Size reduction of the gas turbines(GT)by reducing the inlet S-shaped diffuser length increases the powerto-weight ratio.It improves the techno-economic features of the GT by lesser fuel consumption.However,this Length...Size reduction of the gas turbines(GT)by reducing the inlet S-shaped diffuser length increases the powerto-weight ratio.It improves the techno-economic features of the GT by lesser fuel consumption.However,this Length reduction of a bare S-shaped diffuser to an aggressive S-shaped diffuser would risk flow separation and performance reduction of the diffuser and the air intake of the GT.The objective of this research is to propose and assess fitted energy promoters(EPs)to enhance the S-shaped diffuser performance by controlling and modifying the flow in the high bending zone of the diffuser.After experimental assessment,the work has been extended to cover more cases by numerical investigations on bare,bare aggressive,and aggressive with energy promoters S-shaped diffusers.Three types of EPs,namely co-rotating low-profile,co-rotating streamline sheet,and trapezoidal submerged EPs were tested with various combinations over a range of Reynolds numbers from 40,000 to 75,000.The respective S-shaped diffusers were simulated by computational fluid dynamics(CFD)using ANSYS software adopting a steady,3D,standard k-εturbulence model to acquire the details of the flow structure,which cannot be visualized in the experiment.The diffuser performance has been evaluated by the performance indicators of static pressure recovery coefficient,total pressure loss coefficient,and distortion coefficient(DC(45°)).The enhancements in the static pressure recovery of the S-shaped aggressive diffuser with energy promoters are 19.5%,22.2%,and 24.5%with EPs at planes 3,4 and 5,respectively,compared to the aggressive bare diffuser.In addition,the installation of the EPs resulted in a DC(45°)reduction at the outlet plane of the diffuser of about 43%at Re=40,000.The enhancements in the performance parameters confirm that aggravating the internal flow eliminates the flow separation and enhances the GT intake efficiency.展开更多
The thermocline energy storage tank(TEST)serves as a crucial component in thermal energy storage systems,utilizing the working fluid that enters through a diffuser to store and harness energy.However,the conventional ...The thermocline energy storage tank(TEST)serves as a crucial component in thermal energy storage systems,utilizing the working fluid that enters through a diffuser to store and harness energy.However,the conventional double-plate radial diffuser is ill-suited for a single-medium TEST’s full tank storage due to its unidirectional fluid inflow.There has been a notable lack of optimization analysis of diffusers.Two innovative tubular diffuser designs with reduced cross-sectional areas have been introduced:the annular-arranged diffuser(AAD)and the cross-arranged diffuser(CAD).To elucidate the impact of diffuser designs on energy storage efficiency,a 3D transient computational fluid dynamics(CFD)model was established to simulate a thermocline formation under two diffuser types.The model was validated against experimental data.Results showed that the thermocline of AAD was 11.39%thinner than that of a traditional double-plate diffuser.In the process of charging and discharging,the time-varying thermocline and factors influencing thermocline thickness were analyzed.Results indicate that in the mixed dominant region,increased turbulent kinetic energy correlates with reduced thermocline thickness.Notably,the AAD’s stable thermocline was 4.23%and 5.41%thinner than the CAD’s during charging and discharging,respectively,making the AAD preferable for engineering applications.The effects of tube diameter and orifice opening angle on temperature stratification performance were also examined.The findings suggest that an inclined impact jet and large-diameter tubes are more conducive to temperature stratification.Moreover,an orifice diameter optimization method was developed,which can decrease the thermocline by 6.78%.展开更多
Human motion modeling is a core technology in computer animation,game development,and humancomputer interaction.In particular,generating natural and coherent in-between motion using only the initial and terminal frame...Human motion modeling is a core technology in computer animation,game development,and humancomputer interaction.In particular,generating natural and coherent in-between motion using only the initial and terminal frames remains a fundamental yet unresolved challenge.Existing methods typically rely on dense keyframe inputs or complex prior structures,making it difficult to balance motion quality and plausibility under conditions such as sparse constraints,long-term dependencies,and diverse motion styles.To address this,we propose a motion generation framework based on a frequency-domain diffusion model,which aims to better model complex motion distributions and enhance generation stability under sparse conditions.Our method maps motion sequences to the frequency domain via the Discrete Cosine Transform(DCT),enabling more effective modeling of low-frequency motion structures while suppressing high-frequency noise.A denoising network based on self-attention is introduced to capture long-range temporal dependencies and improve global structural awareness.Additionally,a multi-objective loss function is employed to jointly optimize motion smoothness,pose diversity,and anatomical consistency,enhancing the realism and physical plausibility of the generated sequences.Comparative experiments on the Human3.6M and LaFAN1 datasets demonstrate that our method outperforms state-of-the-art approaches across multiple performance metrics,showing stronger capabilities in generating intermediate motion frames.This research offers a new perspective and methodology for human motion generation and holds promise for applications in character animation,game development,and virtual interaction.展开更多
AIM:To investigate the clinical characteristics and treatment outcomes,including visual function and overall survival(OS)of patients with ocular adnexal diffuse large B-cell lymphoma(OA-DLBCL).METHODS:This retrospecti...AIM:To investigate the clinical characteristics and treatment outcomes,including visual function and overall survival(OS)of patients with ocular adnexal diffuse large B-cell lymphoma(OA-DLBCL).METHODS:This retrospective cohort study enrolled 29 patients diagnosed with OA-DLBCL based on histopathological biopsy between 2006 and 2023.Patients were stratified into two subgroups:primary OA-DLBCL(no prior history of lymphoma)and secondary OA-DLBCL(history of DLBCL at non-ocular adnexal sites).OS was defined as the time interval from OA-DLBCL diagnosis to death from any cause.Survival analysis was performed using the Kaplan–Meier method,and prognostic factors affecting OS were identified using multivariate Cox proportional hazards regression with a stepwise selection approach.RESULTS:The cohort included 24 patients with primary OA-DLBCL(13 males,11 females;mean age:61.36±18.29y)and 5 patients with secondary OA-DLBCL(2 males,3 females;mean age:50.94±18.17y).Among the primary OA-DLBCL subgroup,12 patients(50%)presented with advanced disease(Ann Arbor stage IIIE–IV),and 16 patients(66%)were classified as T4 disease according to the tumor-node-metastasis(TNM)staging system.The mean final visual acuity was 1.72±1.10 in the primary group and 0.90±1.18 in the secondary group.The 5-year OS rate for the entire cohort was 27.7%.Multivariate analysis identified five factors significantly associated with poor survival outcomes:epiphora[adjusted hazard ratio(aHR),36.95],atherosclerotic cardiovascular disease(aHR,10.08),human immunodeficiency virus(HIV)infection(aHR,12.47),M1 stage(aHR,6.99),and secondary OA-DLBCL(aHR,6.03;all P<0.05).The median OS was 1.68y for primary OA-DLBCL and 1.12y for secondary OA-DLBCL.CONCLUSION:A substantial proportion of patients with primary OA-DLBCL present with advanced-stage disease at diagnosis.Epiphora,atherosclerotic cardiovascular disease,HIV infection,M1 stage,and secondary OA-DLBCL are independent prognostic factors for poor survival outcomes.These findings emphasize the urgent need for optimized therapeutic strategies and early screening protocols to improve the management of OA-DLBCL,particularly in developing countries.展开更多
An investigation on the ventral diverterless high offset S-shaped inlet is carried out at Mach numbers from 0.600 to 1.534, angles of attack from -4° to 9.4°, and yaw angles from 0° to 8°. Results ...An investigation on the ventral diverterless high offset S-shaped inlet is carried out at Mach numbers from 0.600 to 1.534, angles of attack from -4° to 9.4°, and yaw angles from 0° to 8°. Results indicate: (1) a large region of low total pressure exists at the lower part of the inlet exit caused by the counter-rotating vortices in the S-shaped duct; (2) the performances of the inlet at Mach number 1.000 reach almost the highest, so the propulsion system could work efficiently in terms of aerodynamics; (3) the total pressure recovery increases slowly at first and then remains unvaried as the Mach number rises from 0.6 to 1.0, however, it does in an opposite manner in the conventional diverter-equipped S-shaped inlet; (4) the performances of the inlet are generally insensitive to angles of attack from -4° to 9.4° and yaw angles from 0° to 8° at Mach number 0.850, and angles of attack from -2° to 6° and yaw angles from 0° to 5° at Mach number 1.534.展开更多
In order to improve the performances of an 11 cm-diameter turbine engine,this article suggests to substitute a new-style micro diffuser redesigned based on a new concept for the traditional diffuser having poor perfor...In order to improve the performances of an 11 cm-diameter turbine engine,this article suggests to substitute a new-style micro diffuser redesigned based on a new concept for the traditional diffuser having poor performances. The new diffuser comprises integral blades and splitters,which are taken for a series of ducts in designing. This article investigates the effects of the cross-section area distribution along the flow path on the redesigned diffuser's performances. Having furnished with the new diffuser in place of the original vaned one,the 11 cm-diameter prototype engine is tested on the rig for its performances. CFD and experiments have shown that the improved diffuser with the unchanged original size has gained excellent performance parameters of pressure coefficient over 0.65 and total pressure recovery coefficient over 0.9. Equipped with the redesigned micro diffuser,the engine increases the thrust by 11% and decreases the specific fuel consumption by 9%.展开更多
The dump diffuser is an important component in advanced annular combustor, and its performance affects greatly the fluid field and pressure loss of the combustor. This paper presents the characteristics of the total p...The dump diffuser is an important component in advanced annular combustor, and its performance affects greatly the fluid field and pressure loss of the combustor. This paper presents the characteristics of the total pressure loss. Experiments and numerical simulations, keeping the inlet March number of prediffuser constant ( Ma =0 20), are carried out to obtain the regularity of the total pressure loss. It varies with the relative dump gap ( δ =1 2~3 0)by changing the position of prediffuser and combustor liner, respectively. Research shows that there exists the minimum total pressure loss ( σ *=1 6%~1 75%) when relative dump gap δ is about 1 8.展开更多
To expand the stable operating range of compressors, understanding the mechanism of flow instability at low flow rates is necessary. In this paper, the mechanism of stall and surge in a centrifugal compressor with a v...To expand the stable operating range of compressors, understanding the mechanism of flow instability at low flow rates is necessary. In this paper, the mechanism of stall and surge in a centrifugal compressor with a variable vaned diffuser is experimentally investigated, where the diffuser blade setting angle can be adjusted. Many dynamic pressure transducers are mounted on the casing surface of the compressor. From the design condition to surge, dynamic pressure data is recorded throughout the gradual process. According to the signal developing status, the typical modes of compressor instability are defined in detail, such as stall, mild surge, and deep surge. A relatively high-frequency stall wave originates in the impeller and propagates to the diffuser, and finally stimulates a deep surge in the compressor. The compressor behavior during surge differs at different diffuser vane angles. When the diffuser vane angle is adjusted, both the unstable form and the core factor affecting the overall machine stability change. A specific indicator is proposed to measure the instability of each component in a compressor, which can be used to determine the best region for stability extension technologies, such as a holed casing treatment, in different compressor applications.展开更多
The influence of diffuser parameters, including the riser spacing, port number in a riser, injection angle, port arrangement, etc., on the surface initial dilution is experimentally investigated. The relative density ...The influence of diffuser parameters, including the riser spacing, port number in a riser, injection angle, port arrangement, etc., on the surface initial dilution is experimentally investigated. The relative density difference between the effluent and the sea water in the model is the same as that in the prototype, and the effect of the cross current is simulated by an inverse model technique. Based on the result analysis, the arrangement with more ports in a riser and larger riser spacing is suggested to save construction cost. The relationship between the Reynolds number based on the port diameter and velocity, and the surface initial dilution is also explored, and the critical Reynolds number is proposed.展开更多
The paper presents analysis of the performance and the internal flow behaviour in the vaned diffuser of a radial flow pump using PIV(particle image velocimetry)and pressure probe traverses.PIV measurements have alread...The paper presents analysis of the performance and the internal flow behaviour in the vaned diffuser of a radial flow pump using PIV(particle image velocimetry)and pressure probe traverses.PIV measurements have already been performed at middle height inside one diffuser channel passage for a given speed of rotation and various mass flow rates.These results have been already presented in several previous communications.New experiments have been performed using a three-hole pressure probe traverses from hub to shroud diffuser width at different radial locations between the two diffuser geometrical throats.Numerical simulations are also realized with the commercial codes Star CCM+7.02.011 and CFX.Frozen rotor and fully unsteady calculations of the whole pump have been performed.Comparisons between numerical results,previous experimental PIV results and new probe traverses one's are presented and discussed for one mass flow rate.In this respect,a first attempt to take into account fluid leakages between the rotating and fixed part of the pump has been checked since it may affects the real flow structure inside the diffuser.展开更多
An electrohydrodynamic (EHD) method, which is based on glow discharge plasma, is presented for flow control in an S-shaped duct. The research subject is an expanding channel with a constant width and a rectangular c...An electrohydrodynamic (EHD) method, which is based on glow discharge plasma, is presented for flow control in an S-shaped duct. The research subject is an expanding channel with a constant width and a rectangular cross section. An equivalent divergence angle and basic function are introduced to build the three-dimensional model. Subsequently, the plasma physical models are simplified as the effects of electrical body force and work (done by the force) on the fluid near the wall. With the aid of FLUENT software, the source terms of momentum and energy are added to the Navier-Stokes equation. Finally, the original performance of three models (A, B and C) is studied, in which model A demonstrates better performance. Then EHD control based on model A is discussed. The results show that the EHD method is an effective way of reducing flow loss and improving uniformity at the duct exit. The innovation in this study is the assessment of the EHD control effect on the flow in an S-shaped duct. Both the parametric modeling of the S-shaped duct and the simplified models of plasma provide valuable information for future research on aircraft inlet ducts.展开更多
Laboratory experiments were conducted to investigate the mixture of wastewater discharged from a submerged multiport diffuser in the Nantong sea-area. The process was then simulated with a three-dimensional numerical ...Laboratory experiments were conducted to investigate the mixture of wastewater discharged from a submerged multiport diffuser in the Nantong sea-area. The process was then simulated with a three-dimensional numerical model. The plane or line patch was used to impose the discharge momentum flux in the near field. A comparison of model simulation with laboratory experiments shows that the proposed model can be used to simulate the shapes of pollution plumes, the distributions of excess concentration, and the velocity induced by a coflowing diffuser in proximity to a shoreline boundary. From the numerical simulation and laboratory experiments, it is recommended that the multiport diffuser be placed in a hydrodynamically active sea-area.展开更多
Spalling of pillar ribs has been a major hazard in the mining industry for decades.In the absence of rib support guidelines,accidents have continued to occur in recent years.Developing effective support guidelines req...Spalling of pillar ribs has been a major hazard in the mining industry for decades.In the absence of rib support guidelines,accidents have continued to occur in recent years.Developing effective support guidelines requires a complete understanding of complex pillar damage mechanisms.Continuum models represent a convenient tool for analyzing this problem,but the behavior of such models is dependent of the choice of the constitutive model.In this study,a recently proposed constitutive model was used to simulate the rib fracturing process in a longwall chain pillar at West Cliff mine.After calibration,the model was able to capture the rib displacement profiles for multiple locations of the longwall face and the stress evolution 4 m into the pillar.The rib bolts in the model were found to be yielding over 60% of their length under the headgate loading condition.The model also predicted a steady damage accumulation in the rib for certain face locations,which is consistent with the description of the rib at the site.Damage was localized along the upper part of the pillar and underscored the role that the dirt band played in controlling rib deterioration at the site.The ability of the numerical model to replicate field measurements provides confidence in the capabilities of the new constitutive model.Finally,the need of using multi-point calibration is highlighted by comparing the results of the calibrated model to an alternative model calibrated to a smaller amount of data.展开更多
Testing-effort(TE) and imperfect debugging(ID) in the reliability modeling process may further improve the fitting and prediction results of software reliability growth models(SRGMs). For describing the S-shaped...Testing-effort(TE) and imperfect debugging(ID) in the reliability modeling process may further improve the fitting and prediction results of software reliability growth models(SRGMs). For describing the S-shaped varying trend of TE increasing rate more accurately, first, two S-shaped testing-effort functions(TEFs), i.e.,delayed S-shaped TEF(DS-TEF) and inflected S-shaped TEF(IS-TEF), are proposed. Then these two TEFs are incorporated into various types(exponential-type, delayed S-shaped and inflected S-shaped) of non-homogeneous Poisson process(NHPP)SRGMs with two forms of ID respectively for obtaining a series of new NHPP SRGMs which consider S-shaped TEFs as well as ID. Finally these new SRGMs and several comparison NHPP SRGMs are applied into four real failure data-sets respectively for investigating the fitting and prediction power of these new SRGMs.The experimental results show that:(i) the proposed IS-TEF is more suitable and flexible for describing the consumption of TE than the previous TEFs;(ii) incorporating TEFs into the inflected S-shaped NHPP SRGM may be more effective and appropriate compared with the exponential-type and the delayed S-shaped NHPP SRGMs;(iii) the inflected S-shaped NHPP SRGM considering both IS-TEF and ID yields the most accurate fitting and prediction results than the other comparison NHPP SRGMs.展开更多
The internal turbulent flow in conical diffuser is a very complicated adverse pressure gradient flow.DLR k-ε turbulence model was adopted to study it.The every terms of the Laplace operator in DLR k-ε turbulence mod...The internal turbulent flow in conical diffuser is a very complicated adverse pressure gradient flow.DLR k-ε turbulence model was adopted to study it.The every terms of the Laplace operator in DLR k-ε turbulence model and pressure Poisson equation were discretized by upwind difference scheme.A new full implicit difference scheme of 5-point was constructed by using finite volume method and finite difference method.A large sparse matrix with five diagonals was formed and was stored by three arrays of one dimension in a compressed mode.General iterative methods do not work wel1 with large sparse matrix.With algebraic multigrid method(AMG),linear algebraic system of equations was solved and the precision was set at 10-6.The computation results were compared with the experimental results.The results show that the computation results have a good agreement with the experiment data.The precision of computational results and numerical simulation efficiency are greatly improved.展开更多
This paper presents a numerical investigation of the potential aerodynamic benefits of using endwall contouring in a fairly aggressive duct with six struts based on the platform for endwall design optimization.The pla...This paper presents a numerical investigation of the potential aerodynamic benefits of using endwall contouring in a fairly aggressive duct with six struts based on the platform for endwall design optimization.The platform is constructed by integrating adaptive genetic algorithm(AGA), design of experiments(DOE), response surface methodology(RSM) based on the artificial neural network(ANN), and a 3D Navier–Stokes solver.The visual analysis method based on DOE is used to define the design space and analyze the impact of the design parameters on the target function(response).Optimization of the axisymmetric and the non-axisymmetric endwall contouring in an S-shaped duct is performed and evaluated to minimize the total pressure loss.The optimal ducts are found to reduce the hub corner separation and suppress the migration of the low momentum fluid.The non-axisymmetric endwall contouring is shown to remove the separation completely and reduce the net duct loss by 32.7%.展开更多
Centrifugal compressors with parallel-wall and contracting wall vaneless diffuser are designed by using centrifugal compressor computer-aided integrated design system. The internal flow fields of the compressor are ca...Centrifugal compressors with parallel-wall and contracting wall vaneless diffuser are designed by using centrifugal compressor computer-aided integrated design system. The internal flow fields of the compressor are calculated by solving three-dimensional Navier-Stokes equation. Four aspects are investigated and calculation results show that the total efficiencies and total pressure ratios of the compressor with contracting wall vandess diffuser is higher than that of the compressor with parallel-wall. The jet and wake don't mix rapidly inside vandess diffuser. The outlet blade lean angle doesn't affect the compressor performance. The greater the mass flow rate through impeller, the more uneven the velocity distribution at impeller outlet is.展开更多
文摘Size reduction of the gas turbines(GT)by reducing the inlet S-shaped diffuser length increases the powerto-weight ratio.It improves the techno-economic features of the GT by lesser fuel consumption.However,this Length reduction of a bare S-shaped diffuser to an aggressive S-shaped diffuser would risk flow separation and performance reduction of the diffuser and the air intake of the GT.The objective of this research is to propose and assess fitted energy promoters(EPs)to enhance the S-shaped diffuser performance by controlling and modifying the flow in the high bending zone of the diffuser.After experimental assessment,the work has been extended to cover more cases by numerical investigations on bare,bare aggressive,and aggressive with energy promoters S-shaped diffusers.Three types of EPs,namely co-rotating low-profile,co-rotating streamline sheet,and trapezoidal submerged EPs were tested with various combinations over a range of Reynolds numbers from 40,000 to 75,000.The respective S-shaped diffusers were simulated by computational fluid dynamics(CFD)using ANSYS software adopting a steady,3D,standard k-εturbulence model to acquire the details of the flow structure,which cannot be visualized in the experiment.The diffuser performance has been evaluated by the performance indicators of static pressure recovery coefficient,total pressure loss coefficient,and distortion coefficient(DC(45°)).The enhancements in the static pressure recovery of the S-shaped aggressive diffuser with energy promoters are 19.5%,22.2%,and 24.5%with EPs at planes 3,4 and 5,respectively,compared to the aggressive bare diffuser.In addition,the installation of the EPs resulted in a DC(45°)reduction at the outlet plane of the diffuser of about 43%at Re=40,000.The enhancements in the performance parameters confirm that aggravating the internal flow eliminates the flow separation and enhances the GT intake efficiency.
基金supported by the National Natural Science Foundation of China(No.52375274)the Zhejiang Provincial Natural Science Foundation of China(No.LD21E050003)+1 种基金the Key R&D Program of Zhejiang Province(No.2023C01229)the Central Government Fund for Regional Science and Technology Development of China(No.2023ZY1033).
文摘The thermocline energy storage tank(TEST)serves as a crucial component in thermal energy storage systems,utilizing the working fluid that enters through a diffuser to store and harness energy.However,the conventional double-plate radial diffuser is ill-suited for a single-medium TEST’s full tank storage due to its unidirectional fluid inflow.There has been a notable lack of optimization analysis of diffusers.Two innovative tubular diffuser designs with reduced cross-sectional areas have been introduced:the annular-arranged diffuser(AAD)and the cross-arranged diffuser(CAD).To elucidate the impact of diffuser designs on energy storage efficiency,a 3D transient computational fluid dynamics(CFD)model was established to simulate a thermocline formation under two diffuser types.The model was validated against experimental data.Results showed that the thermocline of AAD was 11.39%thinner than that of a traditional double-plate diffuser.In the process of charging and discharging,the time-varying thermocline and factors influencing thermocline thickness were analyzed.Results indicate that in the mixed dominant region,increased turbulent kinetic energy correlates with reduced thermocline thickness.Notably,the AAD’s stable thermocline was 4.23%and 5.41%thinner than the CAD’s during charging and discharging,respectively,making the AAD preferable for engineering applications.The effects of tube diameter and orifice opening angle on temperature stratification performance were also examined.The findings suggest that an inclined impact jet and large-diameter tubes are more conducive to temperature stratification.Moreover,an orifice diameter optimization method was developed,which can decrease the thermocline by 6.78%.
基金supported by the National Natural Science Foundation of China(Grant No.72161034).
文摘Human motion modeling is a core technology in computer animation,game development,and humancomputer interaction.In particular,generating natural and coherent in-between motion using only the initial and terminal frames remains a fundamental yet unresolved challenge.Existing methods typically rely on dense keyframe inputs or complex prior structures,making it difficult to balance motion quality and plausibility under conditions such as sparse constraints,long-term dependencies,and diverse motion styles.To address this,we propose a motion generation framework based on a frequency-domain diffusion model,which aims to better model complex motion distributions and enhance generation stability under sparse conditions.Our method maps motion sequences to the frequency domain via the Discrete Cosine Transform(DCT),enabling more effective modeling of low-frequency motion structures while suppressing high-frequency noise.A denoising network based on self-attention is introduced to capture long-range temporal dependencies and improve global structural awareness.Additionally,a multi-objective loss function is employed to jointly optimize motion smoothness,pose diversity,and anatomical consistency,enhancing the realism and physical plausibility of the generated sequences.Comparative experiments on the Human3.6M and LaFAN1 datasets demonstrate that our method outperforms state-of-the-art approaches across multiple performance metrics,showing stronger capabilities in generating intermediate motion frames.This research offers a new perspective and methodology for human motion generation and holds promise for applications in character animation,game development,and virtual interaction.
基金Supported by the Faculty of Medicine,Prince of Songkla University.Wainipitapong S has received grants from the Faculty of Medicine,Prince of Songkla University。
文摘AIM:To investigate the clinical characteristics and treatment outcomes,including visual function and overall survival(OS)of patients with ocular adnexal diffuse large B-cell lymphoma(OA-DLBCL).METHODS:This retrospective cohort study enrolled 29 patients diagnosed with OA-DLBCL based on histopathological biopsy between 2006 and 2023.Patients were stratified into two subgroups:primary OA-DLBCL(no prior history of lymphoma)and secondary OA-DLBCL(history of DLBCL at non-ocular adnexal sites).OS was defined as the time interval from OA-DLBCL diagnosis to death from any cause.Survival analysis was performed using the Kaplan–Meier method,and prognostic factors affecting OS were identified using multivariate Cox proportional hazards regression with a stepwise selection approach.RESULTS:The cohort included 24 patients with primary OA-DLBCL(13 males,11 females;mean age:61.36±18.29y)and 5 patients with secondary OA-DLBCL(2 males,3 females;mean age:50.94±18.17y).Among the primary OA-DLBCL subgroup,12 patients(50%)presented with advanced disease(Ann Arbor stage IIIE–IV),and 16 patients(66%)were classified as T4 disease according to the tumor-node-metastasis(TNM)staging system.The mean final visual acuity was 1.72±1.10 in the primary group and 0.90±1.18 in the secondary group.The 5-year OS rate for the entire cohort was 27.7%.Multivariate analysis identified five factors significantly associated with poor survival outcomes:epiphora[adjusted hazard ratio(aHR),36.95],atherosclerotic cardiovascular disease(aHR,10.08),human immunodeficiency virus(HIV)infection(aHR,12.47),M1 stage(aHR,6.99),and secondary OA-DLBCL(aHR,6.03;all P<0.05).The median OS was 1.68y for primary OA-DLBCL and 1.12y for secondary OA-DLBCL.CONCLUSION:A substantial proportion of patients with primary OA-DLBCL present with advanced-stage disease at diagnosis.Epiphora,atherosclerotic cardiovascular disease,HIV infection,M1 stage,and secondary OA-DLBCL are independent prognostic factors for poor survival outcomes.These findings emphasize the urgent need for optimized therapeutic strategies and early screening protocols to improve the management of OA-DLBCL,particularly in developing countries.
基金National Basic Research Program of China (5130802)
文摘An investigation on the ventral diverterless high offset S-shaped inlet is carried out at Mach numbers from 0.600 to 1.534, angles of attack from -4° to 9.4°, and yaw angles from 0° to 8°. Results indicate: (1) a large region of low total pressure exists at the lower part of the inlet exit caused by the counter-rotating vortices in the S-shaped duct; (2) the performances of the inlet at Mach number 1.000 reach almost the highest, so the propulsion system could work efficiently in terms of aerodynamics; (3) the total pressure recovery increases slowly at first and then remains unvaried as the Mach number rises from 0.6 to 1.0, however, it does in an opposite manner in the conventional diverter-equipped S-shaped inlet; (4) the performances of the inlet are generally insensitive to angles of attack from -4° to 9.4° and yaw angles from 0° to 8° at Mach number 0.850, and angles of attack from -2° to 6° and yaw angles from 0° to 5° at Mach number 1.534.
文摘In order to improve the performances of an 11 cm-diameter turbine engine,this article suggests to substitute a new-style micro diffuser redesigned based on a new concept for the traditional diffuser having poor performances. The new diffuser comprises integral blades and splitters,which are taken for a series of ducts in designing. This article investigates the effects of the cross-section area distribution along the flow path on the redesigned diffuser's performances. Having furnished with the new diffuser in place of the original vaned one,the 11 cm-diameter prototype engine is tested on the rig for its performances. CFD and experiments have shown that the improved diffuser with the unchanged original size has gained excellent performance parameters of pressure coefficient over 0.65 and total pressure recovery coefficient over 0.9. Equipped with the redesigned micro diffuser,the engine increases the thrust by 11% and decreases the specific fuel consumption by 9%.
文摘The dump diffuser is an important component in advanced annular combustor, and its performance affects greatly the fluid field and pressure loss of the combustor. This paper presents the characteristics of the total pressure loss. Experiments and numerical simulations, keeping the inlet March number of prediffuser constant ( Ma =0 20), are carried out to obtain the regularity of the total pressure loss. It varies with the relative dump gap ( δ =1 2~3 0)by changing the position of prediffuser and combustor liner, respectively. Research shows that there exists the minimum total pressure loss ( σ *=1 6%~1 75%) when relative dump gap δ is about 1 8.
基金supported by the National Natural Science Foundation of China (No.51276108)
文摘To expand the stable operating range of compressors, understanding the mechanism of flow instability at low flow rates is necessary. In this paper, the mechanism of stall and surge in a centrifugal compressor with a variable vaned diffuser is experimentally investigated, where the diffuser blade setting angle can be adjusted. Many dynamic pressure transducers are mounted on the casing surface of the compressor. From the design condition to surge, dynamic pressure data is recorded throughout the gradual process. According to the signal developing status, the typical modes of compressor instability are defined in detail, such as stall, mild surge, and deep surge. A relatively high-frequency stall wave originates in the impeller and propagates to the diffuser, and finally stimulates a deep surge in the compressor. The compressor behavior during surge differs at different diffuser vane angles. When the diffuser vane angle is adjusted, both the unstable form and the core factor affecting the overall machine stability change. A specific indicator is proposed to measure the instability of each component in a compressor, which can be used to determine the best region for stability extension technologies, such as a holed casing treatment, in different compressor applications.
文摘The influence of diffuser parameters, including the riser spacing, port number in a riser, injection angle, port arrangement, etc., on the surface initial dilution is experimentally investigated. The relative density difference between the effluent and the sea water in the model is the same as that in the prototype, and the effect of the cross current is simulated by an inverse model technique. Based on the result analysis, the arrangement with more ports in a riser and larger riser spacing is suggested to save construction cost. The relationship between the Reynolds number based on the port diameter and velocity, and the surface initial dilution is also explored, and the critical Reynolds number is proposed.
文摘The paper presents analysis of the performance and the internal flow behaviour in the vaned diffuser of a radial flow pump using PIV(particle image velocimetry)and pressure probe traverses.PIV measurements have already been performed at middle height inside one diffuser channel passage for a given speed of rotation and various mass flow rates.These results have been already presented in several previous communications.New experiments have been performed using a three-hole pressure probe traverses from hub to shroud diffuser width at different radial locations between the two diffuser geometrical throats.Numerical simulations are also realized with the commercial codes Star CCM+7.02.011 and CFX.Frozen rotor and fully unsteady calculations of the whole pump have been performed.Comparisons between numerical results,previous experimental PIV results and new probe traverses one's are presented and discussed for one mass flow rate.In this respect,a first attempt to take into account fluid leakages between the rotating and fixed part of the pump has been checked since it may affects the real flow structure inside the diffuser.
文摘An electrohydrodynamic (EHD) method, which is based on glow discharge plasma, is presented for flow control in an S-shaped duct. The research subject is an expanding channel with a constant width and a rectangular cross section. An equivalent divergence angle and basic function are introduced to build the three-dimensional model. Subsequently, the plasma physical models are simplified as the effects of electrical body force and work (done by the force) on the fluid near the wall. With the aid of FLUENT software, the source terms of momentum and energy are added to the Navier-Stokes equation. Finally, the original performance of three models (A, B and C) is studied, in which model A demonstrates better performance. Then EHD control based on model A is discussed. The results show that the EHD method is an effective way of reducing flow loss and improving uniformity at the duct exit. The innovation in this study is the assessment of the EHD control effect on the flow in an S-shaped duct. Both the parametric modeling of the S-shaped duct and the simplified models of plasma provide valuable information for future research on aircraft inlet ducts.
文摘Laboratory experiments were conducted to investigate the mixture of wastewater discharged from a submerged multiport diffuser in the Nantong sea-area. The process was then simulated with a three-dimensional numerical model. The plane or line patch was used to impose the discharge momentum flux in the near field. A comparison of model simulation with laboratory experiments shows that the proposed model can be used to simulate the shapes of pollution plumes, the distributions of excess concentration, and the velocity induced by a coflowing diffuser in proximity to a shoreline boundary. From the numerical simulation and laboratory experiments, it is recommended that the multiport diffuser be placed in a hydrodynamically active sea-area.
基金funded by the National Institute for Occupational Safety and Health(NIOSH)(Grant No.200-2016-90154)sponsored by the Alpha Foundation for the Improvement of Mine Safety and Health,Inc.(ALPHA FOUNDATION)。
文摘Spalling of pillar ribs has been a major hazard in the mining industry for decades.In the absence of rib support guidelines,accidents have continued to occur in recent years.Developing effective support guidelines requires a complete understanding of complex pillar damage mechanisms.Continuum models represent a convenient tool for analyzing this problem,but the behavior of such models is dependent of the choice of the constitutive model.In this study,a recently proposed constitutive model was used to simulate the rib fracturing process in a longwall chain pillar at West Cliff mine.After calibration,the model was able to capture the rib displacement profiles for multiple locations of the longwall face and the stress evolution 4 m into the pillar.The rib bolts in the model were found to be yielding over 60% of their length under the headgate loading condition.The model also predicted a steady damage accumulation in the rib for certain face locations,which is consistent with the description of the rib at the site.Damage was localized along the upper part of the pillar and underscored the role that the dirt band played in controlling rib deterioration at the site.The ability of the numerical model to replicate field measurements provides confidence in the capabilities of the new constitutive model.Finally,the need of using multi-point calibration is highlighted by comparing the results of the calibrated model to an alternative model calibrated to a smaller amount of data.
基金supported by the Pre-research Foundation of CPLA General Equipment Department
文摘Testing-effort(TE) and imperfect debugging(ID) in the reliability modeling process may further improve the fitting and prediction results of software reliability growth models(SRGMs). For describing the S-shaped varying trend of TE increasing rate more accurately, first, two S-shaped testing-effort functions(TEFs), i.e.,delayed S-shaped TEF(DS-TEF) and inflected S-shaped TEF(IS-TEF), are proposed. Then these two TEFs are incorporated into various types(exponential-type, delayed S-shaped and inflected S-shaped) of non-homogeneous Poisson process(NHPP)SRGMs with two forms of ID respectively for obtaining a series of new NHPP SRGMs which consider S-shaped TEFs as well as ID. Finally these new SRGMs and several comparison NHPP SRGMs are applied into four real failure data-sets respectively for investigating the fitting and prediction power of these new SRGMs.The experimental results show that:(i) the proposed IS-TEF is more suitable and flexible for describing the consumption of TE than the previous TEFs;(ii) incorporating TEFs into the inflected S-shaped NHPP SRGM may be more effective and appropriate compared with the exponential-type and the delayed S-shaped NHPP SRGMs;(iii) the inflected S-shaped NHPP SRGM considering both IS-TEF and ID yields the most accurate fitting and prediction results than the other comparison NHPP SRGMs.
基金Projects(59375211,10771178,10676031) supported by the National Natural Science Foundation of ChinaProject(07A068) supported by the Key Project of Hunan Education CommissionProject(2005CB321702) supported by the National Key Basic Research Program of China
文摘The internal turbulent flow in conical diffuser is a very complicated adverse pressure gradient flow.DLR k-ε turbulence model was adopted to study it.The every terms of the Laplace operator in DLR k-ε turbulence model and pressure Poisson equation were discretized by upwind difference scheme.A new full implicit difference scheme of 5-point was constructed by using finite volume method and finite difference method.A large sparse matrix with five diagonals was formed and was stored by three arrays of one dimension in a compressed mode.General iterative methods do not work wel1 with large sparse matrix.With algebraic multigrid method(AMG),linear algebraic system of equations was solved and the precision was set at 10-6.The computation results were compared with the experimental results.The results show that the computation results have a good agreement with the experiment data.The precision of computational results and numerical simulation efficiency are greatly improved.
基金supported by the National Natural Science Foundation of China (Nos.51006005, 51236001)the National Basic Research Program of China (No.2012CB720201)the Fundamen tal Research Funds for the Central Universities of China
文摘This paper presents a numerical investigation of the potential aerodynamic benefits of using endwall contouring in a fairly aggressive duct with six struts based on the platform for endwall design optimization.The platform is constructed by integrating adaptive genetic algorithm(AGA), design of experiments(DOE), response surface methodology(RSM) based on the artificial neural network(ANN), and a 3D Navier–Stokes solver.The visual analysis method based on DOE is used to define the design space and analyze the impact of the design parameters on the target function(response).Optimization of the axisymmetric and the non-axisymmetric endwall contouring in an S-shaped duct is performed and evaluated to minimize the total pressure loss.The optimal ducts are found to reduce the hub corner separation and suppress the migration of the low momentum fluid.The non-axisymmetric endwall contouring is shown to remove the separation completely and reduce the net duct loss by 32.7%.
文摘Centrifugal compressors with parallel-wall and contracting wall vaneless diffuser are designed by using centrifugal compressor computer-aided integrated design system. The internal flow fields of the compressor are calculated by solving three-dimensional Navier-Stokes equation. Four aspects are investigated and calculation results show that the total efficiencies and total pressure ratios of the compressor with contracting wall vandess diffuser is higher than that of the compressor with parallel-wall. The jet and wake don't mix rapidly inside vandess diffuser. The outlet blade lean angle doesn't affect the compressor performance. The greater the mass flow rate through impeller, the more uneven the velocity distribution at impeller outlet is.