The evolution of cities into digitally managed environments requires computational systems that can operate in real time while supporting predictive and adaptive infrastructure management.Earlier approaches have often...The evolution of cities into digitally managed environments requires computational systems that can operate in real time while supporting predictive and adaptive infrastructure management.Earlier approaches have often advanced one dimension—such as Internet of Things(IoT)-based data acquisition,Artificial Intelligence(AI)-driven analytics,or digital twin visualization—without fully integrating these strands into a single operational loop.As a result,many existing solutions encounter bottlenecks in responsiveness,interoperability,and scalability,while also leaving concerns about data privacy unresolved.This research introduces a hybrid AI–IoT–Digital Twin framework that combines continuous sensing,distributed intelligence,and simulation-based decision support.The design incorporates multi-source sensor data,lightweight edge inference through Convolutional Neural Networks(CNN)and Long ShortTerm Memory(LSTM)models,and federated learning enhanced with secure aggregation and differential privacy to maintain confidentiality.A digital twin layer extends these capabilities by simulating city assets such as traffic flows and water networks,generating what-if scenarios,and issuing actionable control signals.Complementary modules,including model compression and synchronization protocols,are embedded to ensure reliability in bandwidth-constrained and heterogeneous urban environments.The framework is validated in two urban domains:traffic management,where it adapts signal cycles based on real-time congestion patterns,and pipeline monitoring,where it anticipates leaks through pressure and vibration data.Experimental results show a 28%reduction in response time,a 35%decrease in maintenance costs,and a marked reduction in false positives relative to conventional baselines.The architecture also demonstrates stability across 50+edge devices under federated training and resilience to uneven node participation.The proposed system provides a scalable and privacy-aware foundation for predictive urban infrastructure management.By closing the loop between sensing,learning,and control,it reduces operator dependence,enhances resource efficiency,and supports transparent governance models for emerging smart cities.展开更多
Unmanned Aerial Vehicles(UAVs)have become integral components in smart city infrastructures,supporting applications such as emergency response,surveillance,and data collection.However,the high mobility and dynamic top...Unmanned Aerial Vehicles(UAVs)have become integral components in smart city infrastructures,supporting applications such as emergency response,surveillance,and data collection.However,the high mobility and dynamic topology of Flying Ad Hoc Networks(FANETs)present significant challenges for maintaining reliable,low-latency communication.Conventional geographic routing protocols often struggle in situations where link quality varies and mobility patterns are unpredictable.To overcome these limitations,this paper proposes an improved routing protocol based on reinforcement learning.This new approach integrates Q-learning with mechanisms that are both link-aware and mobility-aware.The proposed method optimizes the selection of relay nodes by using an adaptive reward function that takes into account energy consumption,delay,and link quality.Additionally,a Kalman filter is integrated to predict UAV mobility,improving the stability of communication links under dynamic network conditions.Simulation experiments were conducted using realistic scenarios,varying the number of UAVs to assess scalability.An analysis was conducted on key performance metrics,including the packet delivery ratio,end-to-end delay,and total energy consumption.The results demonstrate that the proposed approach significantly improves the packet delivery ratio by 12%–15%and reduces delay by up to 25.5%when compared to conventional GEO and QGEO protocols.However,this improvement comes at the cost of higher energy consumption due to additional computations and control overhead.Despite this trade-off,the proposed solution ensures reliable and efficient communication,making it well-suited for large-scale UAV networks operating in complex urban environments.展开更多
As blockchain technology rapidly evolves,smart contracts have seen widespread adoption in financial transactions and beyond.However,the growing prevalence of malicious Ponzi scheme contracts presents serious security ...As blockchain technology rapidly evolves,smart contracts have seen widespread adoption in financial transactions and beyond.However,the growing prevalence of malicious Ponzi scheme contracts presents serious security threats to blockchain ecosystems.Although numerous detection techniques have been proposed,existing methods suffer from significant limitations,such as class imbalance and insufficient modeling of transaction-related semantic features.To address these challenges,this paper proposes an oversampling-based detection framework for Ponzi smart contracts.We enhance the Adaptive Synthetic Sampling(ADASYN)algorithm by incorporating sample proximity to decision boundaries and ensuring realistic sample distributions.This enhancement facilitates the generation of high-quality minority class samples and effectively mitigates class imbalance.In addition,we design a Contract Transaction Graph(CTG)construction algorithm to preserve key transactional semantics through feature extraction from contract code.A graph neural network(GNN)is then applied for classification.This study employs a publicly available dataset from the XBlock platform,consisting of 318 verified Ponzi contracts and 6498 benign contracts.Sourced from real Ethereum deployments,the dataset reflects diverse application scenarios and captures the varied characteristics of Ponzi schemes.Experimental results demonstrate that our approach achieves an accuracy of 96%,a recall of 92%,and an F1-score of 94%in detecting Ponzi contracts,outperforming state-of-the-art methods.展开更多
The long-standing use of portable toilet cubicles by residents of Shanghai’s narrow,labyrinthine alleys came to an end in September 2025 after the city largely finished building public toilets to make up their lack o...The long-standing use of portable toilet cubicles by residents of Shanghai’s narrow,labyrinthine alleys came to an end in September 2025 after the city largely finished building public toilets to make up their lack of sanitation facilities.The project,targeting 14,082 households,started last year.展开更多
Rapid evolutions of the Internet of Electric Vehicles(IoEVs)are reshaping and modernizing transport systems,yet challenges remain in energy efficiency,better battery aging,and grid stability.Typical charging methods a...Rapid evolutions of the Internet of Electric Vehicles(IoEVs)are reshaping and modernizing transport systems,yet challenges remain in energy efficiency,better battery aging,and grid stability.Typical charging methods allow for EVs to be charged without thought being given to the condition of the battery or the grid demand,thus increasing energy costs and battery aging.This study proposes a smart charging station with an AI-powered Battery Management System(BMS),developed and simulated in MATLAB/Simulink,to increase optimality in energy flow,battery health,and impractical scheduling within the IoEV environment.The system operates through real-time communication,load scheduling based on priorities,and adaptive charging based on batterymathematically computed State of Charge(SOC),State of Health(SOH),and thermal state,with bidirectional power flow(V2G),thus allowing EVs’participation towards grid stabilization.Simulation results revealed that the proposed model can reduce peak grid load by 37.8%;charging efficiency is enhanced by 92.6%;battery temperature lessened by 4.4℃;SOH extended over 100 cycles by 6.5%,if compared against the conventional technique.By this way,charging time was decreased by 12.4% and energy costs dropped by more than 20%.These results showed that smart charging with intelligent BMS can boost greatly the operational efficiency and sustainability of the IoEV ecosystem.展开更多
The rapid digitalization of urban infrastructure has made smart cities increasingly vulnerable to sophisticated cyber threats.In the evolving landscape of cybersecurity,the efficacy of Intrusion Detection Systems(IDS)...The rapid digitalization of urban infrastructure has made smart cities increasingly vulnerable to sophisticated cyber threats.In the evolving landscape of cybersecurity,the efficacy of Intrusion Detection Systems(IDS)is increasingly measured by technical performance,operational usability,and adaptability.This study introduces and rigorously evaluates a Human-Computer Interaction(HCI)-Integrated IDS with the utilization of Convolutional Neural Network(CNN),CNN-Long Short Term Memory(LSTM),and Random Forest(RF)against both a Baseline Machine Learning(ML)and a Traditional IDS model,through an extensive experimental framework encompassing many performance metrics,including detection latency,accuracy,alert prioritization,classification errors,system throughput,usability,ROC-AUC,precision-recall,confusion matrix analysis,and statistical accuracy measures.Our findings consistently demonstrate the superiority of the HCI-Integrated approach utilizing three major datasets(CICIDS 2017,KDD Cup 1999,and UNSW-NB15).Experimental results indicate that the HCI-Integrated model outperforms its counterparts,achieving an AUC-ROC of 0.99,a precision of 0.93,and a recall of 0.96,while maintaining the lowest false positive rate(0.03)and the fastest detection time(~1.5 s).These findings validate the efficacy of incorporating HCI to enhance anomaly detection capabilities,improve responsiveness,and reduce alert fatigue in critical smart city applications.It achieves markedly lower detection times,higher accuracy across all threat categories,reduced false positive and false negative rates,and enhanced system throughput under concurrent load conditions.The HCIIntegrated IDS excels in alert contextualization and prioritization,offering more actionable insights while minimizing analyst fatigue.Usability feedback underscores increased analyst confidence and operational clarity,reinforcing the importance of user-centered design.These results collectively position the HCI-Integrated IDS as a highly effective,scalable,and human-aligned solution for modern threat detection environments.展开更多
At dawn in Wufu Village,in Dinghu District of Zhaoqing City,Guangdong Province,the newly restored Chaoyangli Cultural Retreat is already welcoming its first visitors.A visitor surnamed Chen,who has travelled from Guan...At dawn in Wufu Village,in Dinghu District of Zhaoqing City,Guangdong Province,the newly restored Chaoyangli Cultural Retreat is already welcoming its first visitors.A visitor surnamed Chen,who has travelled from Guangzhou with his child,stops in front of the Chaxi Academy to admire local intangible cultural heritage crafts.展开更多
With the development of smart cities and smart technologies,parks,as functional units of the city,are facing smart transformation.The development of smart parks can help address challenges of technology integration wi...With the development of smart cities and smart technologies,parks,as functional units of the city,are facing smart transformation.The development of smart parks can help address challenges of technology integration within urban spaces and serve as testbeds for exploring smart city planning and governance models.Information models facilitate the effective integration of technology into space.Building Information Modeling(BIM)and City Information Modeling(CIM)have been widely used in urban construction.However,the existing information models have limitations in the application of the park,so it is necessary to develop an information model suitable for the park.This paper first traces the evolution of park smart transformation,reviews the global landscape of smart park development,and identifies key trends and persistent challenges.Addressing the particularities of parks,the concept of Park Information Modeling(PIM)is proposed.PIM leverages smart technologies such as artificial intelligence,digital twins,and collaborative sensing to help form a‘space-technology-system’smart structure,enabling systematic management of diverse park spaces,addressing the deficiency in park-level information models,and aiming to achieve scale articulation between BIM and CIM.Finally,through a detailed top-level design application case study of the Nanjing Smart Education Park in China,this paper illustrates the translation process of the PIM concept into practice,showcasing its potential to provide smart management tools for park managers and enhance services for park stakeholders,although further empirical validation is required.展开更多
Artificial intelligence has the potential to stand as the cornerstone of human society,which could drive our civilization forward and emerge as a pivotal frontier in the ongoing technological revolution and industrial...Artificial intelligence has the potential to stand as the cornerstone of human society,which could drive our civilization forward and emerge as a pivotal frontier in the ongoing technological revolution and industrial transformation.Amidst profound shifts in the global technological landscape,smart materials,smart devices,and smart systems have become the defining pillars of our era,which will catalyze paradigm shifts in engineering science and reshape the trajectory of modern technology.展开更多
The 6G smart Fog Radio Access Network(F-RAN)is an integration of 6G network intelligence technologies and the F-RAN architecture.Its aim is to provide low-latency and high-performance services for massive access devic...The 6G smart Fog Radio Access Network(F-RAN)is an integration of 6G network intelligence technologies and the F-RAN architecture.Its aim is to provide low-latency and high-performance services for massive access devices.However,the performance of current 6G network intelligence technologies and its level of integration with the architecture,along with the system-level requirements for the number of access devices and limitations on energy consumption,have impeded further improvements in the 6G smart F-RAN.To better analyze the root causes of the network problems and promote the practical development of the network,this study used structured methods such as segmentation to conduct a review of the topic.The research results reveal that there are still many problems in the current 6G smart F-RAN.Future research directions and difficulties are also discussed.展开更多
Thedeployment of the Internet of Things(IoT)with smart sensors has facilitated the emergence of fog computing as an important technology for delivering services to smart environments such as campuses,smart cities,and ...Thedeployment of the Internet of Things(IoT)with smart sensors has facilitated the emergence of fog computing as an important technology for delivering services to smart environments such as campuses,smart cities,and smart transportation systems.Fog computing tackles a range of challenges,including processing,storage,bandwidth,latency,and reliability,by locally distributing secure information through end nodes.Consisting of endpoints,fog nodes,and back-end cloud infrastructure,it provides advanced capabilities beyond traditional cloud computing.In smart environments,particularly within smart city transportation systems,the abundance of devices and nodes poses significant challenges related to power consumption and system reliability.To address the challenges of latency,energy consumption,and fault tolerance in these environments,this paper proposes a latency-aware,faulttolerant framework for resource scheduling and data management,referred to as the FORD framework,for smart cities in fog environments.This framework is designed to meet the demands of time-sensitive applications,such as those in smart transportation systems.The FORD framework incorporates latency-aware resource scheduling to optimize task execution in smart city environments,leveraging resources from both fog and cloud environments.Through simulation-based executions,tasks are allocated to the nearest available nodes with minimum latency.In the event of execution failure,a fault-tolerantmechanism is employed to ensure the successful completion of tasks.Upon successful execution,data is efficiently stored in the cloud data center,ensuring data integrity and reliability within the smart city ecosystem.展开更多
The emergence of smart grids in India is propelled by an intricate interaction of market dynamics,regulatory structures,and stakeholder obligations.This study analyzes the primary factors that are driving the widespre...The emergence of smart grids in India is propelled by an intricate interaction of market dynamics,regulatory structures,and stakeholder obligations.This study analyzes the primary factors that are driving the widespread use of smart grid technologies and outlines the specific roles and obligations of different stakeholders,such as government entities,utility companies,technology suppliers,and consumers.Government activities and regulations are crucial in facilitating the implementation of smart grid technology by offering financial incentives,regulatory assistance,and strategic guidance.Utility firms have the responsibility of implementing and integrating smart grid infrastructure,with an emphasis on improving the dependability of the grid,minimizing losses in transmission and distribution,and integrating renewable energy sources.Technology companies offer the essential hardware and software solutions,which stimulate creativity and enhance efficiency.Consumers actively engage in the energy ecosystem by participating in demand response,implementing energy saving measures,and adopting distributed energy resources like solar panels and electric vehicles.This study examines the difficulties and possibilities in India’s smart grid industry,highlighting the importance of cooperation among stakeholders to build a strong,effective,and environmentally friendly energy future.展开更多
为了实现主船体大板架中纵向强力构件的三维模型快速创建,提升一体化三维数字设计的效率,压缩船舶设计周期,提出二维图纸信息读取技术和二维驱动三维参数化建模技术,通过对AutoCAD与Smart3D的二次开发,建立从二维图纸数据到三维模型快...为了实现主船体大板架中纵向强力构件的三维模型快速创建,提升一体化三维数字设计的效率,压缩船舶设计周期,提出二维图纸信息读取技术和二维驱动三维参数化建模技术,通过对AutoCAD与Smart3D的二次开发,建立从二维图纸数据到三维模型快速创建的设计流程,开发出主船体纵向强力构件快速建模工具。以30万t超大型油船(Very Large Crude Carrier,VLCC)作为实例进行验证,通过与传统参数化设计工具及软件自带设计模块的对比分析,验证了该工具的准确性与高效性。所开发的快速建模工具对压缩船舶设计周期、提高船舶设计效率具有显著作用,可为船舶三维数字设计提供有力支持。展开更多
基金The researchers would like to thank the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support(QU-APC-2025)。
文摘The evolution of cities into digitally managed environments requires computational systems that can operate in real time while supporting predictive and adaptive infrastructure management.Earlier approaches have often advanced one dimension—such as Internet of Things(IoT)-based data acquisition,Artificial Intelligence(AI)-driven analytics,or digital twin visualization—without fully integrating these strands into a single operational loop.As a result,many existing solutions encounter bottlenecks in responsiveness,interoperability,and scalability,while also leaving concerns about data privacy unresolved.This research introduces a hybrid AI–IoT–Digital Twin framework that combines continuous sensing,distributed intelligence,and simulation-based decision support.The design incorporates multi-source sensor data,lightweight edge inference through Convolutional Neural Networks(CNN)and Long ShortTerm Memory(LSTM)models,and federated learning enhanced with secure aggregation and differential privacy to maintain confidentiality.A digital twin layer extends these capabilities by simulating city assets such as traffic flows and water networks,generating what-if scenarios,and issuing actionable control signals.Complementary modules,including model compression and synchronization protocols,are embedded to ensure reliability in bandwidth-constrained and heterogeneous urban environments.The framework is validated in two urban domains:traffic management,where it adapts signal cycles based on real-time congestion patterns,and pipeline monitoring,where it anticipates leaks through pressure and vibration data.Experimental results show a 28%reduction in response time,a 35%decrease in maintenance costs,and a marked reduction in false positives relative to conventional baselines.The architecture also demonstrates stability across 50+edge devices under federated training and resilience to uneven node participation.The proposed system provides a scalable and privacy-aware foundation for predictive urban infrastructure management.By closing the loop between sensing,learning,and control,it reduces operator dependence,enhances resource efficiency,and supports transparent governance models for emerging smart cities.
基金funded by Hung Yen University of Technology and Education under grand number UTEHY.L.2025.62.
文摘Unmanned Aerial Vehicles(UAVs)have become integral components in smart city infrastructures,supporting applications such as emergency response,surveillance,and data collection.However,the high mobility and dynamic topology of Flying Ad Hoc Networks(FANETs)present significant challenges for maintaining reliable,low-latency communication.Conventional geographic routing protocols often struggle in situations where link quality varies and mobility patterns are unpredictable.To overcome these limitations,this paper proposes an improved routing protocol based on reinforcement learning.This new approach integrates Q-learning with mechanisms that are both link-aware and mobility-aware.The proposed method optimizes the selection of relay nodes by using an adaptive reward function that takes into account energy consumption,delay,and link quality.Additionally,a Kalman filter is integrated to predict UAV mobility,improving the stability of communication links under dynamic network conditions.Simulation experiments were conducted using realistic scenarios,varying the number of UAVs to assess scalability.An analysis was conducted on key performance metrics,including the packet delivery ratio,end-to-end delay,and total energy consumption.The results demonstrate that the proposed approach significantly improves the packet delivery ratio by 12%–15%and reduces delay by up to 25.5%when compared to conventional GEO and QGEO protocols.However,this improvement comes at the cost of higher energy consumption due to additional computations and control overhead.Despite this trade-off,the proposed solution ensures reliable and efficient communication,making it well-suited for large-scale UAV networks operating in complex urban environments.
基金supported by the Key Project of Joint Fund of the National Natural Science Foundation of China“Research on Key Technologies and Demonstration Applications for Trusted and Secure Data Circulation and Trading”(U24A20241)the National Natural Science Foundation of China“Research on Trusted Theories and Key Technologies of Data Security Trading Based on Blockchain”(62202118)+4 种基金the Major Scientific and Technological Special Project of Guizhou Province([2024]014)Scientific and Technological Research Projects from the Guizhou Education Department(Qian jiao ji[2023]003)the Hundred-Level Innovative Talent Project of the Guizhou Provincial Science and Technology Department(Qiankehe Platform Talent-GCC[2023]018)the Major Project of Guizhou Province“Research and Application of Key Technologies for Trusted Large Models Oriented to Public Big Data”(Qiankehe Major Project[2024]003)the Guizhou Province Computational Power Network Security Protection Science and Technology Innovation Talent Team(Qiankehe Talent CXTD[2025]029).
文摘As blockchain technology rapidly evolves,smart contracts have seen widespread adoption in financial transactions and beyond.However,the growing prevalence of malicious Ponzi scheme contracts presents serious security threats to blockchain ecosystems.Although numerous detection techniques have been proposed,existing methods suffer from significant limitations,such as class imbalance and insufficient modeling of transaction-related semantic features.To address these challenges,this paper proposes an oversampling-based detection framework for Ponzi smart contracts.We enhance the Adaptive Synthetic Sampling(ADASYN)algorithm by incorporating sample proximity to decision boundaries and ensuring realistic sample distributions.This enhancement facilitates the generation of high-quality minority class samples and effectively mitigates class imbalance.In addition,we design a Contract Transaction Graph(CTG)construction algorithm to preserve key transactional semantics through feature extraction from contract code.A graph neural network(GNN)is then applied for classification.This study employs a publicly available dataset from the XBlock platform,consisting of 318 verified Ponzi contracts and 6498 benign contracts.Sourced from real Ethereum deployments,the dataset reflects diverse application scenarios and captures the varied characteristics of Ponzi schemes.Experimental results demonstrate that our approach achieves an accuracy of 96%,a recall of 92%,and an F1-score of 94%in detecting Ponzi contracts,outperforming state-of-the-art methods.
文摘The long-standing use of portable toilet cubicles by residents of Shanghai’s narrow,labyrinthine alleys came to an end in September 2025 after the city largely finished building public toilets to make up their lack of sanitation facilities.The project,targeting 14,082 households,started last year.
文摘Rapid evolutions of the Internet of Electric Vehicles(IoEVs)are reshaping and modernizing transport systems,yet challenges remain in energy efficiency,better battery aging,and grid stability.Typical charging methods allow for EVs to be charged without thought being given to the condition of the battery or the grid demand,thus increasing energy costs and battery aging.This study proposes a smart charging station with an AI-powered Battery Management System(BMS),developed and simulated in MATLAB/Simulink,to increase optimality in energy flow,battery health,and impractical scheduling within the IoEV environment.The system operates through real-time communication,load scheduling based on priorities,and adaptive charging based on batterymathematically computed State of Charge(SOC),State of Health(SOH),and thermal state,with bidirectional power flow(V2G),thus allowing EVs’participation towards grid stabilization.Simulation results revealed that the proposed model can reduce peak grid load by 37.8%;charging efficiency is enhanced by 92.6%;battery temperature lessened by 4.4℃;SOH extended over 100 cycles by 6.5%,if compared against the conventional technique.By this way,charging time was decreased by 12.4% and energy costs dropped by more than 20%.These results showed that smart charging with intelligent BMS can boost greatly the operational efficiency and sustainability of the IoEV ecosystem.
基金funded and supported by the Ongoing Research Funding program(ORF-2025-314),King Saud University,Riyadh,Saudi Arabia.
文摘The rapid digitalization of urban infrastructure has made smart cities increasingly vulnerable to sophisticated cyber threats.In the evolving landscape of cybersecurity,the efficacy of Intrusion Detection Systems(IDS)is increasingly measured by technical performance,operational usability,and adaptability.This study introduces and rigorously evaluates a Human-Computer Interaction(HCI)-Integrated IDS with the utilization of Convolutional Neural Network(CNN),CNN-Long Short Term Memory(LSTM),and Random Forest(RF)against both a Baseline Machine Learning(ML)and a Traditional IDS model,through an extensive experimental framework encompassing many performance metrics,including detection latency,accuracy,alert prioritization,classification errors,system throughput,usability,ROC-AUC,precision-recall,confusion matrix analysis,and statistical accuracy measures.Our findings consistently demonstrate the superiority of the HCI-Integrated approach utilizing three major datasets(CICIDS 2017,KDD Cup 1999,and UNSW-NB15).Experimental results indicate that the HCI-Integrated model outperforms its counterparts,achieving an AUC-ROC of 0.99,a precision of 0.93,and a recall of 0.96,while maintaining the lowest false positive rate(0.03)and the fastest detection time(~1.5 s).These findings validate the efficacy of incorporating HCI to enhance anomaly detection capabilities,improve responsiveness,and reduce alert fatigue in critical smart city applications.It achieves markedly lower detection times,higher accuracy across all threat categories,reduced false positive and false negative rates,and enhanced system throughput under concurrent load conditions.The HCIIntegrated IDS excels in alert contextualization and prioritization,offering more actionable insights while minimizing analyst fatigue.Usability feedback underscores increased analyst confidence and operational clarity,reinforcing the importance of user-centered design.These results collectively position the HCI-Integrated IDS as a highly effective,scalable,and human-aligned solution for modern threat detection environments.
文摘At dawn in Wufu Village,in Dinghu District of Zhaoqing City,Guangdong Province,the newly restored Chaoyangli Cultural Retreat is already welcoming its first visitors.A visitor surnamed Chen,who has travelled from Guangzhou with his child,stops in front of the Chaxi Academy to admire local intangible cultural heritage crafts.
基金Under the auspices of National Natural Science Foundation of China(No.42330510)。
文摘With the development of smart cities and smart technologies,parks,as functional units of the city,are facing smart transformation.The development of smart parks can help address challenges of technology integration within urban spaces and serve as testbeds for exploring smart city planning and governance models.Information models facilitate the effective integration of technology into space.Building Information Modeling(BIM)and City Information Modeling(CIM)have been widely used in urban construction.However,the existing information models have limitations in the application of the park,so it is necessary to develop an information model suitable for the park.This paper first traces the evolution of park smart transformation,reviews the global landscape of smart park development,and identifies key trends and persistent challenges.Addressing the particularities of parks,the concept of Park Information Modeling(PIM)is proposed.PIM leverages smart technologies such as artificial intelligence,digital twins,and collaborative sensing to help form a‘space-technology-system’smart structure,enabling systematic management of diverse park spaces,addressing the deficiency in park-level information models,and aiming to achieve scale articulation between BIM and CIM.Finally,through a detailed top-level design application case study of the Nanjing Smart Education Park in China,this paper illustrates the translation process of the PIM concept into practice,showcasing its potential to provide smart management tools for park managers and enhance services for park stakeholders,although further empirical validation is required.
文摘Artificial intelligence has the potential to stand as the cornerstone of human society,which could drive our civilization forward and emerge as a pivotal frontier in the ongoing technological revolution and industrial transformation.Amidst profound shifts in the global technological landscape,smart materials,smart devices,and smart systems have become the defining pillars of our era,which will catalyze paradigm shifts in engineering science and reshape the trajectory of modern technology.
基金supported by the National Natural Science Foundation of China(62202215)Liaoning Province Applied Basic Research Program(Youth Special Project,2023JH2/101600038)+2 种基金Shenyang Youth Science and Technology Innovation Talent Support Program(RC220458)Guangxuan Program of Shenyang Ligong University(SYLUGXRC202216)Basic Research Special Funds for Undergraduate Universities in Liaoning Province(LJ212410144067).
文摘The 6G smart Fog Radio Access Network(F-RAN)is an integration of 6G network intelligence technologies and the F-RAN architecture.Its aim is to provide low-latency and high-performance services for massive access devices.However,the performance of current 6G network intelligence technologies and its level of integration with the architecture,along with the system-level requirements for the number of access devices and limitations on energy consumption,have impeded further improvements in the 6G smart F-RAN.To better analyze the root causes of the network problems and promote the practical development of the network,this study used structured methods such as segmentation to conduct a review of the topic.The research results reveal that there are still many problems in the current 6G smart F-RAN.Future research directions and difficulties are also discussed.
基金supported by the Deanship of Scientific Research and Graduate Studies at King Khalid University under research grant number(R.G.P.2/93/45).
文摘Thedeployment of the Internet of Things(IoT)with smart sensors has facilitated the emergence of fog computing as an important technology for delivering services to smart environments such as campuses,smart cities,and smart transportation systems.Fog computing tackles a range of challenges,including processing,storage,bandwidth,latency,and reliability,by locally distributing secure information through end nodes.Consisting of endpoints,fog nodes,and back-end cloud infrastructure,it provides advanced capabilities beyond traditional cloud computing.In smart environments,particularly within smart city transportation systems,the abundance of devices and nodes poses significant challenges related to power consumption and system reliability.To address the challenges of latency,energy consumption,and fault tolerance in these environments,this paper proposes a latency-aware,faulttolerant framework for resource scheduling and data management,referred to as the FORD framework,for smart cities in fog environments.This framework is designed to meet the demands of time-sensitive applications,such as those in smart transportation systems.The FORD framework incorporates latency-aware resource scheduling to optimize task execution in smart city environments,leveraging resources from both fog and cloud environments.Through simulation-based executions,tasks are allocated to the nearest available nodes with minimum latency.In the event of execution failure,a fault-tolerantmechanism is employed to ensure the successful completion of tasks.Upon successful execution,data is efficiently stored in the cloud data center,ensuring data integrity and reliability within the smart city ecosystem.
文摘The emergence of smart grids in India is propelled by an intricate interaction of market dynamics,regulatory structures,and stakeholder obligations.This study analyzes the primary factors that are driving the widespread use of smart grid technologies and outlines the specific roles and obligations of different stakeholders,such as government entities,utility companies,technology suppliers,and consumers.Government activities and regulations are crucial in facilitating the implementation of smart grid technology by offering financial incentives,regulatory assistance,and strategic guidance.Utility firms have the responsibility of implementing and integrating smart grid infrastructure,with an emphasis on improving the dependability of the grid,minimizing losses in transmission and distribution,and integrating renewable energy sources.Technology companies offer the essential hardware and software solutions,which stimulate creativity and enhance efficiency.Consumers actively engage in the energy ecosystem by participating in demand response,implementing energy saving measures,and adopting distributed energy resources like solar panels and electric vehicles.This study examines the difficulties and possibilities in India’s smart grid industry,highlighting the importance of cooperation among stakeholders to build a strong,effective,and environmentally friendly energy future.
文摘为了实现主船体大板架中纵向强力构件的三维模型快速创建,提升一体化三维数字设计的效率,压缩船舶设计周期,提出二维图纸信息读取技术和二维驱动三维参数化建模技术,通过对AutoCAD与Smart3D的二次开发,建立从二维图纸数据到三维模型快速创建的设计流程,开发出主船体纵向强力构件快速建模工具。以30万t超大型油船(Very Large Crude Carrier,VLCC)作为实例进行验证,通过与传统参数化设计工具及软件自带设计模块的对比分析,验证了该工具的准确性与高效性。所开发的快速建模工具对压缩船舶设计周期、提高船舶设计效率具有显著作用,可为船舶三维数字设计提供有力支持。