Urban environments offer a wealth of opportunities for residents to respite from their hectic life.Outdoor running or jogging becomes increasingly popular of an option.Impacts of urban environments on outdoor running,...Urban environments offer a wealth of opportunities for residents to respite from their hectic life.Outdoor running or jogging becomes increasingly popular of an option.Impacts of urban environments on outdoor running,despite some initial studies,remain underexplored.This study aims to establish an analytical framework that can holistically assess the urban environment on the healthy vitality of running.The proposed framework is applied to two modern Chinese cities,i.e.,Guangzhou and Shenzhen.We construct three interpretable random forest models to explore the non-linear relationship between environmental variables and running intensity(RI)through analyzing the runners'trajectories and integrating with multi-source urban big data(e.g.,street view imagery,remote sensing,and socio-economic data)across the built,natural,and social dimensions,The findings uncover that road density has the greatest impact on RI,and social variables(e.g.,population density and housing price)and natural variables(e.g.,slope and humidity)all make notable impact on outdoor running.Despite these findings,the impact of environmental variables likely change across different regions due to disparate regional construction and micro-environments,and those specific impacts as well as optimal thresholds also alter.Therefore,construction of healthy cities should take the whole urban environment into account and adapt to local conditions.This study provides a comprehensive evaluation on the influencing variables of healthy vitality and guides sustainable urban planning for creating running-friendly cities.展开更多
BACKGROUND Wound management is an essential part of emergency medicine practice.A good suture technique should deal a complex irregular traumatic wound without any complications of dehiscence/gaping,infection,delayed ...BACKGROUND Wound management is an essential part of emergency medicine practice.A good suture technique should deal a complex irregular traumatic wound without any complications of dehiscence/gaping,infection,delayed wound healing,frequent dressings and further stay in hospital.There is no ideal technique of suturing for any wound.In pursuit of the new techniques,we have introduced a new suturing technique called combined oblique and vertical everting running(COVER)stitch which has showed good healing with less complications.AIM To compare the outcomes between the COVER stitch and conventional suturing group.METHODS In this study,we included 40 cases which were divided into two groups.Group 1 patients were managed by COVER stitch,and group 2 patients underwent conventional suturing for their wounds.The outcomes were measured in terms of scar quality,suturing duration and length of suture material used,suturing related complications and suture removal time which were compared by t-test usingχ^(2) test.RESULTS Better results were seen in COVER stitch than the conventional suturing.COVER group had significantly better results in terms of time taken for suture,amount suture material used and time taken for suture removal compared to the conventional group.No wound related complications were seen in this group.Moreover,scar formed was also better in COVER group.CONCLUSION COVER stitch is another new technique which can be used to deal simple to complex wounds and it is an emerging idea with good healthy scars with less complications.展开更多
Spinal cord injury necessitates effective rehabilitation strategies, with exercise therapies showing promise in promoting recovery. This study investigated the impact of rehabilitation exercise on functional recovery ...Spinal cord injury necessitates effective rehabilitation strategies, with exercise therapies showing promise in promoting recovery. This study investigated the impact of rehabilitation exercise on functional recovery and morphological changes following thoracic contusive spinal cord injury. After a 7-day recovery period after spinal cord injury, mice were assigned to either a trained group(10 weeks of voluntary running wheel or forced treadmill exercise) or an untrained group. Bi-weekly assessments revealed that the exercise-trained group, particularly the voluntary wheel exercise subgroup, displayed significantly improved locomotor recovery, more plasticity of dopaminergic and serotonin modulation compared with the untrained group. Additionally, exercise interventions led to gait pattern restoration and enhanced transcranial magnetic motor-evoked potentials. Despite consistent injury areas across groups, exercise training promoted terminal innervation of descending axons. In summary, voluntary wheel exercise shows promise for enhancing outcomes after thoracic contusive spinal cord injury, emphasizing the role of exercise modality in promoting recovery and morphological changes in spinal cord injuries. Our findings will influence future strategies for rehabilitation exercises, restoring functional movement after spinal cord injury.展开更多
The gear transmission system directly affects the operational performance of high-speed trains(HST).However,current research on gear transmission systems of HST often overlooks the effects of gear eccentricity and run...The gear transmission system directly affects the operational performance of high-speed trains(HST).However,current research on gear transmission systems of HST often overlooks the effects of gear eccentricity and running resistance,and the dynamic models of gear transmission system are not sufficiently comprehensive.This paper aims to establish an electromechanical coupling dynamic model of HST traction transmission system and study its electromechanical coupling vibration characteristics,in which the internal excitation factors such as gear eccentricity,time-varying meshing stiffness,backlash,meshing error,and external excitation factors such as electromagnetic torque and running resistance are stressed.The research results indicate that gear eccentricity and running resistance have a significant impact on the stability of the system,and gear eccentricity leads to intensified system vibration and decreased anti-interference ability.In addition,the characteristic frequency of gear eccentricity can be extracted from mechanical signals and current signals as a preliminary basis for eccentricity detection,and electrical signals can also be used to monitor changes in train running resistance in real time.The results of this study provide some useful insights into designing dynamic performance parameters for HST transmission systems and monitoring train operational states.展开更多
Purpose We aimed to investigate the effects of running shoe longitudinal bending stiffness(LBS)and midsole energy return on running economy and ankle mechanics and energetics.Methods PubMed,Scopus,SPORTDiscus,Embase,C...Purpose We aimed to investigate the effects of running shoe longitudinal bending stiffness(LBS)and midsole energy return on running economy and ankle mechanics and energetics.Methods PubMed,Scopus,SPORTDiscus,Embase,CINAHL,and Web of Science were systematically searched for this meta-analysis.Crossover studies comparing the effects of running shoe LBS and/or midsole energy return on at least 1 of the following outcomes:running economy,ankle plantarflexion moment,work,power,or angular velocity were included.Results Of the 2453 studies screened,48 were included(n=878).Results indicated that advanced footwear technologies(AFTs)significantly reduced oxygen consumption(standardized mean difference=–0.44,95%confidence interval:–0.60 to–0.28),p<0.001)as well as peak ankle moments and positive/negative ankle work and power.However,neither LBS nor midsole energy return alone significantly affected oxygen consumption,ankle moments,positive and negative work,or positive power.The effects of AFTs were moderated by the training status and speed of the runner.The quality of evidence for all outcomes were low or very low for all outcomes except the effect of LBS on negative ankle work.Conclusion AFT may improve running economy by minimizing ankle moments,work,and power.The absence of significant independent effects of LBS and midsole energy return suggests that the benefits of AFTs arise from the interaction of these properties.Further research is necessary to understand the mechanisms for improved running performance in AFTs.展开更多
This study investigated the validity and sensitivity of a custom-made shoelace tensile testing system.The aim was to analyze the distribution pattern of shoelace tension in different positions and under different tigh...This study investigated the validity and sensitivity of a custom-made shoelace tensile testing system.The aim was to analyze the distribution pattern of shoelace tension in different positions and under different tightness levels during running.Mechanical tests were conducted using 16 weights,and various statistical analyses,including linear regression,Bland-Altman plots,coefficient of variation,and intraclass correlation coefficient,were performed to assess the system’s validity.Fifteen male amateur runners participated in the study,and three conditions(loose,comfortable,and tight)were measured during an upright stance.The system utilized VICON motion systems,a Kistler force plate,and a Photoelectric gate speed measurement system.Results showed a linear relationship between voltage and load at the three sensors(R2≥0.9997).Bland-Altman plots demonstrated 95%prediction intervals within±1.96SD from zero for all sensors.The average coefficient of variation for each sensor was less than 0.38%.Intraclass correlation coefficient values were larger than 0.999(p<0.0001)for each sensor.The peak tension of the front shoelace was greater than that of the front and middle when the shoelace was loose and tight.The rear shoelace had the highest tension force.The study also found that shoelace tension varied throughout the gait cycle during running.Overall,this research provides a novel and validated method for measuring shoelace tensile stress,which has implications for developing automatic shoelace fastening systems.展开更多
Purpose This study aimed to investigate whether there is a systematic change of leg muscle activity,as quantified by surface electromyography(EMG),throughout a standard running footwear assessment protocol at a predet...Purpose This study aimed to investigate whether there is a systematic change of leg muscle activity,as quantified by surface electromyography(EMG),throughout a standard running footwear assessment protocol at a predetermined running speed.Methods Thirty-one physically active adults(15 females and 16 males)completed 5 testing rounds consisting of overground running trials at a speed of 3.5 m/s.The level of muscle activity from 6 major leg muscles was recorded using surface EMG.The variables assessed were the EMG total intensity as a function of time and the cumulative EMG overall intensity.Systematic effects of the chronological testing round(independent variable)on the normalized EMG overall intensity(dependent variable)were examined using Friedman analysis of variates and post hoc pairwise Wilcoxon signed-rank tests(α=0.05).Results There was a systematic reduction in overall EMG intensity for all 6 muscles over the time course of the running protocol(p<0.001)until the fourth testing round when EMG intensities reached a steady state.The one exception was the biceps femoris muscle,which showed a significant reduction of EMG intensity during the stance phase(p<0.001)but not the swing phase(p=0.16).Conclusion While running at a predetermined speed,the neuromuscular system undergoes an adaptation process characterized by a progressive reduction in the activity level of major leg muscles.This process may represent an optimization strategy of the neuromuscular system towards a more energetically efficient running style.Future running protocols should include a familiarization period of at least 7 min or 600 strides of running at the predetermined speed.展开更多
In order to study the temporal variations of correlations between two time series,a running correlation coefficient(RCC)could be used.An RCC is calculated for a given time window,and the window is then moved sequentia...In order to study the temporal variations of correlations between two time series,a running correlation coefficient(RCC)could be used.An RCC is calculated for a given time window,and the window is then moved sequentially through time.The current calculation method for RCCs is based on the general definition of the Pearson product-moment correlation coefficient,calculated with the data within the time window,which we call the local running correlation coefficient(LRCC).The LRCC is calculated via the two anomalies corresponding to the two local means,meanwhile,the local means also vary.It is cleared up that the LRCC reflects only the correlation between the two anomalies within the time window but fails to exhibit the contributions of the two varying means.To address this problem,two unchanged means obtained from all available data are adopted to calculate an RCC,which is called the synthetic running correlation coefficient(SRCC).When the anomaly variations are dominant,the two RCCs are similar.However,when the variations of the means are dominant,the difference between the two RCCs becomes obvious.The SRCC reflects the correlations of both the anomaly variations and the variations of the means.Therefore,the SRCCs from different time points are intercomparable.A criterion for the superiority of the RCC algorithm is that the average value of the RCC should be close to the global correlation coefficient calculated using all data.The SRCC always meets this criterion,while the LRCC sometimes fails.Therefore,the SRCC is better than the LRCC for running correlations.We suggest using the SRCC to calculate the RCCs.展开更多
The running correlation coefficient(RCC)is useful for capturing temporal variations in correlations between two time series.The local running correlation coefficient(LRCC)is a widely used algorithm that directly appli...The running correlation coefficient(RCC)is useful for capturing temporal variations in correlations between two time series.The local running correlation coefficient(LRCC)is a widely used algorithm that directly applies the Pearson correlation to a time window.A new algorithm called synthetic running correlation coefficient(SRCC)was proposed in 2018 and proven to be rea-sonable and usable;however,this algorithm lacks a theoretical demonstration.In this paper,SRCC is proven theoretically.RCC is only meaningful when its values at different times can be compared.First,the global means are proven to be the unique standard quantities for comparison.SRCC is the only RCC that satisfies the comparability criterion.The relationship between LRCC and SRCC is derived using statistical methods,and SRCC is obtained by adding a constraint condition to the LRCC algorithm.Dividing the temporal fluctuations into high-and low-frequency signals reveals that LRCC only reflects the correlation of high-frequency signals;by contrast,SRCC reflects the correlations of high-and low-frequency signals simultaneously.Therefore,SRCC is the ap-propriate method for calculating RCCs.展开更多
Background: Running-related overuse injuries can result from the combination of extrinsic(e.g., running mileage) and intrinsic risk factors(e.g.,biomechanics and gender), but the relationship between these factors is ...Background: Running-related overuse injuries can result from the combination of extrinsic(e.g., running mileage) and intrinsic risk factors(e.g.,biomechanics and gender), but the relationship between these factors is not folly understood. Therefore, the first purpose of this study was to determine whether we could classify higher-and lower-mileage runners according to differences in lower extremity kinematics during the stance and swing phases of running gait. I he second purpose was to subgroup the runners by gender and determine whether we could classify higherand lower-mileage runners in male and female subgroups.Methods: Participants were allocated to the "higher-mileage" group(≥32 km/week; n= 41(30 females)) or to the "lower-mileage" group(≤25 km;n= 40(29 females)). Three-dimensional kinematic data were collected during 60 s of treadmill running at a self-selected speed(2.61 ± 0.23 m/s).A support vector machine classifier identified kinematic differences between higher-and lower-mileage groups based on principal component scores.Results: Higher-and lower-mileage runners(both genders) could be separated with 92.59% classification accuracy. When subgrouping by gender,higher-and lower-mileage female runners could be separated with 89.83% classification accuracy, and higher-and lower-mileage male runners could be separated with 100% classification accuracy.Conclusion: These results demonstrate there are distinct kinematic differences between subgroups related to both mileage and gender, and that these factors need to be considered in future research.展开更多
Background:Numerous studies about the interaction between footwear(and barefoot) and kinematic and kinetic outcomes have been published over the last few years.Recent studies however lead to the conclusion that the as...Background:Numerous studies about the interaction between footwear(and barefoot) and kinematic and kinetic outcomes have been published over the last few years.Recent studies however lead to the conclusion that the assumed interactions depend mainly on the subjects" experience of barefoot(BF) walking/running,the preferred running strike pattern,the speed,the hardness of the surface,the thickness of the midsole material,and the runners’ level of ability.The aim of the present study was to investigate lower leg kinematics o\’ BF running and running in minimal running shoes(MRS) to assess comparability of BF kinematics in both conditions.To systematically compare both conditions we monitored the influencing variables described above in our measurement setup.We hypothesized that running in MRS does not alter lower leg kinematics compared to BF running.Methods:Thirty-seven subjects,injury-free and active in sports,ran BF on an EVA foam runway,and also ran shod wearing Nike Free 3.0 on a tartan indoor track.Lower-leg 3D kinematics was measured to quantify rearfoot and ankle movements.Skin markers were used in both shod and BF running.Results:All runners revealed rearfoot strike pattern when running barefoot.Differences between BF and MRS running occurred particularly during the initial stance phase of running,both in the sagittal and the frontal planes.BF running revealed a flatter foot placement,a more plantar flexed ankle joint and less inverted rearfoot at touchdown compared to MRS running.Conclusion:BF running does not change the landing automatically to forefoot running,especially after a systematic exclusion of surface and other influencing factors.The Nike Free 3.0 mimics some BF features.Nevertheless,changes in design of the Nike Free should be considered in order to mimic BF movement even more closely.展开更多
基金National Natural Science Foundation of China,No.42171455The Hong Kong RGC Research Impact Fund,No.R5011-23The Hong Kong General Research Fund,No.15204121。
文摘Urban environments offer a wealth of opportunities for residents to respite from their hectic life.Outdoor running or jogging becomes increasingly popular of an option.Impacts of urban environments on outdoor running,despite some initial studies,remain underexplored.This study aims to establish an analytical framework that can holistically assess the urban environment on the healthy vitality of running.The proposed framework is applied to two modern Chinese cities,i.e.,Guangzhou and Shenzhen.We construct three interpretable random forest models to explore the non-linear relationship between environmental variables and running intensity(RI)through analyzing the runners'trajectories and integrating with multi-source urban big data(e.g.,street view imagery,remote sensing,and socio-economic data)across the built,natural,and social dimensions,The findings uncover that road density has the greatest impact on RI,and social variables(e.g.,population density and housing price)and natural variables(e.g.,slope and humidity)all make notable impact on outdoor running.Despite these findings,the impact of environmental variables likely change across different regions due to disparate regional construction and micro-environments,and those specific impacts as well as optimal thresholds also alter.Therefore,construction of healthy cities should take the whole urban environment into account and adapt to local conditions.This study provides a comprehensive evaluation on the influencing variables of healthy vitality and guides sustainable urban planning for creating running-friendly cities.
文摘BACKGROUND Wound management is an essential part of emergency medicine practice.A good suture technique should deal a complex irregular traumatic wound without any complications of dehiscence/gaping,infection,delayed wound healing,frequent dressings and further stay in hospital.There is no ideal technique of suturing for any wound.In pursuit of the new techniques,we have introduced a new suturing technique called combined oblique and vertical everting running(COVER)stitch which has showed good healing with less complications.AIM To compare the outcomes between the COVER stitch and conventional suturing group.METHODS In this study,we included 40 cases which were divided into two groups.Group 1 patients were managed by COVER stitch,and group 2 patients underwent conventional suturing for their wounds.The outcomes were measured in terms of scar quality,suturing duration and length of suture material used,suturing related complications and suture removal time which were compared by t-test usingχ^(2) test.RESULTS Better results were seen in COVER stitch than the conventional suturing.COVER group had significantly better results in terms of time taken for suture,amount suture material used and time taken for suture removal compared to the conventional group.No wound related complications were seen in this group.Moreover,scar formed was also better in COVER group.CONCLUSION COVER stitch is another new technique which can be used to deal simple to complex wounds and it is an emerging idea with good healthy scars with less complications.
基金supported by the NIH (R01NS103481, R01NS111776, and R01NS131489)Indiana Department of Health (ISDH58180)(all to WW)。
文摘Spinal cord injury necessitates effective rehabilitation strategies, with exercise therapies showing promise in promoting recovery. This study investigated the impact of rehabilitation exercise on functional recovery and morphological changes following thoracic contusive spinal cord injury. After a 7-day recovery period after spinal cord injury, mice were assigned to either a trained group(10 weeks of voluntary running wheel or forced treadmill exercise) or an untrained group. Bi-weekly assessments revealed that the exercise-trained group, particularly the voluntary wheel exercise subgroup, displayed significantly improved locomotor recovery, more plasticity of dopaminergic and serotonin modulation compared with the untrained group. Additionally, exercise interventions led to gait pattern restoration and enhanced transcranial magnetic motor-evoked potentials. Despite consistent injury areas across groups, exercise training promoted terminal innervation of descending axons. In summary, voluntary wheel exercise shows promise for enhancing outcomes after thoracic contusive spinal cord injury, emphasizing the role of exercise modality in promoting recovery and morphological changes in spinal cord injuries. Our findings will influence future strategies for rehabilitation exercises, restoring functional movement after spinal cord injury.
基金supported by Sichuan Science and Technology Program(Grant No.2020YFH0080)the National Natural Science Foundation of China(Grant No.51475386)the National Basic Research Project of China(973 Program,Grant No.2015CB654801).
文摘The gear transmission system directly affects the operational performance of high-speed trains(HST).However,current research on gear transmission systems of HST often overlooks the effects of gear eccentricity and running resistance,and the dynamic models of gear transmission system are not sufficiently comprehensive.This paper aims to establish an electromechanical coupling dynamic model of HST traction transmission system and study its electromechanical coupling vibration characteristics,in which the internal excitation factors such as gear eccentricity,time-varying meshing stiffness,backlash,meshing error,and external excitation factors such as electromagnetic torque and running resistance are stressed.The research results indicate that gear eccentricity and running resistance have a significant impact on the stability of the system,and gear eccentricity leads to intensified system vibration and decreased anti-interference ability.In addition,the characteristic frequency of gear eccentricity can be extracted from mechanical signals and current signals as a preliminary basis for eccentricity detection,and electrical signals can also be used to monitor changes in train running resistance in real time.The results of this study provide some useful insights into designing dynamic performance parameters for HST transmission systems and monitoring train operational states.
基金supported by a National Health and Medical Research Council(NHMRC)Investigator Grant Emerging Leadership Level 1(Grant No.2017012).
文摘Purpose We aimed to investigate the effects of running shoe longitudinal bending stiffness(LBS)and midsole energy return on running economy and ankle mechanics and energetics.Methods PubMed,Scopus,SPORTDiscus,Embase,CINAHL,and Web of Science were systematically searched for this meta-analysis.Crossover studies comparing the effects of running shoe LBS and/or midsole energy return on at least 1 of the following outcomes:running economy,ankle plantarflexion moment,work,power,or angular velocity were included.Results Of the 2453 studies screened,48 were included(n=878).Results indicated that advanced footwear technologies(AFTs)significantly reduced oxygen consumption(standardized mean difference=–0.44,95%confidence interval:–0.60 to–0.28),p<0.001)as well as peak ankle moments and positive/negative ankle work and power.However,neither LBS nor midsole energy return alone significantly affected oxygen consumption,ankle moments,positive and negative work,or positive power.The effects of AFTs were moderated by the training status and speed of the runner.The quality of evidence for all outcomes were low or very low for all outcomes except the effect of LBS on negative ankle work.Conclusion AFT may improve running economy by minimizing ankle moments,work,and power.The absence of significant independent effects of LBS and midsole energy return suggests that the benefits of AFTs arise from the interaction of these properties.Further research is necessary to understand the mechanisms for improved running performance in AFTs.
文摘This study investigated the validity and sensitivity of a custom-made shoelace tensile testing system.The aim was to analyze the distribution pattern of shoelace tension in different positions and under different tightness levels during running.Mechanical tests were conducted using 16 weights,and various statistical analyses,including linear regression,Bland-Altman plots,coefficient of variation,and intraclass correlation coefficient,were performed to assess the system’s validity.Fifteen male amateur runners participated in the study,and three conditions(loose,comfortable,and tight)were measured during an upright stance.The system utilized VICON motion systems,a Kistler force plate,and a Photoelectric gate speed measurement system.Results showed a linear relationship between voltage and load at the three sensors(R2≥0.9997).Bland-Altman plots demonstrated 95%prediction intervals within±1.96SD from zero for all sensors.The average coefficient of variation for each sensor was less than 0.38%.Intraclass correlation coefficient values were larger than 0.999(p<0.0001)for each sensor.The peak tension of the front shoelace was greater than that of the front and middle when the shoelace was loose and tight.The rear shoelace had the highest tension force.The study also found that shoelace tension varied throughout the gait cycle during running.Overall,this research provides a novel and validated method for measuring shoelace tensile stress,which has implications for developing automatic shoelace fastening systems.
基金The authors would like to acknowledge Jordyn Vienneau,Aimee(Smith)Mears,Christian Meyer,and Antonio Blago for their support in collecting data for this study.The authors would like to thank Adidas(Herzogenaurach,Germany)for providing the test shoes.
文摘Purpose This study aimed to investigate whether there is a systematic change of leg muscle activity,as quantified by surface electromyography(EMG),throughout a standard running footwear assessment protocol at a predetermined running speed.Methods Thirty-one physically active adults(15 females and 16 males)completed 5 testing rounds consisting of overground running trials at a speed of 3.5 m/s.The level of muscle activity from 6 major leg muscles was recorded using surface EMG.The variables assessed were the EMG total intensity as a function of time and the cumulative EMG overall intensity.Systematic effects of the chronological testing round(independent variable)on the normalized EMG overall intensity(dependent variable)were examined using Friedman analysis of variates and post hoc pairwise Wilcoxon signed-rank tests(α=0.05).Results There was a systematic reduction in overall EMG intensity for all 6 muscles over the time course of the running protocol(p<0.001)until the fourth testing round when EMG intensities reached a steady state.The one exception was the biceps femoris muscle,which showed a significant reduction of EMG intensity during the stance phase(p<0.001)but not the swing phase(p=0.16).Conclusion While running at a predetermined speed,the neuromuscular system undergoes an adaptation process characterized by a progressive reduction in the activity level of major leg muscles.This process may represent an optimization strategy of the neuromuscular system towards a more energetically efficient running style.Future running protocols should include a familiarization period of at least 7 min or 600 strides of running at the predetermined speed.
基金supported by the Key Program of the National Natural Science Foundation of China (No. 41330960)the Global Change Research Program of China (No. 2015CB953900)
文摘In order to study the temporal variations of correlations between two time series,a running correlation coefficient(RCC)could be used.An RCC is calculated for a given time window,and the window is then moved sequentially through time.The current calculation method for RCCs is based on the general definition of the Pearson product-moment correlation coefficient,calculated with the data within the time window,which we call the local running correlation coefficient(LRCC).The LRCC is calculated via the two anomalies corresponding to the two local means,meanwhile,the local means also vary.It is cleared up that the LRCC reflects only the correlation between the two anomalies within the time window but fails to exhibit the contributions of the two varying means.To address this problem,two unchanged means obtained from all available data are adopted to calculate an RCC,which is called the synthetic running correlation coefficient(SRCC).When the anomaly variations are dominant,the two RCCs are similar.However,when the variations of the means are dominant,the difference between the two RCCs becomes obvious.The SRCC reflects the correlations of both the anomaly variations and the variations of the means.Therefore,the SRCCs from different time points are intercomparable.A criterion for the superiority of the RCC algorithm is that the average value of the RCC should be close to the global correlation coefficient calculated using all data.The SRCC always meets this criterion,while the LRCC sometimes fails.Therefore,the SRCC is better than the LRCC for running correlations.We suggest using the SRCC to calculate the RCCs.
基金This study was supported by the National Natural Sci-ence Foundation of China(Nos.41976022,41941012)the Major Scientific and Technological Innovation Projects of Shandong Province(No.2018SDKJ0104-1).
文摘The running correlation coefficient(RCC)is useful for capturing temporal variations in correlations between two time series.The local running correlation coefficient(LRCC)is a widely used algorithm that directly applies the Pearson correlation to a time window.A new algorithm called synthetic running correlation coefficient(SRCC)was proposed in 2018 and proven to be rea-sonable and usable;however,this algorithm lacks a theoretical demonstration.In this paper,SRCC is proven theoretically.RCC is only meaningful when its values at different times can be compared.First,the global means are proven to be the unique standard quantities for comparison.SRCC is the only RCC that satisfies the comparability criterion.The relationship between LRCC and SRCC is derived using statistical methods,and SRCC is obtained by adding a constraint condition to the LRCC algorithm.Dividing the temporal fluctuations into high-and low-frequency signals reveals that LRCC only reflects the correlation of high-frequency signals;by contrast,SRCC reflects the correlations of high-and low-frequency signals simultaneously.Therefore,SRCC is the ap-propriate method for calculating RCCs.
基金partially provided by a Discovery Grant (No.1028495) and Accelerator Award (No.1030390) through the Natural Sciences and Engineering Research Council of Canada (NSERC)the Faculty of Kinesiology Dean's Doctoral Studentship Program at the University of Calgary
文摘Background: Running-related overuse injuries can result from the combination of extrinsic(e.g., running mileage) and intrinsic risk factors(e.g.,biomechanics and gender), but the relationship between these factors is not folly understood. Therefore, the first purpose of this study was to determine whether we could classify higher-and lower-mileage runners according to differences in lower extremity kinematics during the stance and swing phases of running gait. I he second purpose was to subgroup the runners by gender and determine whether we could classify higherand lower-mileage runners in male and female subgroups.Methods: Participants were allocated to the "higher-mileage" group(≥32 km/week; n= 41(30 females)) or to the "lower-mileage" group(≤25 km;n= 40(29 females)). Three-dimensional kinematic data were collected during 60 s of treadmill running at a self-selected speed(2.61 ± 0.23 m/s).A support vector machine classifier identified kinematic differences between higher-and lower-mileage groups based on principal component scores.Results: Higher-and lower-mileage runners(both genders) could be separated with 92.59% classification accuracy. When subgrouping by gender,higher-and lower-mileage female runners could be separated with 89.83% classification accuracy, and higher-and lower-mileage male runners could be separated with 100% classification accuracy.Conclusion: These results demonstrate there are distinct kinematic differences between subgroups related to both mileage and gender, and that these factors need to be considered in future research.
文摘Background:Numerous studies about the interaction between footwear(and barefoot) and kinematic and kinetic outcomes have been published over the last few years.Recent studies however lead to the conclusion that the assumed interactions depend mainly on the subjects" experience of barefoot(BF) walking/running,the preferred running strike pattern,the speed,the hardness of the surface,the thickness of the midsole material,and the runners’ level of ability.The aim of the present study was to investigate lower leg kinematics o\’ BF running and running in minimal running shoes(MRS) to assess comparability of BF kinematics in both conditions.To systematically compare both conditions we monitored the influencing variables described above in our measurement setup.We hypothesized that running in MRS does not alter lower leg kinematics compared to BF running.Methods:Thirty-seven subjects,injury-free and active in sports,ran BF on an EVA foam runway,and also ran shod wearing Nike Free 3.0 on a tartan indoor track.Lower-leg 3D kinematics was measured to quantify rearfoot and ankle movements.Skin markers were used in both shod and BF running.Results:All runners revealed rearfoot strike pattern when running barefoot.Differences between BF and MRS running occurred particularly during the initial stance phase of running,both in the sagittal and the frontal planes.BF running revealed a flatter foot placement,a more plantar flexed ankle joint and less inverted rearfoot at touchdown compared to MRS running.Conclusion:BF running does not change the landing automatically to forefoot running,especially after a systematic exclusion of surface and other influencing factors.The Nike Free 3.0 mimics some BF features.Nevertheless,changes in design of the Nike Free should be considered in order to mimic BF movement even more closely.