existence of mass terms in surface states on both types of terminations in our epitaxial MnBi_(4)Te_(7)films investigated by local probes.展开更多
A singlet diatomic molecule naturally carries doubly degenerate ±Λ states when the projection of the total electronic angular momentum onto the internuclear axis is nonzero. These doubly degenerate states contri...A singlet diatomic molecule naturally carries doubly degenerate ±Λ states when the projection of the total electronic angular momentum onto the internuclear axis is nonzero. These doubly degenerate states contribute equally in conventional measurements and are thus treated the same in corresponding simulations. In this study, we demonstrate that in resonant excitation by intense laser pulses, the doubly degenerate ±Λ states must be clearly identified. This is exemplified in the X^(1)Σ → A^(1)Π transition of CO molecules. This distinction becomes especially important in the case of circularly polarized radiation. We attribute this phenomenon to the interference of electron-rotational pathways in the strong-field coupled transition with the ±Λ-state of the excited Π state. This research sheds light on the fundamental aspects of intense laser-molecule interactions when extending conventional theories.展开更多
We propose a novel approach to generate and manipulate topological Floquet bound states in the continuum(BICs)via a class of systems constructed by coupling two identical periodically driven one-dimensional Su-Schrief...We propose a novel approach to generate and manipulate topological Floquet bound states in the continuum(BICs)via a class of systems constructed by coupling two identical periodically driven one-dimensional Su-Schrieffer-Heeger chains.The formation of topological Floquet BICs can be adjusted only by tuning the driving amplitude or frequency,regardless of whether the static system has BICs or not.The interchain bias can only change the localization property of topological Floquet BICs,and a bigger bias can lead to transforming topological Floquet BICs into bound states out of the continuum(BOCs).But it does not change the topological properties of these topological Floquet states.Based on the repulsion effect of edge states,we propose to detect occurrence of topological Floquet BICs and transition point between topological Floquet BICs and BOCs using quantum walk.Our work provided a convenient and realistic approach for the experimental realization and manipulation of BICs in a single-particle quantum system.展开更多
Higher-order topological insulators,which host topologically protected states at boundaries that are at least two dimensions lower than the bulk,are an emerging class of topological materials.They provide great opport...Higher-order topological insulators,which host topologically protected states at boundaries that are at least two dimensions lower than the bulk,are an emerging class of topological materials.They provide great opportunities for exploring novel topological phenomena and fascinating applications.Utilizing a low-temperature scanning tunneling microscope,we construct breathing-kagome lattices with Fe adatoms on Ag(111)and investigate their electronic properties.We observe the higher-order topological boundary states in the topological phase but not in the trivial one,which is consistent with the theory.These states are found to be robust against the removal of bulk or edge adatoms.Further,we show the arbitrary positioning of these states either at corner,edge,or bulk sites by slightly modifying their neighbors.Our study not only demonstrates the formation and robustness of the electronic higher-order topological boundary states in real atomic systems but also provides a route for controlling their positions.展开更多
The quantum geometric tensor(QGT)is a fundamental quantity for characterizing the geometric properties of quantum states and plays an essential role in elucidating various physical phenomena.The traditional QGT,defned...The quantum geometric tensor(QGT)is a fundamental quantity for characterizing the geometric properties of quantum states and plays an essential role in elucidating various physical phenomena.The traditional QGT,defned only for pure states,has limited applicability in realistic scenarios where mixed states are common.To address this limitation,we generalize the defnition of the QGT to mixed states using the purifcation bundle and the covariant derivative.Notably,our proposed defnition reduces to the traditional QGT when mixed states approach pure states.In our framework,the real and imaginary parts of this generalized QGT correspond to the Bures metric and the mean gauge curvature,respectively,endowing it with a broad range of potential applications.Additionally,using our proposed mixed-state QGT,we derive the geodesic equation applicable to mixed states.This work establishes a unifed framework for the geometric analysis of both pure and mixed states,thereby deepening our understanding of the geometric properties of quantum states.展开更多
The fractional shortcut to adiabaticity(f-STA)for the production of quantum superposition states is proposed firstly via a three-level system with aΛ-type linkage pattern and a four-level system with a tripod structu...The fractional shortcut to adiabaticity(f-STA)for the production of quantum superposition states is proposed firstly via a three-level system with aΛ-type linkage pattern and a four-level system with a tripod structure.The fast and robust production of the coherent superposition states is studied by comparing the populations for the f-STA and the fractional stimulated Raman adiabatic passage(f-STIRAP).The states with equal proportions can be produced by fixing the controllable parameters of the driving pulses at the final moment of the whole process.The effects of the pulse intensity and the time delay of the pulses on the production process are discussed by monitoring the populations on all of the quantum states.In particular,the spontaneous emission arising from the intermediate state is investigated by the quantum master equation.The result reveals that the f-STA exhibits superior advantages over the f-STIRAP in producing the superposition states.展开更多
We study the topological states(TSs)of all-dielectric honeycomb valley photonic crystals(VPCs).Breaking the space inversion symmetry of the honeycomb lattice by varying the filling ratio of materials for circular ring...We study the topological states(TSs)of all-dielectric honeycomb valley photonic crystals(VPCs).Breaking the space inversion symmetry of the honeycomb lattice by varying the filling ratio of materials for circular ring dielectric columns in the unit cell,which triggers topological phase transitions and thus achieves topological edge states(TESs)and topological corner states(TCSs).The results demonstrate that this structure has efficient photon transmission characteristics and anti-scattering robustness.In particular,we have found that changing the type of edge splicing between VPCs with different topological properties produces a change in the frequency of TCSs,and then based on this phenomenon,we have used a new method of adjusting only the type of edge splicing of the structure to design a novel TCSs combiner that can integrate four TCSs with different frequencies.This work not only expands the variety and number of unexplored TCSs that may exist in a fixed photonic band gap and can be rationalized to be selectively excited in the fixed configuration.Our study provides a feasible pathway for the design of integrated optical devices in which multiple TSs coexist in a single photonic system.展开更多
Topological band theory has been studied for free fermions for decades,and one of the most profound physical results is the bulk-boundary correspondence.Recently a focus in topological physics is extending topological...Topological band theory has been studied for free fermions for decades,and one of the most profound physical results is the bulk-boundary correspondence.Recently a focus in topological physics is extending topological classification to mixed states.Here,we focus on Gaussian mixed states for which the modular Hamiltonians of the density matrix are quadratic free fermion models with U(1)symmetry and can be classified by topological invariants.The bulk-boundary correspondence is then manifested as stable gapless modes of the modular Hamiltonian and degenerate spectrum of the density matrix.In this article,we show that these gapless modes can be detected by the full counting statistics,mathematically described by a function introduced as F(θ).A divergent derivative atθ=πcan be used to probe the gapless modes in the modular Hamiltonian.Based on this,a topological indicator,whose quantization to unity senses topologically nontrivial mixed states,is introduced.We present the physical intuition of these results and also demonstrate these results with concrete models in both one-and two-dimensions.Our results pave the way for revealing the physical significance of topology in mixed states.展开更多
The effects of plasma screening on the ^(1)P^(o) resonance states of H-and He below the n=3 and n=4 thresholds of the respective subsystemsare investigated using the stabilization method and correlated exponential wav...The effects of plasma screening on the ^(1)P^(o) resonance states of H-and He below the n=3 and n=4 thresholds of the respective subsystemsare investigated using the stabilization method and correlated exponential wave functions.Two plasma mediums,namely,the Debye plasma and quantum plasma environments are considered.The screened Coulomb potential(SCP)obtained from Debye-Hückel model is used to represent Debye plasma environments and the exponential cosine screened Coulomb potential(ECSCP)obtained from a modified Debye-Hückel model is used to represent quantum plasma environments.The resonance parameters(resonance positions and widths)are presented in terms of the screening parameters.展开更多
This paper presents a new type of triangular Sharp Eagle wave energy converter(WEC)platform.On the basis of the linear potential flow theory and the finite element analysis method,the hydrodynamic performance and stru...This paper presents a new type of triangular Sharp Eagle wave energy converter(WEC)platform.On the basis of the linear potential flow theory and the finite element analysis method,the hydrodynamic performance and structural response of the platform are studied,considering the actual platform motion and free surface rise under extreme sea states.First,the effects of the wave frequency and direction on the wave-induced loads and dynamic responses were examined.The motion at a wave direction angle of 0°is relatively low.On this basis,the angle constrained by the two sides of the Sharp Eagle floaters should be aligned with the main wave direction to avoid significant platform motion under extreme sea states.Additionally,the structural response of the platform,including the wave-absorbing floaters,is investigated.The results highlighted that the conditions or locations where yielding,buckling,and fatigue failures occur were different.In this context,the connection area of the Sharp Eagle floaters and platform is prone to yielding failure under oblique wave action,whereas the pontoon and side of the Sharp Eagle floaters are prone to buckling failure during significant vertical motion.Additionally,fatigue damage is most likely to occur at the connection between the middle column on both sides of the Sharp Eagle floaters and the pontoons.The findings of this paper revealed an intrinsic connection between wave-induced loads and the dynamic and structural responses of the platform,which provides a useful reference for the improved design of WECs.展开更多
Compared to traditional single-frequency bound states in the continuum(BIC),dual-band BIC of-fers higher degrees of freedom and functionality.Moveover,implementing independent control of dual-band BICs can further enh...Compared to traditional single-frequency bound states in the continuum(BIC),dual-band BIC of-fers higher degrees of freedom and functionality.Moveover,implementing independent control of dual-band BICs can further enhance their advantages and maximize their performance.This study presents a design for a dielectric metasurface that achieves dual-band BICs in the terahertz(THz)range.By adjusting two asym-metry parameters of the structure,independent control of the two symmetry-protected BICs is achieved.Fur-thermore,by varying the shape of the silicon holes,the design's robustness to geometric variations is demon-strated.Finally,the test results show that the figures of merit(FOMs)for both BICs reach 109.This work provides a new approach for realizing and tuning dual-frequency BICs,offering expanded possibilities for applications in multimode lasers,nonlinear optics,multi-channel filtering,and optical sensing.展开更多
Inspired by molecular catalysts,researchers developed atomically precise nitrogen-coordinated single or dual metal sites imbedded in graphitized carbon(M-N-C)to fully utilize metallic sites for 02activation.These cata...Inspired by molecular catalysts,researchers developed atomically precise nitrogen-coordinated single or dual metal sites imbedded in graphitized carbon(M-N-C)to fully utilize metallic sites for 02activation.These catalysts performed remarkably well in the electrocatalytic oxygen reduction reaction(ORR)due to their distinct coordination and electrical structures,Nonetheless,their maximum efficacy in practical applications has yet to be achieved.This agenda identifies tailoring the coordination environment,spin states,intersite distance,and metal-metal interaction as innovative approaches to regulate the ORR performance of these catalysts.However,it is necessary to undertake a precise assessment of these methodologies and the knowledge obtained to be implemented in the design of future M-N-C catalysts for ORR.Therefore,this review aims to analyze recent progress in M-N-C ORR catalysts,emphasizing their innovative engineering with aspects such as alteration in intersite distance,metal-metal interaction,coordination environment,and spin states.Additionally,we critically discuss how to logically monitor the atomic structure,local coordination,spin,and electronic states of M-N-C catalysts to modulate their ORR activity.We have also highlighted the challenges associated with M-N-C catalysts and proposed suggestions for their future design and fabrication.展开更多
We connect magic(non-stabilizer)states,symmetric informationally complete positive operator valued measures(SIC-POVMs),and mutually unbiased bases(MUBs)in the context of group frames,and study their interplay.Magic st...We connect magic(non-stabilizer)states,symmetric informationally complete positive operator valued measures(SIC-POVMs),and mutually unbiased bases(MUBs)in the context of group frames,and study their interplay.Magic states are quantum resources in the stabilizer formalism of quantum computation.SIC-POVMs and MUBs are fundamental structures in quantum information theory with many applications in quantum foundations,quantum state tomography,and quantum cryptography,etc.In this work,we study group frames constructed from some prominent magic states,and further investigate their applications.Our method exploits the orbit of discrete Heisenberg-Weyl group acting on an initial fiducial state.We quantify the distance of the group frames from SIC-POVMs and MUBs,respectively.As a simple corollary,we reproduce a complete family of MUBs of any prime dimensional system by introducing the concept of MUB fiducial states,analogous to the well-known SIC-POVM fiducial states.We present an intuitive and direct construction of MUB fiducial states via quantum T-gates,and demonstrate that for the qubit system,there are twelve MUB fiducial states,which coincide with the H-type magic states.We compare MUB fiducial states and SIC-POVM fiducial states from the perspective of magic resource for stabilizer quantum computation.We further pose the challenging issue of identifying all MUB fiducial states in general dimensions.展开更多
Bismuth oxyselenide(Bi_(2)O_(2)Se),a novel quasi-two-dimensional charge-carrying semiconductor,is recognized as one of the most promising emerging platforms for next-generation semiconductor devices.Recent advancement...Bismuth oxyselenide(Bi_(2)O_(2)Se),a novel quasi-two-dimensional charge-carrying semiconductor,is recognized as one of the most promising emerging platforms for next-generation semiconductor devices.Recent advancements in the development of diverse Bi_(2)O_(2)Se heterojunctions have unveiled extensive potential applications in both electronics and optoelectronics.However,achieving an in-depth understanding of band alignment and particularly interface dynamics remains a significant challenge.In this study,we conduct a comprehensive experimental investigation into band alignment utilizing high-resolution X-ray photoelectron spectroscopy(HRXPS),while also thoroughly discussing the properties of interface states.Our findings reveal that ultrathin films of Bi_(2)O_(2)Se grown on SrTiO_(3)(with TiO_(2)(001)termination)exhibit Type-I(straddling gap)band alignment characterized by a valence band offset(VBO)of approximately 1.77±0.04 eV and a conduction band offset(CBO)around 0.68±0.04 eV.Notably,when accounting for the influence of interface states,the bands at the interface display a herringbone configuration due to substantial built-in electric fields,which markedly deviate from conventional band alignments.Thus,our results provide valuable insights for advancing high-efficiency electronic and optoelectronic devices,particularly those where charge transfer is highly sensitive to interface states.展开更多
BACKGROUND Ovarian carcinoma has the highest mortality rate among all gynecological cancers.Several reproductive and hormonal risk factors,including early menarche,late menopause,limited use of oral contraceptives,and...BACKGROUND Ovarian carcinoma has the highest mortality rate among all gynecological cancers.Several reproductive and hormonal risk factors,including early menarche,late menopause,limited use of oral contraceptives,and a low pregnancy rate,have been identified as contributors to the increased susceptibility to ovarian cancer.Advancements in cancer therapy over the past century,including the emergence of precision oncology,underscore the importance of early detection and tailored interventions,factors particularly critical in ovarian cancer,where late-stage diagnosis remains a persistent barrier to survival.This challenge is compounded by the lack of a universally endorsed screening program,resulting in late-stage identification and widespread metastasis.AIM To evaluate demographic differences in ovarian cancer-related mortality from 1999 to 2020 among adult females aged≥25 years within the United States.METHODS Centers for Disease Control and Prevention Wide-Ranging Online Data for Epidemiologic Research database was used to collect de-identified death certificate data for malignant neoplasm of the ovaries related deaths in female adults aged 25 years and older from the year 1999 to 2020.Crude mortality rates and age-adjusted mortality rates(AAMRs)per 100000 people were calculated.Join point regression program was used to assess annual percent changes in mortality trends,with statistical significance set at P value<0.05.RESULTS Between 1999 and 2020,337619 deaths due to ovarian cancer occurred among United States females aged 25 to>85.The AAMR decreased from 14.62 in 1999 to 10.15 in 2020,with significant declines across various demographics.The AAMRs were highest among non-Hispanic White women,i.e.,13.53.Based on region,they were the highest in the Northeast(13.06)and Midwest(12.94).The steepest decline was observed in metropolitan areas as compared to nonmetropolitan ones.The study highlights significant progress in reducing ovarian cancer mortality across age,race/ethnicity,and geographic regions during this period.CONCLUSION The mortality trends for ovarian carcinoma patients showed an overall decrease,with the highest mortality rates observed among older individuals(65 to>85 years)and non-Hispanic Whites.These disparities underscore the need for equitable healthcare access and targeted policy interventions.展开更多
In January 2025,the United States issued executive orders that could potentially curtail lesbian,gay,bisexual,transgender,queer,and other sexual and gender minorities(LGBTQ+)rights and federal aid to developing countr...In January 2025,the United States issued executive orders that could potentially curtail lesbian,gay,bisexual,transgender,queer,and other sexual and gender minorities(LGBTQ+)rights and federal aid to developing countries,such as public health programs under the United States Agency for International Development(USAID)[1,2].In the Philippines,USAID has played an important role in funding and supporting initiatives to address the country’s local HIV epidemic[2,3].展开更多
基金supported by the Natural Science Basic Research Program of Shaanxi Province (Grant Nos.2024JC-JCQN-06 and2025JC-QYCX-006)the National Natural Science Foundation of China (Grant No.12474337)Chinese Academy of Sciences Project (Grant Nos.E4BA270100,E4Z127010F,E4Z6270100,and E53327020D)。
文摘In conventional higher-order topological insulators(HOTIs),the emergence of topological states can be explained by using the nonzero bulk polarization index.However,corner states emerge in HOTIs with incomplete boundary unit cells(i.e.,boundary defects)even though the bulk polarization is zero,which challenges the conventional understanding of HOTIs.Here,based on a Kekul´e-distorted honeycomb lattice with incomplete unit cells,we reveal that incomplete unit cells exhibit fractional charges through the analysis of Wannier centers by developing a compensation method and creating the concept of Wannier center domain(WCD)which is the smallest region that one Wannier center occupies.This method compensates for the missing parts of these boundary incomplete unit cells with additional WCDs to make them complete.The compensated WCDs automatically carry the corresponding charge,and this charge together with that of the incomplete unit cell constitutes the total charge of the complete unit cell after compensation.We conclude that the emergence of corner states is attributed to the filling anomaly,which is a fundamental mechanism.Our results refresh the understanding of HOTIs,especially those with structural discontinuities,and provide a novel design for topological states which have application value in producing optical functional devices.
文摘BACKGROUND The prevalence of negative emotional states,such as anxiety and depression,has increased annually.Although personal habits are known to influence emotional regulation,the precise mechanisms underlying this relationship remain unclear.AIM To investigate emotion regulation habits impact on students negative emotions during lockdown,using the coronavirus disease 2019 pandemic as a case example.METHODS During the coronavirus disease 2019 lockdown,an online cross-sectional survey was conducted at a Chinese university.Emotional states were assessed using the Depression,Anxiety,and Stress Scale-21(DASS-21),while demographic data and emotion regulation habits were collected concurrently.Data analysis was performed using SPSS version 27.0 and includedχ^(2)-tests for intergroup comparisons,Spearman’s rank-order correlation coefficient analysis to examine associations,and stepwise linear regression modeling to explore the relationships between emotion regulation habits and emotional states.Statistical significance was set atα=0.05.RESULTS Among the 494 valid questionnaires analyzed,the prevalence rates of negative emotional states were as follows:Depression(65.0%),anxiety(69.4%),and stress(50.8%).DASS-21 scores(mean±SD)demonstrated significant symptomatology:Total(48.77±34.88),depression(16.21±12.18),anxiety(14.90±11.91),and stress(17.64±12.07).Significant positive intercorrelations were observed among all DASS-21 subscales(P<0.01).Regression analysis identified key predictors of negative emotions(P<0.05):Risk factors included late-night frequency and academic pressure,while protective factors were the frequency of parental contact and the number of same-gender friends.Additionally,compensatory spending and binge eating positively predicted all negative emotion scores(β>0,P<0.01),whereas appropriate recreational activities negatively predicted these scores(β<0,P<0.01).CONCLUSION High negative emotion prevalence occurred among confined students.Recreational activities were protective,while compensatory spending and binge eating were risk factors,necessitating guided emotion regulation.
基金supported by the National Natural Science Foundation of China(Grant Nos.12222413,12174443,12274459,and 12404266)the National Key R&D Program of China(Grant Nos.2023YFA1406500,2022YFA1403800,and 2022YFA1403103)+3 种基金the Natural Science Foundation of Shanghai (Grant No.23ZR1482200)the Natural Science Foundation of Ningbo (Grant No.2024J019)the Science Research Project of Hebei Education Department (Grant No.BJ2025060)the funding of Ningbo Yongjiang Talent Program。
文摘Superconducting elect rides have attracted growing attention for their potential to achieve high superconducting transition temperatures(T_(C))under pressure.However,many known elect rides are chemically reactive and unstable,making high-quality single-crystal growth,characterization,and measurements difficult,and most do not exhibit superconductivity at ambient pressure.In contrast,La_(3) In stands out for its ambient-pressure superconductivity(T_(C)∼9.4 K)and the availability of high-quality single crystals.Here,we investigate its low-energy electronic structure using angle-resolved photoemission spectroscopy and first-principles calculations.The bands near the Fermi energy(E_(F))are mainly derived from La 5d and In 5p orbitals.A saddle point is directly observed at the Brillouin zone(BZ)boundary,while a three-dimensional Van Hove singularity crosses E_(F) at the BZ corner.First-principles calculations further reveal topological Dirac surface states within the bulk energy gap above E_(F).The coexistence of a high density of states and in-gap topological surface states near𝐸F suggests that La3In offers a promising platform for tuning superconductivity and exploring possible topological superconducting phases through doping or external pressure.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant Nos.XDB28000000 and XDB0460000)the Quantum Science and Technology-National Science and Technology Major Project (Grant No.2021ZD0302600)the National Key Research and Development Program of China(Grant No.2024YFA1409002)。
文摘The hybridization gap in strained-layer InAs/In_(x)Ga_(1−x) Sb quantum spin Hall insulators(QSHIs)is significantly enhanced compared to binary InAs/GaSb QSHI structures,where the typical indium composition,x,ranges between 0.2 and 0.4.This enhancement prompts a critical question:to what extent can quantum wells(QWs)be strained while still preserving the fundamental QSHI phase?In this study,we demonstrate the controlled molecular beam epitaxial growth of highly strained-layer QWs with an indium composition of x=0.5.These structures possess a substantial compressive strain within the In_(0.5)Ga_(0.5)Sb QW.Detailed crystal structure analyses confirm the exceptional quality of the resulting epitaxial films,indicating coherent lattice structures and the absence of visible dislocations.Transport measurements further reveal that the QSHI phase in InAs/In_(0.5)Ga_(0.5)Sb QWs is robust and protected by time-reversal symmetry.Notably,the edge states in these systems exhibit giant magnetoresistance when subjected to a modest perpendicular magnetic field.This behavior is in agreement with the𝑍2 topological property predicted by the Bernevig–Hughes–Zhang model,confirming the preservation of topologically protected edge transport in the presence of enhanced bulk strain.
基金supported by the National Key R&D Program of China(Grant No.2022YFA1403102)the National Natural Science Foundation of China(Grant Nos.12474478,92065102,and 61804056).
文摘The intrinsic antiferromagnetic topological insulators in the Mn-Bi-Te family,composed of superlattice-like MnBi_(2)Te_(4)/(Bi_(2)Te_(3))_(n)(n=0,1,2,3,...)layered structure,present intriguing states of matter such as quantum anomalous Hall effect and the axion insulator.However,the surface state gap,which is the prerequisite for the observation of these states,remains elusive.Here by molecular beam epitaxy,we obtain two types of MnBi_(4)Te_(7)films with the exclusive Bi_(2)Te_(3)(BT)or MnBi_(2)Te_(4)(MBT)terminations.By scanning tunneling spectroscopy,the mass terms in the surface states are identified on both surface terminations.Experimental results reveal the existence of a hybridization gap of approximately 23 meV in surface states on the BT termination.This gap comes from the hybridization between the surface states and the spin-split states in the adjacent MBT layer.On the MBT termination,an exchange mass term of about 28±2 meV in surface states is identified by taking magnetic-field-dependent Landau level spectra as well as theoretical simulations.In addition,the mass term varies with the field in the film with a heavy BiMn doping level in the Mn layers.These findings demonstrate the existence of mass terms in surface states on both types of terminations in our epitaxial MnBi_(4)Te_(7)films investigated by local probes.
基金supported by the National Natural Science Foundation of China(Grant No.12374238)the Postdoctoral Science Foundation of Shaanxi Province (Grant No.2024BSHSDZZ148)Ministry of Science and Higher Education of Russian Federation (Grant No.FSRZ 2023-0006)。
文摘A singlet diatomic molecule naturally carries doubly degenerate ±Λ states when the projection of the total electronic angular momentum onto the internuclear axis is nonzero. These doubly degenerate states contribute equally in conventional measurements and are thus treated the same in corresponding simulations. In this study, we demonstrate that in resonant excitation by intense laser pulses, the doubly degenerate ±Λ states must be clearly identified. This is exemplified in the X^(1)Σ → A^(1)Π transition of CO molecules. This distinction becomes especially important in the case of circularly polarized radiation. We attribute this phenomenon to the interference of electron-rotational pathways in the strong-field coupled transition with the ±Λ-state of the excited Π state. This research sheds light on the fundamental aspects of intense laser-molecule interactions when extending conventional theories.
基金supported by the National Natural Science Foundation of China(Grant Nos.12175315 and 12205385)。
文摘We propose a novel approach to generate and manipulate topological Floquet bound states in the continuum(BICs)via a class of systems constructed by coupling two identical periodically driven one-dimensional Su-Schrieffer-Heeger chains.The formation of topological Floquet BICs can be adjusted only by tuning the driving amplitude or frequency,regardless of whether the static system has BICs or not.The interchain bias can only change the localization property of topological Floquet BICs,and a bigger bias can lead to transforming topological Floquet BICs into bound states out of the continuum(BOCs).But it does not change the topological properties of these topological Floquet states.Based on the repulsion effect of edge states,we propose to detect occurrence of topological Floquet BICs and transition point between topological Floquet BICs and BOCs using quantum walk.Our work provided a convenient and realistic approach for the experimental realization and manipulation of BICs in a single-particle quantum system.
基金supported by the National Key R&D Program of China(Grant Nos.2024YFA140850,2022YFA1403601,and 2023YFC2410501)the National Natural Science Foundation of China(Grants Nos.12241402,12474059,12274203,12374113,and 12274204)。
文摘Higher-order topological insulators,which host topologically protected states at boundaries that are at least two dimensions lower than the bulk,are an emerging class of topological materials.They provide great opportunities for exploring novel topological phenomena and fascinating applications.Utilizing a low-temperature scanning tunneling microscope,we construct breathing-kagome lattices with Fe adatoms on Ag(111)and investigate their electronic properties.We observe the higher-order topological boundary states in the topological phase but not in the trivial one,which is consistent with the theory.These states are found to be robust against the removal of bulk or edge adatoms.Further,we show the arbitrary positioning of these states either at corner,edge,or bulk sites by slightly modifying their neighbors.Our study not only demonstrates the formation and robustness of the electronic higher-order topological boundary states in real atomic systems but also provides a route for controlling their positions.
基金supported by the National Natural Science Foundation of China(Grant Nos.12347104,U24A2017,12461160276,and 12175075)the National Key Research and Development Program of China(Grant No.2023YFC2205802)+1 种基金the Natural Science Foundation of Jiangsu Province(Grant Nos.BK20243060 and BK20233001)in part by the State Key Laboratory of Advanced Optical Communication Systems and Networks,China。
文摘The quantum geometric tensor(QGT)is a fundamental quantity for characterizing the geometric properties of quantum states and plays an essential role in elucidating various physical phenomena.The traditional QGT,defned only for pure states,has limited applicability in realistic scenarios where mixed states are common.To address this limitation,we generalize the defnition of the QGT to mixed states using the purifcation bundle and the covariant derivative.Notably,our proposed defnition reduces to the traditional QGT when mixed states approach pure states.In our framework,the real and imaginary parts of this generalized QGT correspond to the Bures metric and the mean gauge curvature,respectively,endowing it with a broad range of potential applications.Additionally,using our proposed mixed-state QGT,we derive the geodesic equation applicable to mixed states.This work establishes a unifed framework for the geometric analysis of both pure and mixed states,thereby deepening our understanding of the geometric properties of quantum states.
基金supported by the NSF of China(Grant No.11405100)the Natural Science Basic Research Program in Shaanxi Province of China(Grant Nos.2020JM-507 and 2019JM-332)。
文摘The fractional shortcut to adiabaticity(f-STA)for the production of quantum superposition states is proposed firstly via a three-level system with aΛ-type linkage pattern and a four-level system with a tripod structure.The fast and robust production of the coherent superposition states is studied by comparing the populations for the f-STA and the fractional stimulated Raman adiabatic passage(f-STIRAP).The states with equal proportions can be produced by fixing the controllable parameters of the driving pulses at the final moment of the whole process.The effects of the pulse intensity and the time delay of the pulses on the production process are discussed by monitoring the populations on all of the quantum states.In particular,the spontaneous emission arising from the intermediate state is investigated by the quantum master equation.The result reveals that the f-STA exhibits superior advantages over the f-STIRAP in producing the superposition states.
文摘We study the topological states(TSs)of all-dielectric honeycomb valley photonic crystals(VPCs).Breaking the space inversion symmetry of the honeycomb lattice by varying the filling ratio of materials for circular ring dielectric columns in the unit cell,which triggers topological phase transitions and thus achieves topological edge states(TESs)and topological corner states(TCSs).The results demonstrate that this structure has efficient photon transmission characteristics and anti-scattering robustness.In particular,we have found that changing the type of edge splicing between VPCs with different topological properties produces a change in the frequency of TCSs,and then based on this phenomenon,we have used a new method of adjusting only the type of edge splicing of the structure to design a novel TCSs combiner that can integrate four TCSs with different frequencies.This work not only expands the variety and number of unexplored TCSs that may exist in a fixed photonic band gap and can be rationalized to be selectively excited in the fixed configuration.Our study provides a feasible pathway for the design of integrated optical devices in which multiple TSs coexist in a single photonic system.
基金supported by the National Key R&D Program of China(Grant No.2023YFA1406702)the Innovation Program for Quantum Science and Technology 2021ZD0302005+1 种基金the XPLORER Prizepartly supported by the Start-up Research Fund of Southeast University(RF1028624190)。
文摘Topological band theory has been studied for free fermions for decades,and one of the most profound physical results is the bulk-boundary correspondence.Recently a focus in topological physics is extending topological classification to mixed states.Here,we focus on Gaussian mixed states for which the modular Hamiltonians of the density matrix are quadratic free fermion models with U(1)symmetry and can be classified by topological invariants.The bulk-boundary correspondence is then manifested as stable gapless modes of the modular Hamiltonian and degenerate spectrum of the density matrix.In this article,we show that these gapless modes can be detected by the full counting statistics,mathematically described by a function introduced as F(θ).A divergent derivative atθ=πcan be used to probe the gapless modes in the modular Hamiltonian.Based on this,a topological indicator,whose quantization to unity senses topologically nontrivial mixed states,is introduced.We present the physical intuition of these results and also demonstrate these results with concrete models in both one-and two-dimensions.Our results pave the way for revealing the physical significance of topology in mixed states.
基金Supported by the Natural Science Foundation of Heilongjiang Province(LH2024A025)。
文摘The effects of plasma screening on the ^(1)P^(o) resonance states of H-and He below the n=3 and n=4 thresholds of the respective subsystemsare investigated using the stabilization method and correlated exponential wave functions.Two plasma mediums,namely,the Debye plasma and quantum plasma environments are considered.The screened Coulomb potential(SCP)obtained from Debye-Hückel model is used to represent Debye plasma environments and the exponential cosine screened Coulomb potential(ECSCP)obtained from a modified Debye-Hückel model is used to represent quantum plasma environments.The resonance parameters(resonance positions and widths)are presented in terms of the screening parameters.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFC3003805)Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.2022356)Guangzhou Basic and Applied Basic Research Project(Grant No.2023A04J0955).
文摘This paper presents a new type of triangular Sharp Eagle wave energy converter(WEC)platform.On the basis of the linear potential flow theory and the finite element analysis method,the hydrodynamic performance and structural response of the platform are studied,considering the actual platform motion and free surface rise under extreme sea states.First,the effects of the wave frequency and direction on the wave-induced loads and dynamic responses were examined.The motion at a wave direction angle of 0°is relatively low.On this basis,the angle constrained by the two sides of the Sharp Eagle floaters should be aligned with the main wave direction to avoid significant platform motion under extreme sea states.Additionally,the structural response of the platform,including the wave-absorbing floaters,is investigated.The results highlighted that the conditions or locations where yielding,buckling,and fatigue failures occur were different.In this context,the connection area of the Sharp Eagle floaters and platform is prone to yielding failure under oblique wave action,whereas the pontoon and side of the Sharp Eagle floaters are prone to buckling failure during significant vertical motion.Additionally,fatigue damage is most likely to occur at the connection between the middle column on both sides of the Sharp Eagle floaters and the pontoons.The findings of this paper revealed an intrinsic connection between wave-induced loads and the dynamic and structural responses of the platform,which provides a useful reference for the improved design of WECs.
文摘Compared to traditional single-frequency bound states in the continuum(BIC),dual-band BIC of-fers higher degrees of freedom and functionality.Moveover,implementing independent control of dual-band BICs can further enhance their advantages and maximize their performance.This study presents a design for a dielectric metasurface that achieves dual-band BICs in the terahertz(THz)range.By adjusting two asym-metry parameters of the structure,independent control of the two symmetry-protected BICs is achieved.Fur-thermore,by varying the shape of the silicon holes,the design's robustness to geometric variations is demon-strated.Finally,the test results show that the figures of merit(FOMs)for both BICs reach 109.This work provides a new approach for realizing and tuning dual-frequency BICs,offering expanded possibilities for applications in multimode lasers,nonlinear optics,multi-channel filtering,and optical sensing.
基金supported by the Research Fund for International Scientists(RFIS-Grant numbers:52150410410)National Natural Science Foundation of Chinathe Deanship of Scientific Research and Graduate Studies at King Khalid University for funding this research work through Large Research Project under the grant number RGP2/121/1445.
文摘Inspired by molecular catalysts,researchers developed atomically precise nitrogen-coordinated single or dual metal sites imbedded in graphitized carbon(M-N-C)to fully utilize metallic sites for 02activation.These catalysts performed remarkably well in the electrocatalytic oxygen reduction reaction(ORR)due to their distinct coordination and electrical structures,Nonetheless,their maximum efficacy in practical applications has yet to be achieved.This agenda identifies tailoring the coordination environment,spin states,intersite distance,and metal-metal interaction as innovative approaches to regulate the ORR performance of these catalysts.However,it is necessary to undertake a precise assessment of these methodologies and the knowledge obtained to be implemented in the design of future M-N-C catalysts for ORR.Therefore,this review aims to analyze recent progress in M-N-C ORR catalysts,emphasizing their innovative engineering with aspects such as alteration in intersite distance,metal-metal interaction,coordination environment,and spin states.Additionally,we critically discuss how to logically monitor the atomic structure,local coordination,spin,and electronic states of M-N-C catalysts to modulate their ORR activity.We have also highlighted the challenges associated with M-N-C catalysts and proposed suggestions for their future design and fabrication.
基金supported by the National Key R&D Program of China,Grant No.2020YFA0712700the National Natural Science Foundation of China‘Mathematical Basic Theory of Quantum Computing’special project,Grant No.12341103。
文摘We connect magic(non-stabilizer)states,symmetric informationally complete positive operator valued measures(SIC-POVMs),and mutually unbiased bases(MUBs)in the context of group frames,and study their interplay.Magic states are quantum resources in the stabilizer formalism of quantum computation.SIC-POVMs and MUBs are fundamental structures in quantum information theory with many applications in quantum foundations,quantum state tomography,and quantum cryptography,etc.In this work,we study group frames constructed from some prominent magic states,and further investigate their applications.Our method exploits the orbit of discrete Heisenberg-Weyl group acting on an initial fiducial state.We quantify the distance of the group frames from SIC-POVMs and MUBs,respectively.As a simple corollary,we reproduce a complete family of MUBs of any prime dimensional system by introducing the concept of MUB fiducial states,analogous to the well-known SIC-POVM fiducial states.We present an intuitive and direct construction of MUB fiducial states via quantum T-gates,and demonstrate that for the qubit system,there are twelve MUB fiducial states,which coincide with the H-type magic states.We compare MUB fiducial states and SIC-POVM fiducial states from the perspective of magic resource for stabilizer quantum computation.We further pose the challenging issue of identifying all MUB fiducial states in general dimensions.
基金supported by the National Natural Science Foundation of China(Nos.52072059,12304078,12274061 and 11774044)the Natural Science Foundation of Sichuan Province(No.2024NSFSC1384).
文摘Bismuth oxyselenide(Bi_(2)O_(2)Se),a novel quasi-two-dimensional charge-carrying semiconductor,is recognized as one of the most promising emerging platforms for next-generation semiconductor devices.Recent advancements in the development of diverse Bi_(2)O_(2)Se heterojunctions have unveiled extensive potential applications in both electronics and optoelectronics.However,achieving an in-depth understanding of band alignment and particularly interface dynamics remains a significant challenge.In this study,we conduct a comprehensive experimental investigation into band alignment utilizing high-resolution X-ray photoelectron spectroscopy(HRXPS),while also thoroughly discussing the properties of interface states.Our findings reveal that ultrathin films of Bi_(2)O_(2)Se grown on SrTiO_(3)(with TiO_(2)(001)termination)exhibit Type-I(straddling gap)band alignment characterized by a valence band offset(VBO)of approximately 1.77±0.04 eV and a conduction band offset(CBO)around 0.68±0.04 eV.Notably,when accounting for the influence of interface states,the bands at the interface display a herringbone configuration due to substantial built-in electric fields,which markedly deviate from conventional band alignments.Thus,our results provide valuable insights for advancing high-efficiency electronic and optoelectronic devices,particularly those where charge transfer is highly sensitive to interface states.
文摘BACKGROUND Ovarian carcinoma has the highest mortality rate among all gynecological cancers.Several reproductive and hormonal risk factors,including early menarche,late menopause,limited use of oral contraceptives,and a low pregnancy rate,have been identified as contributors to the increased susceptibility to ovarian cancer.Advancements in cancer therapy over the past century,including the emergence of precision oncology,underscore the importance of early detection and tailored interventions,factors particularly critical in ovarian cancer,where late-stage diagnosis remains a persistent barrier to survival.This challenge is compounded by the lack of a universally endorsed screening program,resulting in late-stage identification and widespread metastasis.AIM To evaluate demographic differences in ovarian cancer-related mortality from 1999 to 2020 among adult females aged≥25 years within the United States.METHODS Centers for Disease Control and Prevention Wide-Ranging Online Data for Epidemiologic Research database was used to collect de-identified death certificate data for malignant neoplasm of the ovaries related deaths in female adults aged 25 years and older from the year 1999 to 2020.Crude mortality rates and age-adjusted mortality rates(AAMRs)per 100000 people were calculated.Join point regression program was used to assess annual percent changes in mortality trends,with statistical significance set at P value<0.05.RESULTS Between 1999 and 2020,337619 deaths due to ovarian cancer occurred among United States females aged 25 to>85.The AAMR decreased from 14.62 in 1999 to 10.15 in 2020,with significant declines across various demographics.The AAMRs were highest among non-Hispanic White women,i.e.,13.53.Based on region,they were the highest in the Northeast(13.06)and Midwest(12.94).The steepest decline was observed in metropolitan areas as compared to nonmetropolitan ones.The study highlights significant progress in reducing ovarian cancer mortality across age,race/ethnicity,and geographic regions during this period.CONCLUSION The mortality trends for ovarian carcinoma patients showed an overall decrease,with the highest mortality rates observed among older individuals(65 to>85 years)and non-Hispanic Whites.These disparities underscore the need for equitable healthcare access and targeted policy interventions.
文摘In January 2025,the United States issued executive orders that could potentially curtail lesbian,gay,bisexual,transgender,queer,and other sexual and gender minorities(LGBTQ+)rights and federal aid to developing countries,such as public health programs under the United States Agency for International Development(USAID)[1,2].In the Philippines,USAID has played an important role in funding and supporting initiatives to address the country’s local HIV epidemic[2,3].