This paper presents the application of the State-Dependent Riccati Equation (SDRE) method in conjunction with Kalman filter technique to design a satellite simulator control system. The performance and robustness of...This paper presents the application of the State-Dependent Riccati Equation (SDRE) method in conjunction with Kalman filter technique to design a satellite simulator control system. The performance and robustness of the SDRE controller is compared with the Linear Quadratic Regulator (LQR) controller. The Kalman filter technique is incorporated to the SDRE method to address the presence of noise in the process, measurements and incomplete state estimation. The effects of the plant non-linearities and noises (uncertainties) are considered to investigated the controller performance and robustness designed by the SDRE plus Kalman filter. A general 3-D simulator Simulink model is developed to design the SDRE controller using the states estimated by the Kalman filter. Simulations have demonstrated the validity of the proposed approach to deal with nonlinear system. The SDRE controller has presented good stability, great performance and robustness at the same time that it keeps the simplicity of having constant gain which is very important as for satellite onboard computer implementation.展开更多
We investigate the close-range relative motion and control of a spacecraft approaching a tumbling target. Unlike the traditional rigid-body dynamics with translation and rotation about the center of mass(CM), the ki...We investigate the close-range relative motion and control of a spacecraft approaching a tumbling target. Unlike the traditional rigid-body dynamics with translation and rotation about the center of mass(CM), the kinematic coupling between translation and rotation is taken into consideration to directly describe the motion of the spacecraft's sensors or devices which are not coincident with the CM. Thus, a kinematically coupled 6 degrees-of-freedom(DOF) relative motion model for the instrument(feature point) is set up. To make the chaser spacecraft's feature point track the target's, an optimal tracking problem is defined and a control law with a feedback-feedforward structure is designed. With quasi-linearization of the nonlinear dynamical system, the feedforward term is computed from a specified constraint about the dynamical system and the reference model, and the feedback action is derived starting from the state-dependent Ricca equation(SDRE). The proposed controller is compared with an existing suboptimal tracking controller, and numerical simulations are presented to illustrate the effectiveness and superiority of the proposed method.展开更多
文摘This paper presents the application of the State-Dependent Riccati Equation (SDRE) method in conjunction with Kalman filter technique to design a satellite simulator control system. The performance and robustness of the SDRE controller is compared with the Linear Quadratic Regulator (LQR) controller. The Kalman filter technique is incorporated to the SDRE method to address the presence of noise in the process, measurements and incomplete state estimation. The effects of the plant non-linearities and noises (uncertainties) are considered to investigated the controller performance and robustness designed by the SDRE plus Kalman filter. A general 3-D simulator Simulink model is developed to design the SDRE controller using the states estimated by the Kalman filter. Simulations have demonstrated the validity of the proposed approach to deal with nonlinear system. The SDRE controller has presented good stability, great performance and robustness at the same time that it keeps the simplicity of having constant gain which is very important as for satellite onboard computer implementation.
基金Project supported by the Major Program of the National Natural Science Foundation of China(Grant Nos.61690210 and 61690213)
文摘We investigate the close-range relative motion and control of a spacecraft approaching a tumbling target. Unlike the traditional rigid-body dynamics with translation and rotation about the center of mass(CM), the kinematic coupling between translation and rotation is taken into consideration to directly describe the motion of the spacecraft's sensors or devices which are not coincident with the CM. Thus, a kinematically coupled 6 degrees-of-freedom(DOF) relative motion model for the instrument(feature point) is set up. To make the chaser spacecraft's feature point track the target's, an optimal tracking problem is defined and a control law with a feedback-feedforward structure is designed. With quasi-linearization of the nonlinear dynamical system, the feedforward term is computed from a specified constraint about the dynamical system and the reference model, and the feedback action is derived starting from the state-dependent Ricca equation(SDRE). The proposed controller is compared with an existing suboptimal tracking controller, and numerical simulations are presented to illustrate the effectiveness and superiority of the proposed method.