It is challenging to diagnose isolated hyperbilirubinemia with rare and complex etiologies under the constraints of traditional testing conditions.Herein,we present a rare case of coexisting Gilbert syndrome(GS)and er...It is challenging to diagnose isolated hyperbilirubinemia with rare and complex etiologies under the constraints of traditional testing conditions.Herein,we present a rare case of coexisting Gilbert syndrome(GS)and erythropoietic protoporphyria(EPP),which has not been previously documented.CASE SUMMARY We present a rare case of coexisting GS and EPP in a 23-year-old Chinese male with a long history of jaundice and recently found splenomegaly.Serial nonspecific hemolysis screening tests yielded inconsistent results,and investigations for common hemolytic etiologies were negative.However,Levitt’s carbon monoxide breath test,which measures erythrocyte lifespan(the gold-standard marker of hemolysis),demonstrated significant hemolysis,revealing a markedly shortened erythrocyte lifespan of 11 days(normal average 120 days).Genetic testing subsequently confirmed EPP with a homozygous ferrochelatase gene mutation and GS with a heterozygous uridine diphosphate glucuronosyl trans-ferase 1A1 gene mutation.CONCLUSION The rapid,non-invasive Levitt’s carbon monoxide breath test resolved the diagnostic challenge posed by a rare and complex cause of hyperbilirubinemia.展开更多
针对触摸屏监控系统不能满足大中型立体仓库对数据进行存储和处理的功能需求,在Visual Studio 2019集成开发环境中,采用C#语言开发一套立体仓库上位机控制系统。以多线程的方式实时读取库位信息;以S7-1200 PLC作为主控制器,设计产品的...针对触摸屏监控系统不能满足大中型立体仓库对数据进行存储和处理的功能需求,在Visual Studio 2019集成开发环境中,采用C#语言开发一套立体仓库上位机控制系统。以多线程的方式实时读取库位信息;以S7-1200 PLC作为主控制器,设计产品的自动入库和自动出库程序流程,采用SCL语言设计了库位先进先出的控制程序。C#和S7-1200 PLC之间采用S7通信的方式控制立体仓库的出入库操作和库位信息采集,3年的现场运行情况表明,整个系统能在上位机上对立体仓库进行手动控制和自动控制,能精确快速地进行入库出库操作,运行平稳,上位机上能正确实时显示库位信息,达到了预期的结果。展开更多
食源性蛋白淀粉样纤维化聚集具有独特的结构特性,蚕豆11S蛋白(fava bean 11S protein,FP)作为一种可持续蛋白资源,表现出巨大的潜力。该研究探究了蚕豆11S蛋白淀粉样纤维化聚集(fibrotic aggregation of 11S protein in fava bean,FPF)...食源性蛋白淀粉样纤维化聚集具有独特的结构特性,蚕豆11S蛋白(fava bean 11S protein,FP)作为一种可持续蛋白资源,表现出巨大的潜力。该研究探究了蚕豆11S蛋白淀粉样纤维化聚集(fibrotic aggregation of 11S protein in fava bean,FPF)在形成过程中的动态演变,包括其结构表征和功能特性。6 g/100 mL的FP通过酸热处理(pH 2,85℃)不同时间(0~24 h)后得到FPF。处理后的样品通过硫黄素T、荧光、二酪氨酸、透射电子显微镜、傅里叶红外光谱等进行结构表征,结果表明FP先在酸热过程中水解成多肽,再自组装成富含β-折叠结构的FPF(由0 h的34.44%增加到24 h的45.89%)。通过起泡性、乳化性和凝胶特性等对FPF功能特性进行表征,与FP相比,反应24 h后的FPF具有更好的起泡性、乳化性和凝胶特性。此外,FPF在体外细胞实验中没有表现出细胞毒性。研究结果为FPF的形成规律提供了理论支撑。展开更多
Large-scale Language Models(LLMs)have achieved significant breakthroughs in Natural Language Processing(NLP),driven by the pre-training and fine-tuning paradigm.While this approach allows models to specialize in speci...Large-scale Language Models(LLMs)have achieved significant breakthroughs in Natural Language Processing(NLP),driven by the pre-training and fine-tuning paradigm.While this approach allows models to specialize in specific tasks with reduced training costs,the substantial memory requirements during fine-tuning present a barrier to broader deployment.Parameter-Efficient Fine-Tuning(PEFT)techniques,such as Low-Rank Adaptation(LoRA),and parameter quantization methods have emerged as solutions to address these challenges by optimizing memory usage and computational efficiency.Among these,QLoRA,which combines PEFT and quantization,has demonstrated notable success in reducing memory footprints during fine-tuning,prompting the development of various QLoRA variants.Despite these advancements,the quantitative impact of key variables on the fine-tuning performance of quantized LLMs remains underexplored.This study presents a comprehensive analysis of these key variables,focusing on their influence across different layer types and depths within LLM architectures.Our investigation uncovers several critical findings:(1)Larger layers,such as MLP layers,can maintain performance despite reductions in adapter rank,while smaller layers,like self-attention layers,aremore sensitive to such changes;(2)The effectiveness of balancing factors depends more on specific values rather than layer type or depth;(3)In quantization-aware fine-tuning,larger layers can effectively utilize smaller adapters,whereas smaller layers struggle to do so.These insights suggest that layer type is a more significant determinant of fine-tuning success than layer depth when optimizing quantized LLMs.Moreover,for the same discount of trainable parameters,reducing the trainable parameters in a larger layer is more effective in preserving fine-tuning accuracy than in a smaller one.This study provides valuable guidance for more efficient fine-tuning strategies and opens avenues for further research into optimizing LLM fine-tuning in resource-constrained environments.展开更多
Atlantic Meridional Overturning Circulation(AMOC)plays a central role in long-term climate variations through its heat and freshwater transports,which can collapse under a rapid increase of greenhouse gas forcing in c...Atlantic Meridional Overturning Circulation(AMOC)plays a central role in long-term climate variations through its heat and freshwater transports,which can collapse under a rapid increase of greenhouse gas forcing in climate models.Previous studies have suggested that the deviation of model parameters is one of the major factors in inducing inaccurate AMOC simulations.In this work,with a low-resolution earth system model,the authors try to explore whether a reasonable adjustment of the key model parameter can help to re-establish the AMOC after its collapse.Through a new optimization strategy,the extra freshwater flux(FWF)parameter is determined to be the dominant one affecting the AMOC’s variability.The traditional ensemble optimal interpolation(EnOI)data assimilation and new machine learning methods are adopted to optimize the FWF parameter in an abrupt 4×CO_(2) forcing experiment to improve the adaptability of model parameters and accelerate the recovery of AMOC.The results show that,under an abrupt 4×CO_(2) forcing in millennial simulations,the AMOC will first collapse and then re-establish by the default FWF parameter slowly.However,during the parameter adjustment process,the saltier and colder sea water over the North Atlantic region are the dominant factors in usefully improving the adaptability of the FWF parameter and accelerating the recovery of AMOC,according to their physical relationship with FWF on the interdecadal timescale.展开更多
文摘It is challenging to diagnose isolated hyperbilirubinemia with rare and complex etiologies under the constraints of traditional testing conditions.Herein,we present a rare case of coexisting Gilbert syndrome(GS)and erythropoietic protoporphyria(EPP),which has not been previously documented.CASE SUMMARY We present a rare case of coexisting GS and EPP in a 23-year-old Chinese male with a long history of jaundice and recently found splenomegaly.Serial nonspecific hemolysis screening tests yielded inconsistent results,and investigations for common hemolytic etiologies were negative.However,Levitt’s carbon monoxide breath test,which measures erythrocyte lifespan(the gold-standard marker of hemolysis),demonstrated significant hemolysis,revealing a markedly shortened erythrocyte lifespan of 11 days(normal average 120 days).Genetic testing subsequently confirmed EPP with a homozygous ferrochelatase gene mutation and GS with a heterozygous uridine diphosphate glucuronosyl trans-ferase 1A1 gene mutation.CONCLUSION The rapid,non-invasive Levitt’s carbon monoxide breath test resolved the diagnostic challenge posed by a rare and complex cause of hyperbilirubinemia.
文摘针对触摸屏监控系统不能满足大中型立体仓库对数据进行存储和处理的功能需求,在Visual Studio 2019集成开发环境中,采用C#语言开发一套立体仓库上位机控制系统。以多线程的方式实时读取库位信息;以S7-1200 PLC作为主控制器,设计产品的自动入库和自动出库程序流程,采用SCL语言设计了库位先进先出的控制程序。C#和S7-1200 PLC之间采用S7通信的方式控制立体仓库的出入库操作和库位信息采集,3年的现场运行情况表明,整个系统能在上位机上对立体仓库进行手动控制和自动控制,能精确快速地进行入库出库操作,运行平稳,上位机上能正确实时显示库位信息,达到了预期的结果。
基金supported by the National Key R&D Program of China(No.2021YFB0301200)National Natural Science Foundation of China(No.62025208).
文摘Large-scale Language Models(LLMs)have achieved significant breakthroughs in Natural Language Processing(NLP),driven by the pre-training and fine-tuning paradigm.While this approach allows models to specialize in specific tasks with reduced training costs,the substantial memory requirements during fine-tuning present a barrier to broader deployment.Parameter-Efficient Fine-Tuning(PEFT)techniques,such as Low-Rank Adaptation(LoRA),and parameter quantization methods have emerged as solutions to address these challenges by optimizing memory usage and computational efficiency.Among these,QLoRA,which combines PEFT and quantization,has demonstrated notable success in reducing memory footprints during fine-tuning,prompting the development of various QLoRA variants.Despite these advancements,the quantitative impact of key variables on the fine-tuning performance of quantized LLMs remains underexplored.This study presents a comprehensive analysis of these key variables,focusing on their influence across different layer types and depths within LLM architectures.Our investigation uncovers several critical findings:(1)Larger layers,such as MLP layers,can maintain performance despite reductions in adapter rank,while smaller layers,like self-attention layers,aremore sensitive to such changes;(2)The effectiveness of balancing factors depends more on specific values rather than layer type or depth;(3)In quantization-aware fine-tuning,larger layers can effectively utilize smaller adapters,whereas smaller layers struggle to do so.These insights suggest that layer type is a more significant determinant of fine-tuning success than layer depth when optimizing quantized LLMs.Moreover,for the same discount of trainable parameters,reducing the trainable parameters in a larger layer is more effective in preserving fine-tuning accuracy than in a smaller one.This study provides valuable guidance for more efficient fine-tuning strategies and opens avenues for further research into optimizing LLM fine-tuning in resource-constrained environments.
基金supported by the National Key R&D Program of China [grant number 2023YFF0805202]the National Natural Science Foun-dation of China [grant number 42175045]the Strategic Priority Research Program of the Chinese Academy of Sciences [grant number XDB42000000]。
文摘Atlantic Meridional Overturning Circulation(AMOC)plays a central role in long-term climate variations through its heat and freshwater transports,which can collapse under a rapid increase of greenhouse gas forcing in climate models.Previous studies have suggested that the deviation of model parameters is one of the major factors in inducing inaccurate AMOC simulations.In this work,with a low-resolution earth system model,the authors try to explore whether a reasonable adjustment of the key model parameter can help to re-establish the AMOC after its collapse.Through a new optimization strategy,the extra freshwater flux(FWF)parameter is determined to be the dominant one affecting the AMOC’s variability.The traditional ensemble optimal interpolation(EnOI)data assimilation and new machine learning methods are adopted to optimize the FWF parameter in an abrupt 4×CO_(2) forcing experiment to improve the adaptability of model parameters and accelerate the recovery of AMOC.The results show that,under an abrupt 4×CO_(2) forcing in millennial simulations,the AMOC will first collapse and then re-establish by the default FWF parameter slowly.However,during the parameter adjustment process,the saltier and colder sea water over the North Atlantic region are the dominant factors in usefully improving the adaptability of the FWF parameter and accelerating the recovery of AMOC,according to their physical relationship with FWF on the interdecadal timescale.