The integration of remote sensing and geographic information system(GIS)was employed in this study to delineate the structural lineaments within the eastern section of the Ouarzazate Basin,situated between the souther...The integration of remote sensing and geographic information system(GIS)was employed in this study to delineate the structural lineaments within the eastern section of the Ouarzazate Basin,situated between the southern front of the Central High Atlas and the northern slopes of the Eastern Anti-Atlas(also known as the Saghro Massif).To achieve this objective,Landsat 8 Operational Land Imager(OLI)and Shuttle Radar Topography Mission(SRTM)data were used.Principal Component Analysis(PCA)was computed and a directional filter was applied to the first PCA and the panchromatic band(B8).Additionally,shading was applied to the SRTM data in four directions;N0°,N45°,N90°,N135°.After removing of the non-geological linear structures,the results obtained,using the automatic extraction method,allowed us to produce a synthetic map that included 1251 lineaments with an average length of 1331 m and was dominated by NE-SW,ENE-WSW and E-W directions,respectively.However,the high lineament density is clearly noted in the Anti-Atlas(Saghro Massif)and at the level of the northern part,extending from the Ait Ibrirne to Arg-Ali Oubourk villages.High lineament density can always be found around the major faults affecting this area.The data collected during the field investigations and from geological maps show that the major direction of the faults and structural accidents range mostly between N45°,N70°and N75°.The correlation of remote sensing results with those collected in the field shows a similarity and coincidence with each other.From these results,it is possible to consider the automatic extraction method as a supplementary kind that can serve classical geology by quickly enriching it with additional data.As shown in this work,this method provides more information when applied in arid areas where the fields are well outcropped.展开更多
以祁连山黑河流域十一冰川为例,利用机载三维激光扫描数据(Light Detection And Ranging,Li DAR)和SRTM DEM数据,在LiDAR点云数据预处理、高程数据配准、校正、误差评估的基础上,建立基于大地测量法的冰川物质平衡计算流程。表明:2000—...以祁连山黑河流域十一冰川为例,利用机载三维激光扫描数据(Light Detection And Ranging,Li DAR)和SRTM DEM数据,在LiDAR点云数据预处理、高程数据配准、校正、误差评估的基础上,建立基于大地测量法的冰川物质平衡计算流程。表明:2000—2012年十一冰川冰面高程变化为-7.47±0.92 m,变化率为-0.62±0.08 m·a^(-1),估算十一冰川的年均物质平衡为-0.53±0.07 m w.e.,累积物质平衡为-6.35±0.78 m w.e.,折合水当量约为(330.4±40.8)×10~4m^3;与其他典型监测冰川物质平衡进行对比和分析,论证了估算结果的可靠性;LiDAR数据具有非常高的精度和空间分辨率,目前关于其在冰川物质平衡研究中的应用很少,论文尝试将其应用于冰川物质平衡变化研究中,具有广阔的发展前景。展开更多
文摘The integration of remote sensing and geographic information system(GIS)was employed in this study to delineate the structural lineaments within the eastern section of the Ouarzazate Basin,situated between the southern front of the Central High Atlas and the northern slopes of the Eastern Anti-Atlas(also known as the Saghro Massif).To achieve this objective,Landsat 8 Operational Land Imager(OLI)and Shuttle Radar Topography Mission(SRTM)data were used.Principal Component Analysis(PCA)was computed and a directional filter was applied to the first PCA and the panchromatic band(B8).Additionally,shading was applied to the SRTM data in four directions;N0°,N45°,N90°,N135°.After removing of the non-geological linear structures,the results obtained,using the automatic extraction method,allowed us to produce a synthetic map that included 1251 lineaments with an average length of 1331 m and was dominated by NE-SW,ENE-WSW and E-W directions,respectively.However,the high lineament density is clearly noted in the Anti-Atlas(Saghro Massif)and at the level of the northern part,extending from the Ait Ibrirne to Arg-Ali Oubourk villages.High lineament density can always be found around the major faults affecting this area.The data collected during the field investigations and from geological maps show that the major direction of the faults and structural accidents range mostly between N45°,N70°and N75°.The correlation of remote sensing results with those collected in the field shows a similarity and coincidence with each other.From these results,it is possible to consider the automatic extraction method as a supplementary kind that can serve classical geology by quickly enriching it with additional data.As shown in this work,this method provides more information when applied in arid areas where the fields are well outcropped.
文摘以祁连山黑河流域十一冰川为例,利用机载三维激光扫描数据(Light Detection And Ranging,Li DAR)和SRTM DEM数据,在LiDAR点云数据预处理、高程数据配准、校正、误差评估的基础上,建立基于大地测量法的冰川物质平衡计算流程。表明:2000—2012年十一冰川冰面高程变化为-7.47±0.92 m,变化率为-0.62±0.08 m·a^(-1),估算十一冰川的年均物质平衡为-0.53±0.07 m w.e.,累积物质平衡为-6.35±0.78 m w.e.,折合水当量约为(330.4±40.8)×10~4m^3;与其他典型监测冰川物质平衡进行对比和分析,论证了估算结果的可靠性;LiDAR数据具有非常高的精度和空间分辨率,目前关于其在冰川物质平衡研究中的应用很少,论文尝试将其应用于冰川物质平衡变化研究中,具有广阔的发展前景。