一、系统设计1 .系统设计的背景《智力量表》依据心理学理论而制定,能够对人的智力进行多方面、多结构的分析,风行于美国、西欧等发达国家,有较高的社会效益.其中《瑞文标准推理测验》(Raven’s Standard Progressive Matrices简称SPM)...一、系统设计1 .系统设计的背景《智力量表》依据心理学理论而制定,能够对人的智力进行多方面、多结构的分析,风行于美国、西欧等发达国家,有较高的社会效益.其中《瑞文标准推理测验》(Raven’s Standard Progressive Matrices简称SPM)是英国心理学家瑞文(J.C.Raven)1938年设计的非文字智力测验.自其问世以来,许多国家对它做了修订,直至现在仍在广泛使用,有着重要的理论意义与实用价值.在我国的心理学家的不断努力下,我国已经引进了《智力量表》的许多经典之作.并针对中国自已的情况做了修订.但是,在现实生活中,《智力量表》并未起到其应起的作用.这其中不可忽视的一个原因是:《智力量表》展开更多
The majority(up to 90%)of riverine materials is transported from the continent to the ocean mainly in flood events.It is thus crucial to characterize the geochemistry of elements and their flux in river system in orde...The majority(up to 90%)of riverine materials is transported from the continent to the ocean mainly in flood events.It is thus crucial to characterize the geochemistry of elements and their flux in river system in order to better constrain their global biogeochemical cycling and impact on the oceanic ecosystem.However,the geochemical behavior including the distribution,migration and partitioning of typical metal elements amongst diff erent phases,during hydrodynamic flood event remains still to be well explored.Here,we investigated the geochemical behaviors of typical metal elements in dissolved phase and suspended particulate matter collected from a single flood event in the natural Chishui River,Southwest China.The results showed clearly that the geochemistry of metal elements was largely controlled by the hydrodynamic eff ect,of which the diff erent flowrates introduce a natural sorting of diff erent mineral particles transported at diff erent flood stages,depending on their shape,size and density.The maximum concentrations of alkaline and alkaline earth metals(Li,Mg,K,Rb and Sr)in SPM appeared before the flood peak,which was largely controlled by aluminosilicate minerals.However,transition metals(Cr,Mn,Fe,Ni and Cu)showed their abundance peaks lagging behind the flowrate summit,as a result of the late arrival of coarse particles or heavy minerals,evidenced by the mineralogical phase analysis.In addition,the distribution coe fficient(K_(d))between particulate and dissolved loads were lower and stable for soluble alkali/alkaline earth metals which could be aff ected by pH,while higher and fluctuant for transition metals that were largely influenced by SPM content.Overall,the present study reveals clear eff ects of hydrodynamic sorting on the geochemistry of metal elements during the flood event of the natural Chishui River,which should be taken into account when characterizing the riverine flux and their impact on marine ecosystem.展开更多
Mesoscale eddies are widespread in the global ocean,significantly influencing the physical,chemical,and biological structures of water column.Based on the CTD data and suspended particulate matter(SPM)data collected a...Mesoscale eddies are widespread in the global ocean,significantly influencing the physical,chemical,and biological structures of water column.Based on the CTD data and suspended particulate matter(SPM)data collected at 36 hydrographic stations during a field cruise in southern Mozambique Channel,combined with satellite altimeter observations,we identified a series of mesoscale eddies traversing the Mozambique Channel.Our hydrographic measurements,coupled with in situ chlorophyll fluorescence data,reveal that these eddies significantly influence thermohaline structure and chlorophyll distribution,which in turn affects primary productivity and SPM concentrations in the upper ocean.The cyclonic eddies facilitate the upwelling of cold subsurface water,leading to a shallowing of the pycnocline and the creation of a low-temperature anomaly with variable salinity anomalies at different depths.Conversely,anticyclonic eddies submerge warm surface water,deepening the pycnocline,and resulting in a high-temperature anomaly accompanied by distinct salinity patterns.Significantly,a coastal anticyclonic eddy was observed to intercept terrestrial material from the Delagoa Bight,redirecting it west of 36°E.This study presents unique and quasi-synchronous CTD datasets capturing mesoscale eddy impacts,and provided valuable insights into SPM variability within the often-neglected southern Mozambique Channel.展开更多
This paper presents a novel suspension support tailored for wind tunnel tests of spinning projectiles based on Wire-Driven Parallel Robot(WDPR),uniquely characterized by an SPM(Spinning Projectile Model)-centered mobi...This paper presents a novel suspension support tailored for wind tunnel tests of spinning projectiles based on Wire-Driven Parallel Robot(WDPR),uniquely characterized by an SPM(Spinning Projectile Model)-centered mobile platform.First,an SPM-centered mobile platform,featuring two redundant and another unconstrained Degree of Freedom(DOF),and its suspension support mechanism are designed together,collectively constructing a WDPR endowed with kinematic redundancy.Afterward,the kinematics of the mechanism,boundary equations for the redundant DOFs,and relevant kinematic performance indices are then proposed and formulated.The results from both prototype experiments and numerical assessments are presented.The capability of the support mechanism to replicate the complex coupled motions of the SPM is verified by the experimental results,while the proposed kinematics and boundary equations are also validated.Furthermore,it is revealed by numerical assessments that the redundant DOFs of the mobile platform exert a minimal impact on the kinematic performance of the suspension support.Finally,the optimal global attitude performance is obtained when these DOFs are set to zero if they are restricted to constants.However,local attitude performance can be further improved by the variable values.展开更多
文摘一、系统设计1 .系统设计的背景《智力量表》依据心理学理论而制定,能够对人的智力进行多方面、多结构的分析,风行于美国、西欧等发达国家,有较高的社会效益.其中《瑞文标准推理测验》(Raven’s Standard Progressive Matrices简称SPM)是英国心理学家瑞文(J.C.Raven)1938年设计的非文字智力测验.自其问世以来,许多国家对它做了修订,直至现在仍在广泛使用,有着重要的理论意义与实用价值.在我国的心理学家的不断努力下,我国已经引进了《智力量表》的许多经典之作.并针对中国自已的情况做了修订.但是,在现实生活中,《智力量表》并未起到其应起的作用.这其中不可忽视的一个原因是:《智力量表》
基金National Natural Science Foundation of China,42103008,Hongming Cai。
文摘The majority(up to 90%)of riverine materials is transported from the continent to the ocean mainly in flood events.It is thus crucial to characterize the geochemistry of elements and their flux in river system in order to better constrain their global biogeochemical cycling and impact on the oceanic ecosystem.However,the geochemical behavior including the distribution,migration and partitioning of typical metal elements amongst diff erent phases,during hydrodynamic flood event remains still to be well explored.Here,we investigated the geochemical behaviors of typical metal elements in dissolved phase and suspended particulate matter collected from a single flood event in the natural Chishui River,Southwest China.The results showed clearly that the geochemistry of metal elements was largely controlled by the hydrodynamic eff ect,of which the diff erent flowrates introduce a natural sorting of diff erent mineral particles transported at diff erent flood stages,depending on their shape,size and density.The maximum concentrations of alkaline and alkaline earth metals(Li,Mg,K,Rb and Sr)in SPM appeared before the flood peak,which was largely controlled by aluminosilicate minerals.However,transition metals(Cr,Mn,Fe,Ni and Cu)showed their abundance peaks lagging behind the flowrate summit,as a result of the late arrival of coarse particles or heavy minerals,evidenced by the mineralogical phase analysis.In addition,the distribution coe fficient(K_(d))between particulate and dissolved loads were lower and stable for soluble alkali/alkaline earth metals which could be aff ected by pH,while higher and fluctuant for transition metals that were largely influenced by SPM content.Overall,the present study reveals clear eff ects of hydrodynamic sorting on the geochemistry of metal elements during the flood event of the natural Chishui River,which should be taken into account when characterizing the riverine flux and their impact on marine ecosystem.
基金Supported by the Taishan Scholar Project of Shandong Province (Nos.TS20190913,tsqn202211054)the Fundamental Research Funds for the Central Universities (No.202241007)the Youth Innovation Team Program in Colleges and Universities of Shandong Province (No.2022KJ045)
文摘Mesoscale eddies are widespread in the global ocean,significantly influencing the physical,chemical,and biological structures of water column.Based on the CTD data and suspended particulate matter(SPM)data collected at 36 hydrographic stations during a field cruise in southern Mozambique Channel,combined with satellite altimeter observations,we identified a series of mesoscale eddies traversing the Mozambique Channel.Our hydrographic measurements,coupled with in situ chlorophyll fluorescence data,reveal that these eddies significantly influence thermohaline structure and chlorophyll distribution,which in turn affects primary productivity and SPM concentrations in the upper ocean.The cyclonic eddies facilitate the upwelling of cold subsurface water,leading to a shallowing of the pycnocline and the creation of a low-temperature anomaly with variable salinity anomalies at different depths.Conversely,anticyclonic eddies submerge warm surface water,deepening the pycnocline,and resulting in a high-temperature anomaly accompanied by distinct salinity patterns.Significantly,a coastal anticyclonic eddy was observed to intercept terrestrial material from the Delagoa Bight,redirecting it west of 36°E.This study presents unique and quasi-synchronous CTD datasets capturing mesoscale eddy impacts,and provided valuable insights into SPM variability within the often-neglected southern Mozambique Channel.
基金supported by the National Natural Science Foundation of China(No.12072304).
文摘This paper presents a novel suspension support tailored for wind tunnel tests of spinning projectiles based on Wire-Driven Parallel Robot(WDPR),uniquely characterized by an SPM(Spinning Projectile Model)-centered mobile platform.First,an SPM-centered mobile platform,featuring two redundant and another unconstrained Degree of Freedom(DOF),and its suspension support mechanism are designed together,collectively constructing a WDPR endowed with kinematic redundancy.Afterward,the kinematics of the mechanism,boundary equations for the redundant DOFs,and relevant kinematic performance indices are then proposed and formulated.The results from both prototype experiments and numerical assessments are presented.The capability of the support mechanism to replicate the complex coupled motions of the SPM is verified by the experimental results,while the proposed kinematics and boundary equations are also validated.Furthermore,it is revealed by numerical assessments that the redundant DOFs of the mobile platform exert a minimal impact on the kinematic performance of the suspension support.Finally,the optimal global attitude performance is obtained when these DOFs are set to zero if they are restricted to constants.However,local attitude performance can be further improved by the variable values.