Magnesium(Mg)stands out in temporary biomaterial applications due to its biocompatibility,biodegradability,and low Young’s modulus.However,controlling its corrosion through next-generation polymer-based functional co...Magnesium(Mg)stands out in temporary biomaterial applications due to its biocompatibility,biodegradability,and low Young’s modulus.However,controlling its corrosion through next-generation polymer-based functional coatings is crucial due to the rapid degradation behavior of Mg.In this study,the function of 2D lamellar Ti_(3)C_(2)T_(x)(MXene)in Hydroxyapatite(HA)and Halloysite nanotube(HNT)hybrid coatings in biodegradable poly-(lactic acid)(PLA)was investigated.The morphological and structural characterizations of the coatings on Mg were revealed through HRTEM,XPS,SEM-EDX,XRD,FTIR,and contact angle analyses/tests.Electrochemical in vitro corrosion tests(OCP,PDS,and EIS-Nyquist)were conducted for evaluate corrosion resistance under simulated body fluid(SBF)conditions.The bioactivity of the coatings in SBF have been revealed in accordance with the ISO 23,317 standard.Finally,antibacterial disk diffusion tests were conducted to investigate the functional effect of MXene in coatings.It has been determined that the presence of MXene in the coating increased not only surface wettability(131°,85°,77°,and 74°for uncoated,pH,PHH,and PHH/MXene coatings,respectively)but also increased corrosion resistance(1857.850,42.357,1.593,and 0.085×10^(-6),A/cm^(2) for uncoated,pH,PHH,and PHH/MXene coatings,respectively).It has been proven that the in vitro bioactivity of PLA-HA coatings is further enhanced by adding HNT and MXene,along with SEM morphologies after SBF.Finally,2D lamellar MXene-filled coating exhibits antibacterial behavior against both E.coli and S.aureus bacteria.展开更多
A SiC/ZrSiO4?SiO2 (SZS) coating was successfully fabricated on the carbon/carbon (C/C) composites by pack cementation, slurry painting and sintering to improve the anti-oxidation property and thermal shock r...A SiC/ZrSiO4?SiO2 (SZS) coating was successfully fabricated on the carbon/carbon (C/C) composites by pack cementation, slurry painting and sintering to improve the anti-oxidation property and thermal shock resistance. The anti-oxidation properties under different oxygen partial pressures (OPP) and thermal shock resistance of the SZS coating were investigated. The results show that the SZS coated sample under low OPP, corresponding to the ambient air, during isothermal oxidation was 0.54% in mass gain after 111 h oxidation at 1500 ° C and less than 0.03% in mass loss after 50 h oxidation in high OPP, corresponding to the air flow rate of 36 L/h. Additionally, the residual compressive strengths (RCS) of the SZS coated samples after oxidation for 50 h in high OPP and 80 h in low OPP remain about 70% and 72.5% of those of original C/C samples, respectively. Moreover, the mass loss of SZS coated samples subjected to the thermal cycle from 1500 ° C in high OPP to boiling water for 30 times was merely 1.61%.展开更多
Laser specific energy significantly impacts the quality of composite coatings.Ti−Al/WC coatings were prepared on the TC21 alloy through laser cladding with specific energy ranging from 66.7 to 133.3 J/mm^(2).The resul...Laser specific energy significantly impacts the quality of composite coatings.Ti−Al/WC coatings were prepared on the TC21 alloy through laser cladding with specific energy ranging from 66.7 to 133.3 J/mm^(2).The results indicate that the composite coatings primarily comprised Ti_(2)AlC,α_(2)-Ti_(3)Al,γ-TiAl,TiC,and W phases.A gradual increase in the relative intensity of the diffraction peaks of Ti_(2)AlC,α_(2)-Ti_(3)Al,and TiC appeared with the increase of specific energy.When the specific energy was 116.7 J/mm^(2),the Ti−Al/WC coated alloy achieved a maximum micro-hardness of HV0.2766.3,which represented an increase of 1.96 times compared with TC21 alloy,and the minimum wear rate decreased dramatically.Much improvement in tribological properties was attained through the fine-grained strengthening of the(α_(2)+γ)matrix and the dispersion strengthening of self-lubricating Ti_(2)AlC and intertwining TiC.This study provides valuable insights for the development of high-performance Ti−Al composite coatings.展开更多
Due to the excellent corrosion resistance and high irradiation damage resistance,Ti 2AlC MAX phase is considered as a candidate for applications as corrosion resistant and irradiation resistant protective coating.MAX ...Due to the excellent corrosion resistance and high irradiation damage resistance,Ti 2AlC MAX phase is considered as a candidate for applications as corrosion resistant and irradiation resistant protective coating.MAX phase coatings can be fabricated through firstly depositing a coating containing the three elements M,A,and X close to stoichiometry of the MAX phases using physical vapor deposition,followed by heat treatment in vacuum.In this work,Ti-Al-C coating was prepared on austenitic stainless steels by reactive DC magnetron sputtering with a compound Ti (50)Al (50) target,and CH4 used as the reactive gas.It was found that the as-deposited coating is mainly composed of Ti 3AlC antiperovskite phase with supersaturated solid solution of Al.Additionally,the ratio of Ti/Al remained the same as that of the target composition.Nevertheless,a thicker thermally grown Ti 2AlC MAX phase coating was obtained after being annealed at 800℃ in vacuum for 1 h.Meanwhile,the ratio of Ti/Al became close to stoichiometry of Ti 2AlC MAX phases.It can be understood that owing to the higher activity of Al,it diffused quickly into the substrate during annealing,and then more stable Ti 2AlC MAX phases transformed from the Ti 3AlC antiperovskite phase.展开更多
Type Ⅰ hot corrosion behavior of SiO_2-Al_2O_3-glass composite coating based on Ti-47 Al-2 Cr-2 Nb substrate was investigated in the mixture salt of 25 wt%NaCl + 75 wt%Na_2SO_4 at 850 °C. The results showed that...Type Ⅰ hot corrosion behavior of SiO_2-Al_2O_3-glass composite coating based on Ti-47 Al-2 Cr-2 Nb substrate was investigated in the mixture salt of 25 wt%NaCl + 75 wt%Na_2SO_4 at 850 °C. The results showed that there was a bidirectional ion exchange between composite coating and the film of mixed salts, and the sodium ion in the molten salts penetrated into the glass matrix of composite coating, while the potassium ion in the glass matrix dissolved into the molten salts. A decrease in hot corrosion rate was achieved for the coated alloy in comparison with the bared substrate due to the composite coating acting as a diffusion barrier to sulfur and chlorine and preventing the molten salts from diffusing to the coating/alloy interface during the hot corrosion exposure. Additionally, the composite coating decreased the oxygen partial pressure at the coating/alloy interface and promoted the selective oxidation of Al to form a protective Al_2O_3 layer.展开更多
TiB2/TiB/TiNx(x=1,0.3)/Ti composite coating was prepared on pure Ti by laser surface alloying by using powders of boron as starting materials.The composite coating was examined by X-ray diffraction(XRD),high-resolutio...TiB2/TiB/TiNx(x=1,0.3)/Ti composite coating was prepared on pure Ti by laser surface alloying by using powders of boron as starting materials.The composite coating was examined by X-ray diffraction(XRD),high-resolution transmission electron microscopy(HRTEM)and scanning electron microscopy(SEM).The friction and wear properties of the composite coating were examined using a pin-on-disk tester under dry sliding wear condition.The results showed that the top surface of the composite coating was mainly composed of TiB2,TiB,TiN0.3,TiN and Ti phases,while the interface of the composite coating was composed of TiB and Ti phases.The composite coating showed sticklike structure near the top surface,and dendrites structure near the interface.The friction and wear test showed that the composite coating had better wear resistance than pure Ti due to their higher microhardness than that of pure Ti substrate.展开更多
In current work,Ni-Ti-CeO_(2) nanocomposite coatings were achieved by co-adding Ti microparticles and CeO_(2) nanoparticles.Designed experiments and COMSOL computer simulation were applied to reveal the synergistic ro...In current work,Ni-Ti-CeO_(2) nanocomposite coatings were achieved by co-adding Ti microparticles and CeO_(2) nanoparticles.Designed experiments and COMSOL computer simulation were applied to reveal the synergistic role of Ti microparticles and CeO_(2) nanoparticles in tailoring the spatial microstructures and properties of Ni-Ti-CeO_(2) nanocomposite coating.Unilaterally,the conductive Ti microparticles conducted the growth behavior of Ni grains by current density concentration,distorting electronic feld lines and heterogeneous nucleation.Individual domains consisting of inner nanograins and outer radial columnar grains surrounded Ti microparticles,where Ti microparticles acted as seeds.Ti microparticles tended to be aggregated,leading to spatial heterogeneity of microstructures.Ni deposits buried the Ti microparticles in forms of“covering model”,contributing to the formation of inside voids and rough surface and aggregation of Ti microparticles;on the other hand,the non-conductive CeO_(2)microparticles hardly changed the distribution of current density and electronic feld lines on the cathode surface.Ni deposits buried the CeO_(2)microparticle in forms of“stacking model”,avoiding the inside voids and aggregation of particles.The incorporation of CeO_(2)microparticle brought in microstructure evolutions only on its top side without disturbing the growth behavior of Ni grains on its lateral side or bottom,suggesting the limited effects.This was correlated with the presence of current concentration above the CeO_(2) microparticle at the last stage of burying CeO_(2) microparticle.The co-addition of Ti microparticles and CeO_(2) nanoparticles into Ni deposits exploited the complementary action of the two particles,which gave birth to satisfed spatial microstructures and improved hardness.Ti microparticles took major responsibility for microstructure evolutions,while the CeO_(2) nanoparticles were mainly in charge of the microstructure homogeneity.展开更多
文摘Magnesium(Mg)stands out in temporary biomaterial applications due to its biocompatibility,biodegradability,and low Young’s modulus.However,controlling its corrosion through next-generation polymer-based functional coatings is crucial due to the rapid degradation behavior of Mg.In this study,the function of 2D lamellar Ti_(3)C_(2)T_(x)(MXene)in Hydroxyapatite(HA)and Halloysite nanotube(HNT)hybrid coatings in biodegradable poly-(lactic acid)(PLA)was investigated.The morphological and structural characterizations of the coatings on Mg were revealed through HRTEM,XPS,SEM-EDX,XRD,FTIR,and contact angle analyses/tests.Electrochemical in vitro corrosion tests(OCP,PDS,and EIS-Nyquist)were conducted for evaluate corrosion resistance under simulated body fluid(SBF)conditions.The bioactivity of the coatings in SBF have been revealed in accordance with the ISO 23,317 standard.Finally,antibacterial disk diffusion tests were conducted to investigate the functional effect of MXene in coatings.It has been determined that the presence of MXene in the coating increased not only surface wettability(131°,85°,77°,and 74°for uncoated,pH,PHH,and PHH/MXene coatings,respectively)but also increased corrosion resistance(1857.850,42.357,1.593,and 0.085×10^(-6),A/cm^(2) for uncoated,pH,PHH,and PHH/MXene coatings,respectively).It has been proven that the in vitro bioactivity of PLA-HA coatings is further enhanced by adding HNT and MXene,along with SEM morphologies after SBF.Finally,2D lamellar MXene-filled coating exhibits antibacterial behavior against both E.coli and S.aureus bacteria.
基金Project supported by the Nonferrous Metal Oriented Advanced Structural Materials and Manufacturing Cooperative Innovation Center,ChinaProject(51205417)supported by the National Natural Science Foundation of China
文摘A SiC/ZrSiO4?SiO2 (SZS) coating was successfully fabricated on the carbon/carbon (C/C) composites by pack cementation, slurry painting and sintering to improve the anti-oxidation property and thermal shock resistance. The anti-oxidation properties under different oxygen partial pressures (OPP) and thermal shock resistance of the SZS coating were investigated. The results show that the SZS coated sample under low OPP, corresponding to the ambient air, during isothermal oxidation was 0.54% in mass gain after 111 h oxidation at 1500 ° C and less than 0.03% in mass loss after 50 h oxidation in high OPP, corresponding to the air flow rate of 36 L/h. Additionally, the residual compressive strengths (RCS) of the SZS coated samples after oxidation for 50 h in high OPP and 80 h in low OPP remain about 70% and 72.5% of those of original C/C samples, respectively. Moreover, the mass loss of SZS coated samples subjected to the thermal cycle from 1500 ° C in high OPP to boiling water for 30 times was merely 1.61%.
基金supported by the Guangxi Science and Technology Program,China(Nos.Guike AD23026170,Guike AD23026116)the Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology,China(No.22-35-4-S019)+3 种基金the Research Basic Ability Enhancement Program for Young and Middle-aged Teachers of Guangxi,China(No.2023KY0202)China Postdoctoral Science Foundation(No.2024M753642)the Guilin Science and Technology Development Program(Project),China(No.20220124-10)the Innovation Project of GUET Graduate Education,China(No.2024YCXS008).
文摘Laser specific energy significantly impacts the quality of composite coatings.Ti−Al/WC coatings were prepared on the TC21 alloy through laser cladding with specific energy ranging from 66.7 to 133.3 J/mm^(2).The results indicate that the composite coatings primarily comprised Ti_(2)AlC,α_(2)-Ti_(3)Al,γ-TiAl,TiC,and W phases.A gradual increase in the relative intensity of the diffraction peaks of Ti_(2)AlC,α_(2)-Ti_(3)Al,and TiC appeared with the increase of specific energy.When the specific energy was 116.7 J/mm^(2),the Ti−Al/WC coated alloy achieved a maximum micro-hardness of HV0.2766.3,which represented an increase of 1.96 times compared with TC21 alloy,and the minimum wear rate decreased dramatically.Much improvement in tribological properties was attained through the fine-grained strengthening of the(α_(2)+γ)matrix and the dispersion strengthening of self-lubricating Ti_(2)AlC and intertwining TiC.This study provides valuable insights for the development of high-performance Ti−Al composite coatings.
基金supported by the National Natural Science Foundation of China (Grant No.51522106 and Grant No.51401229)the National Science and Technology Major Project of China (Grant No.2015ZX06004-001)the Ningbo Municipal Natural Science Foundation (Grant No.2014A610013)
文摘Due to the excellent corrosion resistance and high irradiation damage resistance,Ti 2AlC MAX phase is considered as a candidate for applications as corrosion resistant and irradiation resistant protective coating.MAX phase coatings can be fabricated through firstly depositing a coating containing the three elements M,A,and X close to stoichiometry of the MAX phases using physical vapor deposition,followed by heat treatment in vacuum.In this work,Ti-Al-C coating was prepared on austenitic stainless steels by reactive DC magnetron sputtering with a compound Ti (50)Al (50) target,and CH4 used as the reactive gas.It was found that the as-deposited coating is mainly composed of Ti 3AlC antiperovskite phase with supersaturated solid solution of Al.Additionally,the ratio of Ti/Al remained the same as that of the target composition.Nevertheless,a thicker thermally grown Ti 2AlC MAX phase coating was obtained after being annealed at 800℃ in vacuum for 1 h.Meanwhile,the ratio of Ti/Al became close to stoichiometry of Ti 2AlC MAX phases.It can be understood that owing to the higher activity of Al,it diffused quickly into the substrate during annealing,and then more stable Ti 2AlC MAX phases transformed from the Ti 3AlC antiperovskite phase.
基金supported by the National Natural Science Foundation of China (Grant No. 51201171)the National High Technology Research and Development Program of China (863 Program, Grant No. 2012AA03A512)
文摘Type Ⅰ hot corrosion behavior of SiO_2-Al_2O_3-glass composite coating based on Ti-47 Al-2 Cr-2 Nb substrate was investigated in the mixture salt of 25 wt%NaCl + 75 wt%Na_2SO_4 at 850 °C. The results showed that there was a bidirectional ion exchange between composite coating and the film of mixed salts, and the sodium ion in the molten salts penetrated into the glass matrix of composite coating, while the potassium ion in the glass matrix dissolved into the molten salts. A decrease in hot corrosion rate was achieved for the coated alloy in comparison with the bared substrate due to the composite coating acting as a diffusion barrier to sulfur and chlorine and preventing the molten salts from diffusing to the coating/alloy interface during the hot corrosion exposure. Additionally, the composite coating decreased the oxygen partial pressure at the coating/alloy interface and promoted the selective oxidation of Al to form a protective Al_2O_3 layer.
基金National Natural Science Foundations of China(51045004)
文摘TiB2/TiB/TiNx(x=1,0.3)/Ti composite coating was prepared on pure Ti by laser surface alloying by using powders of boron as starting materials.The composite coating was examined by X-ray diffraction(XRD),high-resolution transmission electron microscopy(HRTEM)and scanning electron microscopy(SEM).The friction and wear properties of the composite coating were examined using a pin-on-disk tester under dry sliding wear condition.The results showed that the top surface of the composite coating was mainly composed of TiB2,TiB,TiN0.3,TiN and Ti phases,while the interface of the composite coating was composed of TiB and Ti phases.The composite coating showed sticklike structure near the top surface,and dendrites structure near the interface.The friction and wear test showed that the composite coating had better wear resistance than pure Ti due to their higher microhardness than that of pure Ti substrate.
文摘In current work,Ni-Ti-CeO_(2) nanocomposite coatings were achieved by co-adding Ti microparticles and CeO_(2) nanoparticles.Designed experiments and COMSOL computer simulation were applied to reveal the synergistic role of Ti microparticles and CeO_(2) nanoparticles in tailoring the spatial microstructures and properties of Ni-Ti-CeO_(2) nanocomposite coating.Unilaterally,the conductive Ti microparticles conducted the growth behavior of Ni grains by current density concentration,distorting electronic feld lines and heterogeneous nucleation.Individual domains consisting of inner nanograins and outer radial columnar grains surrounded Ti microparticles,where Ti microparticles acted as seeds.Ti microparticles tended to be aggregated,leading to spatial heterogeneity of microstructures.Ni deposits buried the Ti microparticles in forms of“covering model”,contributing to the formation of inside voids and rough surface and aggregation of Ti microparticles;on the other hand,the non-conductive CeO_(2)microparticles hardly changed the distribution of current density and electronic feld lines on the cathode surface.Ni deposits buried the CeO_(2)microparticle in forms of“stacking model”,avoiding the inside voids and aggregation of particles.The incorporation of CeO_(2)microparticle brought in microstructure evolutions only on its top side without disturbing the growth behavior of Ni grains on its lateral side or bottom,suggesting the limited effects.This was correlated with the presence of current concentration above the CeO_(2) microparticle at the last stage of burying CeO_(2) microparticle.The co-addition of Ti microparticles and CeO_(2) nanoparticles into Ni deposits exploited the complementary action of the two particles,which gave birth to satisfed spatial microstructures and improved hardness.Ti microparticles took major responsibility for microstructure evolutions,while the CeO_(2) nanoparticles were mainly in charge of the microstructure homogeneity.