The scale-invariant feature transform(SIFT)ability to automatic control points(CPs)extraction is very well known on remote sensing images,however,its result inaccurate and sometimes has incorrect matching from generat...The scale-invariant feature transform(SIFT)ability to automatic control points(CPs)extraction is very well known on remote sensing images,however,its result inaccurate and sometimes has incorrect matching from generating a small number of false CPs pairs,their matching has high false alarm.This paper presents a method containing a modification to improve the performance of the SIFT CPs matching by applying sum of absolute difference(SAD)in different manner for the new optical satellite generation called near-equatorial orbit satellite(NEqO)and multi-sensor images.The proposed method leads to improving CPs matching with a significantly higher rate of correct matches.The data in this study were obtained from the RazakSAT satellite covering the Kuala Lumpur-Pekan area.The proposed method consists of three parts:(1)applying the SIFT to extract CPs automatically,(2)refining CPs matching by SAD algorithm with empirical threshold,and(3)evaluating the refined CPs scenario by comparing the result of the original SIFT with that of the proposed method.The result indicates an accurate and precise performance of the model,which showed the effectiveness and robustness of the proposed approach.展开更多
To improve the performance of the scale invariant feature transform ( SIFT), a modified SIFT (M-SIFT) descriptor is proposed to realize fast and robust key-point extraction and matching. In descriptor generation, ...To improve the performance of the scale invariant feature transform ( SIFT), a modified SIFT (M-SIFT) descriptor is proposed to realize fast and robust key-point extraction and matching. In descriptor generation, 3 rotation-invariant concentric-ring grids around the key-point location are used instead of 16 square grids used in the original SIFT. Then, 10 orientations are accumulated for each grid, which results in a 30-dimension descriptor. In descriptor matching, rough rejection mismatches is proposed based on the difference of grey information between matching points. The per- formance of the proposed method is tested for image mosaic on simulated and real-worid images. Experimental results show that the M-SIFT descriptor inherits the SIFT' s ability of being invariant to image scale and rotation, illumination change and affine distortion. Besides the time cost of feature extraction is reduced by 50% compared with the original SIFT. And the rough rejection mismatches can reject at least 70% of mismatches. The results also demonstrate that the performance of the pro- posed M-SIFT method is superior to other improved SIFT methods in speed and robustness.展开更多
文摘The scale-invariant feature transform(SIFT)ability to automatic control points(CPs)extraction is very well known on remote sensing images,however,its result inaccurate and sometimes has incorrect matching from generating a small number of false CPs pairs,their matching has high false alarm.This paper presents a method containing a modification to improve the performance of the SIFT CPs matching by applying sum of absolute difference(SAD)in different manner for the new optical satellite generation called near-equatorial orbit satellite(NEqO)and multi-sensor images.The proposed method leads to improving CPs matching with a significantly higher rate of correct matches.The data in this study were obtained from the RazakSAT satellite covering the Kuala Lumpur-Pekan area.The proposed method consists of three parts:(1)applying the SIFT to extract CPs automatically,(2)refining CPs matching by SAD algorithm with empirical threshold,and(3)evaluating the refined CPs scenario by comparing the result of the original SIFT with that of the proposed method.The result indicates an accurate and precise performance of the model,which showed the effectiveness and robustness of the proposed approach.
基金Supported by the National Natural Science Foundation of China(60905012)
文摘To improve the performance of the scale invariant feature transform ( SIFT), a modified SIFT (M-SIFT) descriptor is proposed to realize fast and robust key-point extraction and matching. In descriptor generation, 3 rotation-invariant concentric-ring grids around the key-point location are used instead of 16 square grids used in the original SIFT. Then, 10 orientations are accumulated for each grid, which results in a 30-dimension descriptor. In descriptor matching, rough rejection mismatches is proposed based on the difference of grey information between matching points. The per- formance of the proposed method is tested for image mosaic on simulated and real-worid images. Experimental results show that the M-SIFT descriptor inherits the SIFT' s ability of being invariant to image scale and rotation, illumination change and affine distortion. Besides the time cost of feature extraction is reduced by 50% compared with the original SIFT. And the rough rejection mismatches can reject at least 70% of mismatches. The results also demonstrate that the performance of the pro- posed M-SIFT method is superior to other improved SIFT methods in speed and robustness.