The elasto-plastic dynamic buckling and postbuckling phenomena of square plates subjected to in-plane solid-fluid slamming are investigated. According to the plate's response, the critical criteria for dynamic buc...The elasto-plastic dynamic buckling and postbuckling phenomena of square plates subjected to in-plane solid-fluid slamming are investigated. According to the plate's response, the critical criteria for dynamic buckling, dynamic plasticity and plastic collapse are defined, and the corresponding critical impulses are presented. Meanwhile, dynamic buckling modes and collapse models are observed. The effects of different boundary conditions and loading histories on the properties of buckling and postbuckling are discussed.展开更多
针对动态场景下视觉SLAM(Simultaneous Localization and Mapping)系统中深度学习分割网络实时性不足,以及相机非期望运动导致位姿估计偏差的问题,提出一种基于跨域掩膜分割的视觉SLAM算法.该算法采用轻量化YOLO-fastest网络结合背景减...针对动态场景下视觉SLAM(Simultaneous Localization and Mapping)系统中深度学习分割网络实时性不足,以及相机非期望运动导致位姿估计偏差的问题,提出一种基于跨域掩膜分割的视觉SLAM算法.该算法采用轻量化YOLO-fastest网络结合背景减除法实现运动物体检测,利用深度图结合深度阈值分割构建跨域掩膜分割机制,并设计相机运动几何校正策略补偿检测框坐标误差,在实现运动物体分割的同时提升处理速度.为优化特征点利用率,采用金字塔光流对动态特征点进行帧间连续跟踪与更新,同时确保仅由静态特征点参与位姿估计过程.在TUM数据集上进行系统性评估,实验结果表明,相比于ORB-SLAM3算法,该算法的绝对位姿误差平均降幅达97.1%,与使用深度学习分割网络的DynaSLAM和DS-SLAM的动态SLAM算法相比,其单帧跟踪时间大幅减少,在精度与效率之间实现了更好的平衡.展开更多
针对传统开源的激光惯性里程计(LIO,lidar-inertial odometry)和即时定位与地图构建(SLAM,simultaneous localization and mapping)结合的LIO-SLAM在室内复杂环境中受激光特征稀疏与动态遮挡影响、定位精度下降等问题,提出一种融合视觉...针对传统开源的激光惯性里程计(LIO,lidar-inertial odometry)和即时定位与地图构建(SLAM,simultaneous localization and mapping)结合的LIO-SLAM在室内复杂环境中受激光特征稀疏与动态遮挡影响、定位精度下降等问题,提出一种融合视觉里程计的改进方法。在保持LIO-SLAM激光惯性紧耦合框架的基础上,引入基于ORB特征的三维定位与地图构建算法(ORB-SLAM)作为独立的视觉里程计模块,为系统提供高频率、丰富纹理的视觉约束信息。通过自适应权重融合策略,实现激光、惯性与视觉观测的多源优化,增强了在弱几何约束、纹理丰富但结构复杂环境中的鲁棒性。在多种典型室内场景(走廊、开放大厅及动态人群环境)中开展了实验验证。结果表明,相较于原始LIO-SLAM,整体轨迹误差降低至原始系统的70%。研究验证了视觉-激光-惯性多模态融合在室内复杂环境下的可行性与有效性,为高精度室内自主定位与地图构建提供了新的思路。展开更多
针对现代化鹅养殖场景中饲料投喂移动小车受动态鹅群干扰,致使同时定位与地图构建(Simultaneous Localization And Mapping,SLAM)算法的定位精度、建图质量下降的问题,提出基于多传感融合目标检测的动态SLAM算法。该算法以LIO-SAM框架...针对现代化鹅养殖场景中饲料投喂移动小车受动态鹅群干扰,致使同时定位与地图构建(Simultaneous Localization And Mapping,SLAM)算法的定位精度、建图质量下降的问题,提出基于多传感融合目标检测的动态SLAM算法。该算法以LIO-SAM框架为基础,融合激光雷达与惯性测量单元搭建SLAM系统,采用前后端架构优化定位与建图性能;运用匈牙利算法实时追踪鹅群运动状态,结合多传感融合目标检测算法,精准识别并剔除动态鹅群产生的特征点,有效降低定位与建图误差。经KITTI、UrbanNav等公共数据集与实际养殖场景数据测试,在KITTI07序列中,较LeGO-LOAM、LIO-SAM和LVI-SAM等经典算法,均方根误差(RMSE)降低33.18%;在实际鹅养殖环境中,可以快速滤除动态鹅群干扰,提升建图质量与导航可靠性。本研究为智能化鹅养殖饲料投喂提供了新的技术方案,推动了畜牧业自动化发展。展开更多
Under severe sea conditions, wave slamming on ships and marine engineering structures may lead to structural damage and casualties. Moreover, the strong nonlinearity inherent in the wave slamming process significantly...Under severe sea conditions, wave slamming on ships and marine engineering structures may lead to structural damage and casualties. Moreover, the strong nonlinearity inherent in the wave slamming process significantly limits the accuracy of numerical analyses and finite element simulations. Therefore, this paper takes a new type of floating wind turbine as an example and performs a physical model test on the wave slamming characteristics of this floating wind turbine.Based on a 1:50 model of the Pivot Buoy floating wind turbine, an experimental study is performed under the combined effects of wind-wave loads on the peak pressure, duration, and pressure distribution of slamming. First, two sets of mooring systems, the combined scheme and the full mooring chain scheme, are designed to conduct a series of experimental studies of model slamming under different wind and wave incidence angles, wave heights, and wave periods. By doing so, the slamming characteristics of the wind turbine can be obtained. Moreover, to solve the problem of the large pitch motion response of the prototype wind turbine, a set of vertically oscillating structures is designed,and the slamming pressure characteristics of the optimized model are also investigated through model tests.展开更多
0引言随着内河航运向智能化、无人化转型,船舶自主避障路径规划成为突破行业发展瓶颈的关键议题。内河航道环境的复杂性,对传统感知与导航技术提出严峻挑战。图像识别凭借其在环境信息解析方面的优势,即时定位与地图构建(Simultaneous L...0引言随着内河航运向智能化、无人化转型,船舶自主避障路径规划成为突破行业发展瓶颈的关键议题。内河航道环境的复杂性,对传统感知与导航技术提出严峻挑战。图像识别凭借其在环境信息解析方面的优势,即时定位与地图构建(Simultaneous Localization and Mapping,SLAM)技术则依托实时建图与定位能力,二者的深度融合为智能船舶内河航道自主避障提供了核心支撑。如何借助技术协作打破单一传感器的限制,实现在复杂情境里精准认知环境、高效制定路径决策以及可靠保障安全,不仅是技术领域的创新课题,也是促进内河航运提效、保障航行安全的关键探索途径。展开更多
针对动态场景导致视觉定位与建图(simultaneous localization and mapping,SLAM)算法位姿估计精度低和地图质量差等问题,提出一种结合深度学习的动态视觉SLAM算法。该算法在ORB-SLAM3前端引入轻量化且目标识别率高的YOLO11n目标检测网络...针对动态场景导致视觉定位与建图(simultaneous localization and mapping,SLAM)算法位姿估计精度低和地图质量差等问题,提出一种结合深度学习的动态视觉SLAM算法。该算法在ORB-SLAM3前端引入轻量化且目标识别率高的YOLO11n目标检测网络,检测潜在动态区域,并结合Lucas-Kanade(LK)光流法识别其中的动态特征点,从而在剔除动态特征点的同时保留静态特征点,提高特征点利用率和位姿估计精度。此外,新增语义地图构建线程,通过去除YOLO11n识别到的动态物体点云,并融合前端提取的语义信息,实现静态语义地图的构建。在TUM数据集上的实验结果表明,相较于ORB-SLAM3,该算法在高动态序列数据集中的定位精度提升了95.02%,验证了该算法在动态环境下的有效性,能显著提升视觉SLAM系统的定位精度和地图构建质量。展开更多
煤矿井下视觉同步定位与地图构建SLAM(Simultaneous Localization and Mapping)应用中,光照变化与低纹理场景严重影响特征点的提取和匹配结果,导致位姿估计失败,影响定位精度。提出一种基于改进定向快速旋转二值描述符ORB(Oriented Fast...煤矿井下视觉同步定位与地图构建SLAM(Simultaneous Localization and Mapping)应用中,光照变化与低纹理场景严重影响特征点的提取和匹配结果,导致位姿估计失败,影响定位精度。提出一种基于改进定向快速旋转二值描述符ORB(Oriented Fast and Rotated Brief)-SLAM3算法的煤矿井下移动机器人双目视觉定位算法SL-SLAM。针对光照变化场景,在前端使用光照稳定性的Super-Point特征点提取网络替换原始ORB特征点提取算法,并提出一种特征点网格限定法,有效剔除无效特征点区域,增加位姿估计稳定性。针对低纹理场景,在前端引入稳定的线段检测器LSD(Line Segment Detector)线特征提取算法,并提出一种点线联合算法,按照特征点网格对线特征进行分组,根据特征点的匹配结果进行线特征匹配,降低线特征匹配复杂度,节约位姿估计时间。构建了点特征和线特征的重投影误差模型,在线特征残差模型中添加角度约束,通过点特征和线特征的位姿增量雅可比矩阵建立点线特征重投影误差统一成本函数。局部建图线程使用ORB-SLAM3经典的局部优化方法调整点、线特征和关键帧位姿,并在后端线程中进行回环修正、子图融合和全局捆绑调整BA(Bundle Adjustment)。在EuRoC数据集上的试验结果表明,SL-SLAM的绝对位姿误差APE(Absolute Pose Error)指标优于其他对比算法,并取得了与真值最接近的轨迹预测结果:均方根误差相较于ORB-SLAM3降低了17.3%。在煤矿井下模拟场景中的试验结果表明,SL-SLAM能适应光照变化和低纹理场景,可以满足煤矿井下移动机器人的定位精度和稳定性要求。展开更多
【目的】煤矿井下普遍存在低照度、弱纹理和结构化的特征退化场景,导致视觉SLAM(visual simultaneous localization and mapping)系统面临有效特征不足或误匹配率高的问题,严重制约了其定位的准确性和鲁棒性。【方法】提出一种基于边缘...【目的】煤矿井下普遍存在低照度、弱纹理和结构化的特征退化场景,导致视觉SLAM(visual simultaneous localization and mapping)系统面临有效特征不足或误匹配率高的问题,严重制约了其定位的准确性和鲁棒性。【方法】提出一种基于边缘感知增强的视觉SLAM方法。首先,构建了边缘感知约束的低光图像增强模块。通过自适应尺度的梯度域引导滤波器优化Retinex算法,以获得纹理清晰光照均匀的图像,从而显著提升了在低光照和不均匀光照条件下特征提取性能。其次,在视觉里程计中构建了边缘感知增强的特征提取和匹配模块,通过点线特征融合策略有效增强了弱纹理和结构化场景中特征的可检测性和匹配准确性。具体使用边缘绘制线特征提取算法(edge drawing lines,EDLines)提取线特征,定向FAST和旋转BRIEF点特征提取算法(oriented fast and rotated brief,ORB)提取点特征,并利用基于网格运动统计(grid-based motion statistics,GMS)和比值测试匹配算法进行精确匹配。最后,将该方法与ORB-SLAM2、ORB-SLAM3在TUM数据集和煤矿井下实景数据集上进行了全面实验验证,涵盖图像增强、特征匹配和定位等多个环节。【结果和结论】结果表明:(1)在TUM数据集上的测试结果显示,所提方法与ORB-SLAM2相比,绝对轨迹误差、相对轨迹误差的均方根误差分别降低了4%~38.46%、8.62%~50%;与ORB-SLAM3相比,绝对轨迹误差、相对轨迹误差的均方根误差分别降低了0~61.68%、3.63%~47.05%。(2)在煤矿井下实景实验中,所提方法的定位轨迹更接近于相机运动参考轨迹。(3)有效提高了视觉SLAM在煤矿井下特征退化场景中的准确性和鲁棒性,为视觉SLAM技术在煤矿井下的应用提供了技术解决方案。研究面向井下特征退化场景的视觉SLAM方法,对于推动煤矿井下移动式装备机器人化具有重要意义。展开更多
基金The project is supported by National Natural Science Foundation of China.
文摘The elasto-plastic dynamic buckling and postbuckling phenomena of square plates subjected to in-plane solid-fluid slamming are investigated. According to the plate's response, the critical criteria for dynamic buckling, dynamic plasticity and plastic collapse are defined, and the corresponding critical impulses are presented. Meanwhile, dynamic buckling modes and collapse models are observed. The effects of different boundary conditions and loading histories on the properties of buckling and postbuckling are discussed.
文摘针对动态场景下视觉SLAM(Simultaneous Localization and Mapping)系统中深度学习分割网络实时性不足,以及相机非期望运动导致位姿估计偏差的问题,提出一种基于跨域掩膜分割的视觉SLAM算法.该算法采用轻量化YOLO-fastest网络结合背景减除法实现运动物体检测,利用深度图结合深度阈值分割构建跨域掩膜分割机制,并设计相机运动几何校正策略补偿检测框坐标误差,在实现运动物体分割的同时提升处理速度.为优化特征点利用率,采用金字塔光流对动态特征点进行帧间连续跟踪与更新,同时确保仅由静态特征点参与位姿估计过程.在TUM数据集上进行系统性评估,实验结果表明,相比于ORB-SLAM3算法,该算法的绝对位姿误差平均降幅达97.1%,与使用深度学习分割网络的DynaSLAM和DS-SLAM的动态SLAM算法相比,其单帧跟踪时间大幅减少,在精度与效率之间实现了更好的平衡.
文摘针对传统开源的激光惯性里程计(LIO,lidar-inertial odometry)和即时定位与地图构建(SLAM,simultaneous localization and mapping)结合的LIO-SLAM在室内复杂环境中受激光特征稀疏与动态遮挡影响、定位精度下降等问题,提出一种融合视觉里程计的改进方法。在保持LIO-SLAM激光惯性紧耦合框架的基础上,引入基于ORB特征的三维定位与地图构建算法(ORB-SLAM)作为独立的视觉里程计模块,为系统提供高频率、丰富纹理的视觉约束信息。通过自适应权重融合策略,实现激光、惯性与视觉观测的多源优化,增强了在弱几何约束、纹理丰富但结构复杂环境中的鲁棒性。在多种典型室内场景(走廊、开放大厅及动态人群环境)中开展了实验验证。结果表明,相较于原始LIO-SLAM,整体轨迹误差降低至原始系统的70%。研究验证了视觉-激光-惯性多模态融合在室内复杂环境下的可行性与有效性,为高精度室内自主定位与地图构建提供了新的思路。
文摘针对现代化鹅养殖场景中饲料投喂移动小车受动态鹅群干扰,致使同时定位与地图构建(Simultaneous Localization And Mapping,SLAM)算法的定位精度、建图质量下降的问题,提出基于多传感融合目标检测的动态SLAM算法。该算法以LIO-SAM框架为基础,融合激光雷达与惯性测量单元搭建SLAM系统,采用前后端架构优化定位与建图性能;运用匈牙利算法实时追踪鹅群运动状态,结合多传感融合目标检测算法,精准识别并剔除动态鹅群产生的特征点,有效降低定位与建图误差。经KITTI、UrbanNav等公共数据集与实际养殖场景数据测试,在KITTI07序列中,较LeGO-LOAM、LIO-SAM和LVI-SAM等经典算法,均方根误差(RMSE)降低33.18%;在实际鹅养殖环境中,可以快速滤除动态鹅群干扰,提升建图质量与导航可靠性。本研究为智能化鹅养殖饲料投喂提供了新的技术方案,推动了畜牧业自动化发展。
基金financially supported by the National Natural Science Foundation of China (Grant No. 52071161)。
文摘Under severe sea conditions, wave slamming on ships and marine engineering structures may lead to structural damage and casualties. Moreover, the strong nonlinearity inherent in the wave slamming process significantly limits the accuracy of numerical analyses and finite element simulations. Therefore, this paper takes a new type of floating wind turbine as an example and performs a physical model test on the wave slamming characteristics of this floating wind turbine.Based on a 1:50 model of the Pivot Buoy floating wind turbine, an experimental study is performed under the combined effects of wind-wave loads on the peak pressure, duration, and pressure distribution of slamming. First, two sets of mooring systems, the combined scheme and the full mooring chain scheme, are designed to conduct a series of experimental studies of model slamming under different wind and wave incidence angles, wave heights, and wave periods. By doing so, the slamming characteristics of the wind turbine can be obtained. Moreover, to solve the problem of the large pitch motion response of the prototype wind turbine, a set of vertically oscillating structures is designed,and the slamming pressure characteristics of the optimized model are also investigated through model tests.
文摘0引言随着内河航运向智能化、无人化转型,船舶自主避障路径规划成为突破行业发展瓶颈的关键议题。内河航道环境的复杂性,对传统感知与导航技术提出严峻挑战。图像识别凭借其在环境信息解析方面的优势,即时定位与地图构建(Simultaneous Localization and Mapping,SLAM)技术则依托实时建图与定位能力,二者的深度融合为智能船舶内河航道自主避障提供了核心支撑。如何借助技术协作打破单一传感器的限制,实现在复杂情境里精准认知环境、高效制定路径决策以及可靠保障安全,不仅是技术领域的创新课题,也是促进内河航运提效、保障航行安全的关键探索途径。
文摘针对动态场景导致视觉定位与建图(simultaneous localization and mapping,SLAM)算法位姿估计精度低和地图质量差等问题,提出一种结合深度学习的动态视觉SLAM算法。该算法在ORB-SLAM3前端引入轻量化且目标识别率高的YOLO11n目标检测网络,检测潜在动态区域,并结合Lucas-Kanade(LK)光流法识别其中的动态特征点,从而在剔除动态特征点的同时保留静态特征点,提高特征点利用率和位姿估计精度。此外,新增语义地图构建线程,通过去除YOLO11n识别到的动态物体点云,并融合前端提取的语义信息,实现静态语义地图的构建。在TUM数据集上的实验结果表明,相较于ORB-SLAM3,该算法在高动态序列数据集中的定位精度提升了95.02%,验证了该算法在动态环境下的有效性,能显著提升视觉SLAM系统的定位精度和地图构建质量。
文摘煤矿井下视觉同步定位与地图构建SLAM(Simultaneous Localization and Mapping)应用中,光照变化与低纹理场景严重影响特征点的提取和匹配结果,导致位姿估计失败,影响定位精度。提出一种基于改进定向快速旋转二值描述符ORB(Oriented Fast and Rotated Brief)-SLAM3算法的煤矿井下移动机器人双目视觉定位算法SL-SLAM。针对光照变化场景,在前端使用光照稳定性的Super-Point特征点提取网络替换原始ORB特征点提取算法,并提出一种特征点网格限定法,有效剔除无效特征点区域,增加位姿估计稳定性。针对低纹理场景,在前端引入稳定的线段检测器LSD(Line Segment Detector)线特征提取算法,并提出一种点线联合算法,按照特征点网格对线特征进行分组,根据特征点的匹配结果进行线特征匹配,降低线特征匹配复杂度,节约位姿估计时间。构建了点特征和线特征的重投影误差模型,在线特征残差模型中添加角度约束,通过点特征和线特征的位姿增量雅可比矩阵建立点线特征重投影误差统一成本函数。局部建图线程使用ORB-SLAM3经典的局部优化方法调整点、线特征和关键帧位姿,并在后端线程中进行回环修正、子图融合和全局捆绑调整BA(Bundle Adjustment)。在EuRoC数据集上的试验结果表明,SL-SLAM的绝对位姿误差APE(Absolute Pose Error)指标优于其他对比算法,并取得了与真值最接近的轨迹预测结果:均方根误差相较于ORB-SLAM3降低了17.3%。在煤矿井下模拟场景中的试验结果表明,SL-SLAM能适应光照变化和低纹理场景,可以满足煤矿井下移动机器人的定位精度和稳定性要求。
文摘【目的】煤矿井下普遍存在低照度、弱纹理和结构化的特征退化场景,导致视觉SLAM(visual simultaneous localization and mapping)系统面临有效特征不足或误匹配率高的问题,严重制约了其定位的准确性和鲁棒性。【方法】提出一种基于边缘感知增强的视觉SLAM方法。首先,构建了边缘感知约束的低光图像增强模块。通过自适应尺度的梯度域引导滤波器优化Retinex算法,以获得纹理清晰光照均匀的图像,从而显著提升了在低光照和不均匀光照条件下特征提取性能。其次,在视觉里程计中构建了边缘感知增强的特征提取和匹配模块,通过点线特征融合策略有效增强了弱纹理和结构化场景中特征的可检测性和匹配准确性。具体使用边缘绘制线特征提取算法(edge drawing lines,EDLines)提取线特征,定向FAST和旋转BRIEF点特征提取算法(oriented fast and rotated brief,ORB)提取点特征,并利用基于网格运动统计(grid-based motion statistics,GMS)和比值测试匹配算法进行精确匹配。最后,将该方法与ORB-SLAM2、ORB-SLAM3在TUM数据集和煤矿井下实景数据集上进行了全面实验验证,涵盖图像增强、特征匹配和定位等多个环节。【结果和结论】结果表明:(1)在TUM数据集上的测试结果显示,所提方法与ORB-SLAM2相比,绝对轨迹误差、相对轨迹误差的均方根误差分别降低了4%~38.46%、8.62%~50%;与ORB-SLAM3相比,绝对轨迹误差、相对轨迹误差的均方根误差分别降低了0~61.68%、3.63%~47.05%。(2)在煤矿井下实景实验中,所提方法的定位轨迹更接近于相机运动参考轨迹。(3)有效提高了视觉SLAM在煤矿井下特征退化场景中的准确性和鲁棒性,为视觉SLAM技术在煤矿井下的应用提供了技术解决方案。研究面向井下特征退化场景的视觉SLAM方法,对于推动煤矿井下移动式装备机器人化具有重要意义。