Compared with single-domain unmanned swarms,cross-domain unmanned swarms continue to face new challenges in terms of platform performance and constraints.In this paper,a joint unmanned swarm target assignment and miss...Compared with single-domain unmanned swarms,cross-domain unmanned swarms continue to face new challenges in terms of platform performance and constraints.In this paper,a joint unmanned swarm target assignment and mission trajectory planning method is proposed to meet the requirements of cross-domain unmanned swarm mission planning.Firstly,the different performances of cross-domain heterogeneous platforms and mission requirements of targets are characterised by using a collection of operational resources.Secondly,an algorithmic framework for joint target assignment and mission trajectory planning is proposed,in which the initial planning of the trajectory is performed in the target assignment phase,while the trajectory is further optimised afterwards.Next,the estimation of the distribution algorithms is combined with the genetic algorithm to solve the objective function.Finally,the algorithm is numerically simulated by specific cases.Simulation results indicate that the proposed algorithm can perform effective task assignment and trajectory planning for cross-domain unmanned swarms.Furthermore,the solution performance of the hybrid estimation of distribution algorithm(EDA)-genetic algorithm(GA)algorithm is better than that of GA and EDA.展开更多
The multi-target assignment(MTA)problem,a crucial challenge in command control,mission planning,and a fundamental research focus in military operations,has garnered significant attention over the years.Extensively stu...The multi-target assignment(MTA)problem,a crucial challenge in command control,mission planning,and a fundamental research focus in military operations,has garnered significant attention over the years.Extensively studied across various domains such as land,sea,air,space,and electronics,the MTA problem has led to the emergence of numerous models and algorithms.To delve deeper into this field,this paper starts by conducting a bibliometric analysis on 463 Scopus database papers using CiteSpace software.The analysis includes examining keyword clustering,co-occurrence,and burst,with visual representations of the results.Following this,the paper provides an overview of current classification and modeling techniques for addressing the MTA problem,distinguishing between static multi-target assignment(SMTA)and dynamic multi-target assignment(DMTA).Subsequently,existing solution algorithms for the MTA problem are reviewed,generally falling into three categories:exact algorithms,heuristic algorithms,and machine learning algorithms.Finally,a development framework is proposed based on the"HIGH"model(high-speed,integrated,great,harmonious)to guide future research and intelligent weapon system development concerning the MTA problem.This framework emphasizes application scenarios,modeling mechanisms,solution algorithms,and system efficiency to offer a roadmap for future exploration in this area.展开更多
The measures of path charge are important considerations in traffic assignment of road networks. Factors, such as travel time, fixed charge and traffic congestion which affect road users' choices of trip paths, are a...The measures of path charge are important considerations in traffic assignment of road networks. Factors, such as travel time, fixed charge and traffic congestion which affect road users' choices of trip paths, are analyzed. Travelers usually decide their trip paths based on their personal habits, preferences and the information at hand. By considering both deterministic and stochastic factors which affect the value of time (VOT) during the process of path choosing, a variational inequality model is proposed to describe the problem of traffic assignment. A lazy loading algorithm for traffic assignment is designed to solve the proposed model, and the calculation steps are given. Numerical experiment results show that compared with the all-or-nothing assignment, the proposed model and the algorithm can provide more optimal traffic assignments for road networks. The results of this study can be used to optimize traffic planning and management.展开更多
The task assignment problem of multiple heterogeneous unmanned aerial vehicles (UAVs), concerned with cooperative decision making and control, is studied in this paper. The heterogeneous vehicles have different oper...The task assignment problem of multiple heterogeneous unmanned aerial vehicles (UAVs), concerned with cooperative decision making and control, is studied in this paper. The heterogeneous vehicles have different operational capabilities and kinematic constraints, and carry limited resources (e.g., weapons) onboard. They are designated to perform multiple consecutive tasks cooperatively on multiple ground targets. The problem becomes much more complicated because of these terms of heterogeneity. In order to tackle the challenge, we modify the former genetic algorithm with multi-type genes to stochastically search a best solution. Genes of chromo- somes are different, and they are assorted into several types according to the tasks that must be performed on targets. Different types of genes are processed specifically in the improved genetic operators including initialization, crossover, and mutation. We also present a mirror representation of vehicles to deal with the limited resource constraint. Feasible chromosomes that vehicles could perform tasks using their limited resources under the assignment are created and evolved by genetic operators. The effect of the proposed algorithm is demonstrated in numerical simulations. The results show that it effectively provides good feasible solutions and finds an optimal one.展开更多
A weapon target assignment (WTA) model satisfying expected damage probabilities with an ant colony algorithm is proposed. In order to save armament resource and attack the targets effectively, the strategy of the we...A weapon target assignment (WTA) model satisfying expected damage probabilities with an ant colony algorithm is proposed. In order to save armament resource and attack the targets effectively, the strategy of the weapon assignment is that the target with greater threat degree has higher priority to be intercepted. The effect of this WTA model is not maximizing the damage probability but satisfying the whole assignment result. Ant colony algorithm has been successfully used in many fields, especially in combination optimization. The ant colony algorithm for this WTA problem is described by analyzing path selection, pheromone update, and tabu table update. The effectiveness of the model and the algorithm is demonstrated with an example.展开更多
The continuous growth of air traffic has led to acute airspace congestion and severe delays, which threatens operation safety and cause enormous economic loss. Flight assignment is an economical and effective strategi...The continuous growth of air traffic has led to acute airspace congestion and severe delays, which threatens operation safety and cause enormous economic loss. Flight assignment is an economical and effective strategic plan to reduce the flight delay and airspace congestion by rea- sonably regulating the air traffic flow of China. However, it is a large-scale combinatorial optimiza- tion problem which is difficult to solve. In order to improve the quality of solutions, an effective multi-objective parallel evolution algorithm (MPEA) framework with dynamic migration interval strategy is presented in this work. Firstly, multiple evolution populations are constructed to solve the problem simultaneously to enhance the optimization capability. Then a new strategy is pro- posed to dynamically change the migration interval among different evolution populations to improve the efficiency of the cooperation of populations. Finally, the cooperative co-evolution (CC) algorithm combined with non-dominated sorting genetic algorithm II (NSGA-II) is intro- duced for each population. Empirical studies using the real air traffic data of the Chinese air route network and daily flight plans show that our method outperforms the existing approaches, multi- objective genetic algorithm (MOGA), multi-objective evolutionary algorithm based on decom- position (MOEA/D), CC-based multi-objective algorithm (CCMA) as well as other two MPEAs with different migration interval strategies.展开更多
Computer networks and power transmission networks are treated as capacitated flow networks.A capacitated flow network may partially fail due to maintenance.Therefore,the capacity of each edge should be optimally assig...Computer networks and power transmission networks are treated as capacitated flow networks.A capacitated flow network may partially fail due to maintenance.Therefore,the capacity of each edge should be optimally assigned to face critical situations-i.e.,to keep the network functioning normally in the case of failure at one or more edges.The robust design problem(RDP)in a capacitated flow network is to search for the minimum capacity assignment of each edge such that the network still survived even under the edge’s failure.The RDP is known as NP-hard.Thus,capacity assignment problem subject to system reliability and total capacity constraints is studied in this paper.The problem is formulated mathematically,and a genetic algorithm is proposed to determine the optimal solution.The optimal solution found by the proposed algorithm is characterized by maximum reliability and minimum total capacity.Some numerical examples are presented to illustrate the efficiency of the proposed approach.展开更多
Scattered storage means an item can be stored in multiple inventory bins. The scattered storage assignment problem based on association rules in Kiva mobile fulfillment system is investigated, which aims to decide the...Scattered storage means an item can be stored in multiple inventory bins. The scattered storage assignment problem based on association rules in Kiva mobile fulfillment system is investigated, which aims to decide the pods for each item to put on so as to minimize the number of pods to be moved when picking a batch of orders. This problem is formulated into an integer programming model. A genetic algorithm is developed to solve the large-sized problems. Computational experiments and comparison between the scattered storage strategy and random storage strategy are conducted to evaluate the performance of the model and algorithm.展开更多
Aiming at the problem of gate allocation of transit flights,a flight first service model is established.Under the constraints of maximizing the utilization rate of gates and minimizing the transit time,the idea of“fi...Aiming at the problem of gate allocation of transit flights,a flight first service model is established.Under the constraints of maximizing the utilization rate of gates and minimizing the transit time,the idea of“first flight serving first”is used to allocate the first time,and then the hybrid algorithm of artificial fish swarm and simulated annealing is used to find the optimal solution.That means the fish swarm algorithm with the swallowing behavior is employed to find the optimal solution quickly,and the simulated annealing algorithm is used to obtain a global optimal allocation scheme for the optimal local region.The experimental data show that the maximum utilization of the gate is 27.81%higher than that of the“first come first serve”method when the apron is not limited,and the hybrid algorithm has fewer iterations than the simulated annealing algorithm alone,with the overall passenger transfer tension reducing by 1.615;the hybrid algorithm has faster convergence and better performance than the artificial fish swarm algorithm alone.The experimental results indicate that the hybrid algorithm of fish swarm and simulated annealing can achieve higher utilization rate of gates and lower passenger transfer tension under the idea of“first flight serving first”.展开更多
In order to overcome the shortcoming of the classical Hungarian algorithm that it can only solve the problems where the total cost is the sum of that of each job, an improved Hungarian algorithm is proposed and used t...In order to overcome the shortcoming of the classical Hungarian algorithm that it can only solve the problems where the total cost is the sum of that of each job, an improved Hungarian algorithm is proposed and used to solve the assignment problem of serial-parallel systems. First of all, by replacing parallel jobs with virtual jobs, the proposed algorithm converts the serial-parallel system into a pure serial system, where the classical Hungarian algorithm can be used to generate a temporal assignment plan via optimization. Afterwards, the assignment plan is validated by checking whether the virtual jobs can be realized by real jobs through local searching. If the assignment plan is not valid, the converted system will be adapted by adjusting the parameters of virtual jobs, and then be optimized again. Through iterative searching, the valid optimal assignment plan can eventually be obtained.To evaluate the proposed algorithm, the valid optimal assignment plan is applied to labor allocation of a manufacturing system which is a typical serial-parallel system.展开更多
An extension of 2-D assignment approach is proposed for measurement-to-target association for improving multiple targets vector miss distance measurement accuracy. When the multiple targets move so closely, the measur...An extension of 2-D assignment approach is proposed for measurement-to-target association for improving multiple targets vector miss distance measurement accuracy. When the multiple targets move so closely, the measurements can not be fully resolved due to finite resolution. The proposed method adopts an auction algorithm to compute the feasible measurement-to-target assignment with unresolved measurements for solving this 2-D assignment problem. Computer simulation results demonstrate the effectiveness and feasibility of this method.展开更多
An online algorithm balancing the efficiency and equity principles is proposed for the kidney resource assignment when only the current patient and resource information is known to the assignment network. In the algor...An online algorithm balancing the efficiency and equity principles is proposed for the kidney resource assignment when only the current patient and resource information is known to the assignment network. In the algorithm, the assignment is made according to the priority, which is calculated according to the efficiency principle and the equity principle. The efficiency principle is concerned with the post-transplantation immunity spending caused by the possible post-operation immunity rejection and patient’s mental depression due to the HLA mismatch. The equity principle is concerned with three other factors, namely the treatment spending incurred starting from the day of registering with the kidney assignment network, the post-operation immunity spending and the negative effects of waiting for kidney resources on the clinical efficiency. The competitive analysis conducted through computer simulation indicates that the efficiency competitive ratio is between 6.29 and 10.43 and the equity competitive ratio is between 1.31 and 5.21, demonstrating that the online algorithm is of great significance in application.展开更多
In order to solve the problem of efficiently assigning tasks in an ad-hoc mobile cloud( AMC),a task assignment algorithm based on the heuristic algorithm is proposed. The proposed task assignment algorithm based on pa...In order to solve the problem of efficiently assigning tasks in an ad-hoc mobile cloud( AMC),a task assignment algorithm based on the heuristic algorithm is proposed. The proposed task assignment algorithm based on particle swarm optimization and simulated annealing( PSO-SA) transforms the dependencies between tasks into a directed acyclic graph( DAG) model. The number in each node represents the computation workload of each task and the number on each edge represents the workload produced by the transmission. In order to simulate the environment of task assignment in AMC,mathematical models are developed to describe the dependencies between tasks and the costs of each task are defined. PSO-SA is used to make the decision for task assignment and for minimizing the cost of all devices,which includes the energy consumption and time delay of all devices.PSO-SA also takes the advantage of both particle swarm optimization and simulated annealing by selecting an optimal solution with a certain probability to avoid falling into local optimal solution and to guarantee the convergence speed. The simulation results show that compared with other existing algorithms,the PSO-SA has a smaller cost and the result of PSO-SA can be very close to the optimal solution.展开更多
Weapon Target Assignment is not only an important issue to use firepower, but also an important operational decision-making problem. As new intelligent algorithms, Genetic algorithm and ant colony algorithm are applie...Weapon Target Assignment is not only an important issue to use firepower, but also an important operational decision-making problem. As new intelligent algorithms, Genetic algorithm and ant colony algorithm are applied to solve Weapons-Target Assignment Problem. This paper introduces the Weapon-Target Assignment (WTA) and the mathematical model, and proposes ACGA algorithm which is the integration of genetic algorithm and ant colony algorithm then use ACGA algorithm to solve the Weapon-Target Assignment Problem. Calculations show that: when ACGA algorithm is used to solve Weapon – Target Assignment Problem, it has fast convergence and high accuracy.展开更多
In order to adapt to the changing battlefield situation and improve the combat effectiveness of air combat,the problem of air battle allocation based on Bayesian optimization algorithm(BOA)is studied.First,we discuss ...In order to adapt to the changing battlefield situation and improve the combat effectiveness of air combat,the problem of air battle allocation based on Bayesian optimization algorithm(BOA)is studied.First,we discuss the number of fighters on both sides,and apply cluster analysis to divide our fighter into the same number of groups as the enemy.On this basis,we sort each of our fighters'different advantages to the enemy fighters,and obtain a series of target allocation schemes for enemy attacks by first in first serviced criteria.Finally,the maximum advantage function is used as the target,and the BOA is used to optimize the model.The simulation results show that the established model has certain decision-making ability,and the BOA can converge to the global optimal solution at a faster speed,which can effectively solve the air combat task assignment problem.展开更多
One of the keys in time-dependent routing is determining the weight of each road network link based on traffic information.To facilitate the estimation of the road's weight,Global Position System(GPS)data are comm...One of the keys in time-dependent routing is determining the weight of each road network link based on traffic information.To facilitate the estimation of the road's weight,Global Position System(GPS)data are commonly used in obtaining real-time traffic information.However,the information obtained by taxi-GPS does not cover the entire road network.Aiming at incomplete traffic information on urban roads,this paper proposes a novel fuzzy inference method.It considers the combined effect of road grade,traffic information,and other spatial factors.Taking the third law of geography as the basic premise,that is,the more similar the geographical environment,the more similar the characteristics of the geographical target will be.This method uses a Typical Link Pattern(TLP)model to describe the geographical environment.The TLP represents typical road sections with complete information.Then,it determines the relationship between roads lacking traffic information and the TLPs according to their related factors.After obtaining the TLPs,this method ascertains the weight of road links by calculating their similarities with TLPs based on the theory of fuzzy inference.Aiming at road links at different places,the dividing-conquering strategy and globe algorithm are also introduced to calculate the weight.These two strategies are used to address the excessively fragmented or lengthy links.The experimental results with the case of Newcastle show robustness in that the average Root Mean Square Error(RMSE)is 1.430 mph,and the bias is 0.2%;the overall RMSE is 11.067 mph,and the bias is 0.6%.This article is the first to combine the third law of geography with fuzzy inference,which significantly improves the estimation accuracy of road weights with incomplete information.Empirical application and validation show that the method can accurately predict vehicle speed under incomplete information.展开更多
Key tactics of origin-based user equilibrium (OUE) algorithm was studied,which involved the algorithm procedure and several implementation issues.To speed up the convergence,update policies of flows,costs and bushes w...Key tactics of origin-based user equilibrium (OUE) algorithm was studied,which involved the algorithm procedure and several implementation issues.To speed up the convergence,update policies of flows,costs and bushes were proposed.The methods of step-size searching and bush construction are proved to be practical.The modified OUE algorithm procedure was also optimized to take the advantage of multi-thread process.Convergence performances were compared with those of other algorithms by different sizes of urban transportation networks.The result shows this modified OUE algorithm is more efficient and consumes less time to achieve the reasonable relative gap in practical applications.展开更多
The dynamic weapon target assignment(DWTA)problem is of great significance in modern air combat.However,DWTA is a highly complex constrained multi-objective combinatorial optimization problem.An improved elitist non-d...The dynamic weapon target assignment(DWTA)problem is of great significance in modern air combat.However,DWTA is a highly complex constrained multi-objective combinatorial optimization problem.An improved elitist non-dominated sorting genetic algorithm-II(NSGA-II)called the non-dominated shuffled frog leaping algorithm(NSFLA)is proposed to maximize damage to enemy targets and minimize the self-threat in air combat constraints.In NSFLA,the shuffled frog leaping algorithm(SFLA)is introduced to NSGA-II to replace the inside evolutionary scheme of the genetic algorithm(GA),displaying low optimization speed and heterogeneous space search defects.Two improvements have also been raised to promote the internal optimization performance of SFLA.Firstly,the local evolution scheme,a novel crossover mechanism,ensures that each individual participates in updating instead of only the worst ones,which can expand the diversity of the population.Secondly,a discrete adaptive mutation algorithm based on the function change rate is applied to balance the global and local search.Finally,the scheme is verified in various air combat scenarios.The results show that the proposed NSFLA has apparent advantages in solution quality and efficiency,especially in many aircraft and the dynamic air combat environment.展开更多
Aiming at the problems of traditional dynamic weapon-target assignment algorithms in command decisionmaking,such as large computational amount,slow solution speed,and low calculation accuracy,combined with deep reinfo...Aiming at the problems of traditional dynamic weapon-target assignment algorithms in command decisionmaking,such as large computational amount,slow solution speed,and low calculation accuracy,combined with deep reinforcement learning theory,an improved Deep Deterministic Policy Gradient algorithm with dual noise and prioritized experience replay is proposed,which uses a double noise mechanism to expand the search range of the action,and introduces a priority experience playback mechanism to effectively achieve data utilization.Finally,the algorithm is simulated and validated on the ground-to-air countermeasures digital battlefield.The results of the experiment show that,under the framework of the deep neural network for intelligent weapon-target assignment proposed in this paper,compared to the traditional RELU algorithm,the agent trained with reinforcement learning algorithms,such asDeepDeterministic Policy Gradient algorithm,Asynchronous Advantage Actor-Critic algorithm,Deep Q Network algorithm performs better.It shows that the use of deep reinforcement learning algorithms to solve the weapon-target assignment problem in the field of air defense operations is scientific.In contrast to other reinforcement learning algorithms,the agent trained by the improved Deep Deterministic Policy Gradient algorithm has a higher win rate and reward in confrontation,and the use of weapon resources is more efficient.It shows that the model and algorithm have certain superiority and rationality.The results of this paper provide new ideas for solving the problemof weapon-target assignment in air defense combat command decisions.展开更多
A 0-1 integer programming model for weekly fleet assignment was put forward based on linear network and weekly flight scheduling in China. In this model, the objective function is to maximize the total profit of fleet...A 0-1 integer programming model for weekly fleet assignment was put forward based on linear network and weekly flight scheduling in China. In this model, the objective function is to maximize the total profit of fleet assignment, subject to the constraints of coverage, aircraft flow balance, fleet size, aircraft availability, aircraft usage, flight restriction, aircraft seat capacity, and stopover. Then the branch-and-bound algorithm based on special ordered set was applied to solve the model. At last, a real- wofld case study on an airline with 5 fleets, 48 aircrafts and 1 786 flight legs indicated that the profit increase was ¥ 1 591276 one week and the running time was no more than 4 rain, which shows that the model and algorithm are fairly good for domestic airline.展开更多
文摘Compared with single-domain unmanned swarms,cross-domain unmanned swarms continue to face new challenges in terms of platform performance and constraints.In this paper,a joint unmanned swarm target assignment and mission trajectory planning method is proposed to meet the requirements of cross-domain unmanned swarm mission planning.Firstly,the different performances of cross-domain heterogeneous platforms and mission requirements of targets are characterised by using a collection of operational resources.Secondly,an algorithmic framework for joint target assignment and mission trajectory planning is proposed,in which the initial planning of the trajectory is performed in the target assignment phase,while the trajectory is further optimised afterwards.Next,the estimation of the distribution algorithms is combined with the genetic algorithm to solve the objective function.Finally,the algorithm is numerically simulated by specific cases.Simulation results indicate that the proposed algorithm can perform effective task assignment and trajectory planning for cross-domain unmanned swarms.Furthermore,the solution performance of the hybrid estimation of distribution algorithm(EDA)-genetic algorithm(GA)algorithm is better than that of GA and EDA.
基金the financial support provided by the National Natural Science Foundation of China(NSFC)(Grant No.62173274)the National Key R&D Program of China(Grant No.2019YFA0405300)+4 种基金the Natural Science Foundation of Hunan Province of China(Grant No.2021JJ10045)the Practice and Innovation Funds for Graduate Students of Northwestern Polytechnical University(Grant No.PF2023046)the Open Research Subject of State Key Laboratory of Intelligent Game(Grant No.ZBKF-24-01)the Postdoctoral Fellowship Program of CPSF(No.GZB20240989)the China Postdoctoral Science Foundation(Grant No.2024M754304)。
文摘The multi-target assignment(MTA)problem,a crucial challenge in command control,mission planning,and a fundamental research focus in military operations,has garnered significant attention over the years.Extensively studied across various domains such as land,sea,air,space,and electronics,the MTA problem has led to the emergence of numerous models and algorithms.To delve deeper into this field,this paper starts by conducting a bibliometric analysis on 463 Scopus database papers using CiteSpace software.The analysis includes examining keyword clustering,co-occurrence,and burst,with visual representations of the results.Following this,the paper provides an overview of current classification and modeling techniques for addressing the MTA problem,distinguishing between static multi-target assignment(SMTA)and dynamic multi-target assignment(DMTA).Subsequently,existing solution algorithms for the MTA problem are reviewed,generally falling into three categories:exact algorithms,heuristic algorithms,and machine learning algorithms.Finally,a development framework is proposed based on the"HIGH"model(high-speed,integrated,great,harmonious)to guide future research and intelligent weapon system development concerning the MTA problem.This framework emphasizes application scenarios,modeling mechanisms,solution algorithms,and system efficiency to offer a roadmap for future exploration in this area.
基金The National High Technology Research and Development Program of China(863 Program)(No.2007AA11Z202)the National Key Technology R&D Program of China during the 11th Five-Year Plan Period(No.2006BAJ18B03)
文摘The measures of path charge are important considerations in traffic assignment of road networks. Factors, such as travel time, fixed charge and traffic congestion which affect road users' choices of trip paths, are analyzed. Travelers usually decide their trip paths based on their personal habits, preferences and the information at hand. By considering both deterministic and stochastic factors which affect the value of time (VOT) during the process of path choosing, a variational inequality model is proposed to describe the problem of traffic assignment. A lazy loading algorithm for traffic assignment is designed to solve the proposed model, and the calculation steps are given. Numerical experiment results show that compared with the all-or-nothing assignment, the proposed model and the algorithm can provide more optimal traffic assignments for road networks. The results of this study can be used to optimize traffic planning and management.
文摘The task assignment problem of multiple heterogeneous unmanned aerial vehicles (UAVs), concerned with cooperative decision making and control, is studied in this paper. The heterogeneous vehicles have different operational capabilities and kinematic constraints, and carry limited resources (e.g., weapons) onboard. They are designated to perform multiple consecutive tasks cooperatively on multiple ground targets. The problem becomes much more complicated because of these terms of heterogeneity. In order to tackle the challenge, we modify the former genetic algorithm with multi-type genes to stochastically search a best solution. Genes of chromo- somes are different, and they are assorted into several types according to the tasks that must be performed on targets. Different types of genes are processed specifically in the improved genetic operators including initialization, crossover, and mutation. We also present a mirror representation of vehicles to deal with the limited resource constraint. Feasible chromosomes that vehicles could perform tasks using their limited resources under the assignment are created and evolved by genetic operators. The effect of the proposed algorithm is demonstrated in numerical simulations. The results show that it effectively provides good feasible solutions and finds an optimal one.
文摘A weapon target assignment (WTA) model satisfying expected damage probabilities with an ant colony algorithm is proposed. In order to save armament resource and attack the targets effectively, the strategy of the weapon assignment is that the target with greater threat degree has higher priority to be intercepted. The effect of this WTA model is not maximizing the damage probability but satisfying the whole assignment result. Ant colony algorithm has been successfully used in many fields, especially in combination optimization. The ant colony algorithm for this WTA problem is described by analyzing path selection, pheromone update, and tabu table update. The effectiveness of the model and the algorithm is demonstrated with an example.
基金co-supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 60921001)
文摘The continuous growth of air traffic has led to acute airspace congestion and severe delays, which threatens operation safety and cause enormous economic loss. Flight assignment is an economical and effective strategic plan to reduce the flight delay and airspace congestion by rea- sonably regulating the air traffic flow of China. However, it is a large-scale combinatorial optimiza- tion problem which is difficult to solve. In order to improve the quality of solutions, an effective multi-objective parallel evolution algorithm (MPEA) framework with dynamic migration interval strategy is presented in this work. Firstly, multiple evolution populations are constructed to solve the problem simultaneously to enhance the optimization capability. Then a new strategy is pro- posed to dynamically change the migration interval among different evolution populations to improve the efficiency of the cooperation of populations. Finally, the cooperative co-evolution (CC) algorithm combined with non-dominated sorting genetic algorithm II (NSGA-II) is intro- duced for each population. Empirical studies using the real air traffic data of the Chinese air route network and daily flight plans show that our method outperforms the existing approaches, multi- objective genetic algorithm (MOGA), multi-objective evolutionary algorithm based on decom- position (MOEA/D), CC-based multi-objective algorithm (CCMA) as well as other two MPEAs with different migration interval strategies.
文摘Computer networks and power transmission networks are treated as capacitated flow networks.A capacitated flow network may partially fail due to maintenance.Therefore,the capacity of each edge should be optimally assigned to face critical situations-i.e.,to keep the network functioning normally in the case of failure at one or more edges.The robust design problem(RDP)in a capacitated flow network is to search for the minimum capacity assignment of each edge such that the network still survived even under the edge’s failure.The RDP is known as NP-hard.Thus,capacity assignment problem subject to system reliability and total capacity constraints is studied in this paper.The problem is formulated mathematically,and a genetic algorithm is proposed to determine the optimal solution.The optimal solution found by the proposed algorithm is characterized by maximum reliability and minimum total capacity.Some numerical examples are presented to illustrate the efficiency of the proposed approach.
文摘Scattered storage means an item can be stored in multiple inventory bins. The scattered storage assignment problem based on association rules in Kiva mobile fulfillment system is investigated, which aims to decide the pods for each item to put on so as to minimize the number of pods to be moved when picking a batch of orders. This problem is formulated into an integer programming model. A genetic algorithm is developed to solve the large-sized problems. Computational experiments and comparison between the scattered storage strategy and random storage strategy are conducted to evaluate the performance of the model and algorithm.
基金This paper is supported by The National Nature Science Foundation of China(No.61703426).
文摘Aiming at the problem of gate allocation of transit flights,a flight first service model is established.Under the constraints of maximizing the utilization rate of gates and minimizing the transit time,the idea of“first flight serving first”is used to allocate the first time,and then the hybrid algorithm of artificial fish swarm and simulated annealing is used to find the optimal solution.That means the fish swarm algorithm with the swallowing behavior is employed to find the optimal solution quickly,and the simulated annealing algorithm is used to obtain a global optimal allocation scheme for the optimal local region.The experimental data show that the maximum utilization of the gate is 27.81%higher than that of the“first come first serve”method when the apron is not limited,and the hybrid algorithm has fewer iterations than the simulated annealing algorithm alone,with the overall passenger transfer tension reducing by 1.615;the hybrid algorithm has faster convergence and better performance than the artificial fish swarm algorithm alone.The experimental results indicate that the hybrid algorithm of fish swarm and simulated annealing can achieve higher utilization rate of gates and lower passenger transfer tension under the idea of“first flight serving first”.
文摘In order to overcome the shortcoming of the classical Hungarian algorithm that it can only solve the problems where the total cost is the sum of that of each job, an improved Hungarian algorithm is proposed and used to solve the assignment problem of serial-parallel systems. First of all, by replacing parallel jobs with virtual jobs, the proposed algorithm converts the serial-parallel system into a pure serial system, where the classical Hungarian algorithm can be used to generate a temporal assignment plan via optimization. Afterwards, the assignment plan is validated by checking whether the virtual jobs can be realized by real jobs through local searching. If the assignment plan is not valid, the converted system will be adapted by adjusting the parameters of virtual jobs, and then be optimized again. Through iterative searching, the valid optimal assignment plan can eventually be obtained.To evaluate the proposed algorithm, the valid optimal assignment plan is applied to labor allocation of a manufacturing system which is a typical serial-parallel system.
文摘An extension of 2-D assignment approach is proposed for measurement-to-target association for improving multiple targets vector miss distance measurement accuracy. When the multiple targets move so closely, the measurements can not be fully resolved due to finite resolution. The proposed method adopts an auction algorithm to compute the feasible measurement-to-target assignment with unresolved measurements for solving this 2-D assignment problem. Computer simulation results demonstrate the effectiveness and feasibility of this method.
基金supported by the National Natural Science Foundation of China (No.70702030)the National Under-graduate Innovation Experimental Project of China (No.610762)
文摘An online algorithm balancing the efficiency and equity principles is proposed for the kidney resource assignment when only the current patient and resource information is known to the assignment network. In the algorithm, the assignment is made according to the priority, which is calculated according to the efficiency principle and the equity principle. The efficiency principle is concerned with the post-transplantation immunity spending caused by the possible post-operation immunity rejection and patient’s mental depression due to the HLA mismatch. The equity principle is concerned with three other factors, namely the treatment spending incurred starting from the day of registering with the kidney assignment network, the post-operation immunity spending and the negative effects of waiting for kidney resources on the clinical efficiency. The competitive analysis conducted through computer simulation indicates that the efficiency competitive ratio is between 6.29 and 10.43 and the equity competitive ratio is between 1.31 and 5.21, demonstrating that the online algorithm is of great significance in application.
基金The National Natural Science Foundation of China(No.61741102,61471164,61601122)the Fundamental Research Funds for the Central Universities(No.SJLX_160040)
文摘In order to solve the problem of efficiently assigning tasks in an ad-hoc mobile cloud( AMC),a task assignment algorithm based on the heuristic algorithm is proposed. The proposed task assignment algorithm based on particle swarm optimization and simulated annealing( PSO-SA) transforms the dependencies between tasks into a directed acyclic graph( DAG) model. The number in each node represents the computation workload of each task and the number on each edge represents the workload produced by the transmission. In order to simulate the environment of task assignment in AMC,mathematical models are developed to describe the dependencies between tasks and the costs of each task are defined. PSO-SA is used to make the decision for task assignment and for minimizing the cost of all devices,which includes the energy consumption and time delay of all devices.PSO-SA also takes the advantage of both particle swarm optimization and simulated annealing by selecting an optimal solution with a certain probability to avoid falling into local optimal solution and to guarantee the convergence speed. The simulation results show that compared with other existing algorithms,the PSO-SA has a smaller cost and the result of PSO-SA can be very close to the optimal solution.
文摘Weapon Target Assignment is not only an important issue to use firepower, but also an important operational decision-making problem. As new intelligent algorithms, Genetic algorithm and ant colony algorithm are applied to solve Weapons-Target Assignment Problem. This paper introduces the Weapon-Target Assignment (WTA) and the mathematical model, and proposes ACGA algorithm which is the integration of genetic algorithm and ant colony algorithm then use ACGA algorithm to solve the Weapon-Target Assignment Problem. Calculations show that: when ACGA algorithm is used to solve Weapon – Target Assignment Problem, it has fast convergence and high accuracy.
基金the National Natural Science Foundation of China(No.61074090)。
文摘In order to adapt to the changing battlefield situation and improve the combat effectiveness of air combat,the problem of air battle allocation based on Bayesian optimization algorithm(BOA)is studied.First,we discuss the number of fighters on both sides,and apply cluster analysis to divide our fighter into the same number of groups as the enemy.On this basis,we sort each of our fighters'different advantages to the enemy fighters,and obtain a series of target allocation schemes for enemy attacks by first in first serviced criteria.Finally,the maximum advantage function is used as the target,and the BOA is used to optimize the model.The simulation results show that the established model has certain decision-making ability,and the BOA can converge to the global optimal solution at a faster speed,which can effectively solve the air combat task assignment problem.
基金supported by the National Key Research and Development Program of China[grant number 2019YFC1804304]the National Natural Science Foundation of China[grant number 41771478]the Fundamental Research Funds for the Central Universities[grant number 2019B02514].
文摘One of the keys in time-dependent routing is determining the weight of each road network link based on traffic information.To facilitate the estimation of the road's weight,Global Position System(GPS)data are commonly used in obtaining real-time traffic information.However,the information obtained by taxi-GPS does not cover the entire road network.Aiming at incomplete traffic information on urban roads,this paper proposes a novel fuzzy inference method.It considers the combined effect of road grade,traffic information,and other spatial factors.Taking the third law of geography as the basic premise,that is,the more similar the geographical environment,the more similar the characteristics of the geographical target will be.This method uses a Typical Link Pattern(TLP)model to describe the geographical environment.The TLP represents typical road sections with complete information.Then,it determines the relationship between roads lacking traffic information and the TLPs according to their related factors.After obtaining the TLPs,this method ascertains the weight of road links by calculating their similarities with TLPs based on the theory of fuzzy inference.Aiming at road links at different places,the dividing-conquering strategy and globe algorithm are also introduced to calculate the weight.These two strategies are used to address the excessively fragmented or lengthy links.The experimental results with the case of Newcastle show robustness in that the average Root Mean Square Error(RMSE)is 1.430 mph,and the bias is 0.2%;the overall RMSE is 11.067 mph,and the bias is 0.6%.This article is the first to combine the third law of geography with fuzzy inference,which significantly improves the estimation accuracy of road weights with incomplete information.Empirical application and validation show that the method can accurately predict vehicle speed under incomplete information.
基金Projects(70631002,70701027) supported by the National Natural Science Foundation of ChinaProject(NCET-08-0406) supported by the Program for New Century Excellent Talents in Chinese University
文摘Key tactics of origin-based user equilibrium (OUE) algorithm was studied,which involved the algorithm procedure and several implementation issues.To speed up the convergence,update policies of flows,costs and bushes were proposed.The methods of step-size searching and bush construction are proved to be practical.The modified OUE algorithm procedure was also optimized to take the advantage of multi-thread process.Convergence performances were compared with those of other algorithms by different sizes of urban transportation networks.The result shows this modified OUE algorithm is more efficient and consumes less time to achieve the reasonable relative gap in practical applications.
基金supported by the National Natural Science Foundation of China(61673209,71971115)。
文摘The dynamic weapon target assignment(DWTA)problem is of great significance in modern air combat.However,DWTA is a highly complex constrained multi-objective combinatorial optimization problem.An improved elitist non-dominated sorting genetic algorithm-II(NSGA-II)called the non-dominated shuffled frog leaping algorithm(NSFLA)is proposed to maximize damage to enemy targets and minimize the self-threat in air combat constraints.In NSFLA,the shuffled frog leaping algorithm(SFLA)is introduced to NSGA-II to replace the inside evolutionary scheme of the genetic algorithm(GA),displaying low optimization speed and heterogeneous space search defects.Two improvements have also been raised to promote the internal optimization performance of SFLA.Firstly,the local evolution scheme,a novel crossover mechanism,ensures that each individual participates in updating instead of only the worst ones,which can expand the diversity of the population.Secondly,a discrete adaptive mutation algorithm based on the function change rate is applied to balance the global and local search.Finally,the scheme is verified in various air combat scenarios.The results show that the proposed NSFLA has apparent advantages in solution quality and efficiency,especially in many aircraft and the dynamic air combat environment.
基金funded by the Project of the National Natural Science Foundation of China,Grant Number 62106283.
文摘Aiming at the problems of traditional dynamic weapon-target assignment algorithms in command decisionmaking,such as large computational amount,slow solution speed,and low calculation accuracy,combined with deep reinforcement learning theory,an improved Deep Deterministic Policy Gradient algorithm with dual noise and prioritized experience replay is proposed,which uses a double noise mechanism to expand the search range of the action,and introduces a priority experience playback mechanism to effectively achieve data utilization.Finally,the algorithm is simulated and validated on the ground-to-air countermeasures digital battlefield.The results of the experiment show that,under the framework of the deep neural network for intelligent weapon-target assignment proposed in this paper,compared to the traditional RELU algorithm,the agent trained with reinforcement learning algorithms,such asDeepDeterministic Policy Gradient algorithm,Asynchronous Advantage Actor-Critic algorithm,Deep Q Network algorithm performs better.It shows that the use of deep reinforcement learning algorithms to solve the weapon-target assignment problem in the field of air defense operations is scientific.In contrast to other reinforcement learning algorithms,the agent trained by the improved Deep Deterministic Policy Gradient algorithm has a higher win rate and reward in confrontation,and the use of weapon resources is more efficient.It shows that the model and algorithm have certain superiority and rationality.The results of this paper provide new ideas for solving the problemof weapon-target assignment in air defense combat command decisions.
基金The National Natural Science Foundationof China (70473037)
文摘A 0-1 integer programming model for weekly fleet assignment was put forward based on linear network and weekly flight scheduling in China. In this model, the objective function is to maximize the total profit of fleet assignment, subject to the constraints of coverage, aircraft flow balance, fleet size, aircraft availability, aircraft usage, flight restriction, aircraft seat capacity, and stopover. Then the branch-and-bound algorithm based on special ordered set was applied to solve the model. At last, a real- wofld case study on an airline with 5 fleets, 48 aircrafts and 1 786 flight legs indicated that the profit increase was ¥ 1 591276 one week and the running time was no more than 4 rain, which shows that the model and algorithm are fairly good for domestic airline.