This paper presents a synthesis and analysis of geochronological, geochemical, and zircon Hf isotopic data of Phanerozoic granitoids within the Khanka massif, with the aim of revealing the ac- cretion and reworking pr...This paper presents a synthesis and analysis of geochronological, geochemical, and zircon Hf isotopic data of Phanerozoic granitoids within the Khanka massif, with the aim of revealing the ac- cretion and reworking processes of continental crust within the massif. Zircon U-Pb dating indicates that Phanerozoie granitic magmafism within the Khanka massif can be subdivided into eight stages: Late Cambrian, Middle-Late Ordovieian, Middle Silurian, Late Carboniferous, Early Permian, Middle--Late Permian to Early Triassic, Late Triassic-Early Jurassic, and Early Cretaceous. The zircon Hf isotopic compositions reveal that crustal accretionary events took place mainly in the Mesoprotero- zoie and Neoproterozoic. Through time, the zircon eHf(t) values gradually increase, indicating that the Phanerozoie granitic magmas were derived from the melting of progressively less ancient and more ju- venile crust. The zircon eHdt) values exhibit a gradual decrease with the increases in latitude, which im- plies that the amounts of ancient crustal components within the lower continental crust of the Khanka massif increased from south to north. At the same latitude range, the zircon Hf isotopic compositions also display some variations. We conclude, therefore, that significant horizontal and vertical heteroge- neities existed in the lower continental crust of the Khanka massif during the Phanerozoic.展开更多
The Qinling Orogen resulted from the collision between the North and South China blocks in the Triassic.Mesozoic granitoids,ranging from the Triassic to the Cretaceous,are widely distributed in this orogen,and they pr...The Qinling Orogen resulted from the collision between the North and South China blocks in the Triassic.Mesozoic granitoids,ranging from the Triassic to the Cretaceous,are widely distributed in this orogen,and they provide excellent clues for understanding the crustal evolution and geodynamic evolution of the orogenic belt.The Triassic belt is mostly located in the South Qinling,whereas the Cretaceous belt is located mostly in the North Qinling.The Taibai complex pluton is located at the conjunction of the two belts.Here we present a data set comprising zircon U-Pb dating and elemental and Sr-Nd isotopic geochemistry for Late Mesozoic granite and microgranular enclaves(MME)exposed in the Taibai complex pluton.The granite and MME yield concordant U-Pb zircon ages of 124 to 118 Ma,indicating that they were products of roughly simultaneous magmatism in the Late Mesozoic.The granite rocks are high-K,calc-alkaline,and weakly peraluminous in compositions,and they are characterized by enrichment in large ion lithophile elements(e.g.,Rb,Ba),depletion in high field strength elements(e.g.,Nb,Ta,Zr,Ti),and variable Sr/Y ratios of 7.64 to 63.6.Low MgO,Cr,and Ni contents imply that the magma(s)were essentially crust-derived.Both the granite and the MME show relative depletion in Sr-Nd isotopic composition(initial ^(87)Sr/^(86)Sr of 0.7044 to 0.7067,initialε_(Nd) values of-3.4 to-2.6),suggesting that the magma(s)originated from juvenile crustal rocks.These Sr-Nd isotopic characteristics are significantly different from those of other Late Mesozoic granitoids exposed elsewhere in the Qinling orogenic belt,which formed from much older and enriched sources and with negligible contributions from mantle or juvenile crust.We propose a reworking event of the juvenile crust during the Late Mesozoic that was triggered by the tectonic extension and subsequent asthenospheric upwelling that occurred in eastern China.展开更多
To reduce the uncertainty and reworks in complex projects,a novel mechanism is systematically developed in this paper based on two classical design structure matrix(DSM)clustering methods:Loop searching method(LSM)and...To reduce the uncertainty and reworks in complex projects,a novel mechanism is systematically developed in this paper based on two classical design structure matrix(DSM)clustering methods:Loop searching method(LSM)and function searching method(FSM).Specifically,the optimal working areas for the two clustering methods are first obtained quantitatively in terms of non-zero fraction(NZF)and singular value modularity index(SMI),in which the whole working area is divided into six sub-zones.Then,a judgement procedure is proposed for conveniently choosing the optimal DSM clustering method,which makes it easy to determine which DSM clustering method performs better for a given case.Subsequently,a conceptual model is constructed to assist project managers in effectively analyzing the network of projects and greatly reducing reworks in complex projects by defining preventive actions.Finally,the aircraft design process is presented to show how the proposed judgement mechanism can be utilized to reduce the reworks in actual projects.展开更多
The infaunal polychaete Perinereis aibuhitensis Grube, distributes widelyalong Asian coasts and estuaries. In this research the particle reworking function of P.aibuhitensis was investigated in Beitang Estuary, Tianji...The infaunal polychaete Perinereis aibuhitensis Grube, distributes widelyalong Asian coasts and estuaries. In this research the particle reworking function of P.aibuhitensis was investigated in Beitang Estuary, Tianjin. The result showed that P.aibuhitensis displayed significant particle mixing function, in which small grain sizesediment particles were mixed more than the large size ones. Some small grain sizesediment particles could be ingested by P. aibuhitensis and egested with fecal pellets.展开更多
Intensive mid-Neoproterozoic magmatism is the salient feature of the Yangtze Block,preserving abundant information about crustal reworking and growth.Zircon U-Pb-Lu-Hf isotope analysis was performed on material from t...Intensive mid-Neoproterozoic magmatism is the salient feature of the Yangtze Block,preserving abundant information about crustal reworking and growth.Zircon U-Pb-Lu-Hf isotope analysis was performed on material from the Feidong Complex(FDC)and Zhangbaling Group(ZBLG)of the Zhangbaling Uplift,in order to determine the age and magmatic source of the Neoproterozoic igneous rocks as well as the detrital provenance for the sedimentary rocks,to further provide important data for understanding the mid-Neoproterozoic crustal evolution of the Northeast Yangtze Block.The amphibolite and gneissic granites in the Feidong Complex(FDC)gave similar protolith ages of 782-776 Ma.The synmagmatic zircons exhibited variable negativeεHf(t)values of-26.9 to-8.3.Early(ca.2.4 Ga)to late Paleoproterozoic(ca.2.0-1.9 Ga)inherited zircons were found in the gneissic monzogranite,with negativeεHf(t)values of-11.2 to-7.2,indicating strong reworking of the ancient crustal materials of the Northeast Yangtze Block.Whereas the amphibolites represent minor crustal growth through emplacement of continental rifting-related mafic magmas.The quartz-keratophyres in the Xileng Formation of the ZBLG in contrast systematically yield young protolith crystallization ages of 754-727 Ma with highεHf(t)values of-2.0 to+5.6,indicating their derivation from the reworking of juvenile crustal materials.The detrital zircons from the metasiltstone in the Beijiangjun Formation yield variable^(206)Pb/^(238)U ages(871-644 Ma)with a peak age at 741±11 Ma andεHf(t)values of-4.3 to+5.3,which is consistent with those of the Xileng Formation,but distinct from the FDC,indicating that the provenance of the metasiltstone is primarily the underlying Xileng Formation.The mid-Neoproterozoic igneous and sedimentary rocks of the Zhangbaling Uplift were products from continental rifting zones along the northern margin of the Yangtze Block,situated in different positions from the Susong Complex and the Haizhou Group.The transition from ancient to juvenile crustal sources for felsic magmatic rocks is attributed to gradually increased crustal extension during continental rifting.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos. 41772047 and 41330206)the Graduate Innovation Fund of Jilin University (No. 2017034)the Opening Foundation of the State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (Wuhan) (No. GPMR201503)
文摘This paper presents a synthesis and analysis of geochronological, geochemical, and zircon Hf isotopic data of Phanerozoic granitoids within the Khanka massif, with the aim of revealing the ac- cretion and reworking processes of continental crust within the massif. Zircon U-Pb dating indicates that Phanerozoie granitic magmafism within the Khanka massif can be subdivided into eight stages: Late Cambrian, Middle-Late Ordovieian, Middle Silurian, Late Carboniferous, Early Permian, Middle--Late Permian to Early Triassic, Late Triassic-Early Jurassic, and Early Cretaceous. The zircon Hf isotopic compositions reveal that crustal accretionary events took place mainly in the Mesoprotero- zoie and Neoproterozoic. Through time, the zircon eHf(t) values gradually increase, indicating that the Phanerozoie granitic magmas were derived from the melting of progressively less ancient and more ju- venile crust. The zircon eHdt) values exhibit a gradual decrease with the increases in latitude, which im- plies that the amounts of ancient crustal components within the lower continental crust of the Khanka massif increased from south to north. At the same latitude range, the zircon Hf isotopic compositions also display some variations. We conclude, therefore, that significant horizontal and vertical heteroge- neities existed in the lower continental crust of the Khanka massif during the Phanerozoic.
基金financially supported by the Ministry of Science and Technology of China (No.2016YFC0600404)the Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDB42020303)+1 种基金the National Natural Science Foundation of China (Nos.41872049,41372072,and 41903006)the partly supported by the China Postdoctoral Science Foundation (Nos.2019M652497 and2020T130656)
文摘The Qinling Orogen resulted from the collision between the North and South China blocks in the Triassic.Mesozoic granitoids,ranging from the Triassic to the Cretaceous,are widely distributed in this orogen,and they provide excellent clues for understanding the crustal evolution and geodynamic evolution of the orogenic belt.The Triassic belt is mostly located in the South Qinling,whereas the Cretaceous belt is located mostly in the North Qinling.The Taibai complex pluton is located at the conjunction of the two belts.Here we present a data set comprising zircon U-Pb dating and elemental and Sr-Nd isotopic geochemistry for Late Mesozoic granite and microgranular enclaves(MME)exposed in the Taibai complex pluton.The granite and MME yield concordant U-Pb zircon ages of 124 to 118 Ma,indicating that they were products of roughly simultaneous magmatism in the Late Mesozoic.The granite rocks are high-K,calc-alkaline,and weakly peraluminous in compositions,and they are characterized by enrichment in large ion lithophile elements(e.g.,Rb,Ba),depletion in high field strength elements(e.g.,Nb,Ta,Zr,Ti),and variable Sr/Y ratios of 7.64 to 63.6.Low MgO,Cr,and Ni contents imply that the magma(s)were essentially crust-derived.Both the granite and the MME show relative depletion in Sr-Nd isotopic composition(initial ^(87)Sr/^(86)Sr of 0.7044 to 0.7067,initialε_(Nd) values of-3.4 to-2.6),suggesting that the magma(s)originated from juvenile crustal rocks.These Sr-Nd isotopic characteristics are significantly different from those of other Late Mesozoic granitoids exposed elsewhere in the Qinling orogenic belt,which formed from much older and enriched sources and with negligible contributions from mantle or juvenile crust.We propose a reworking event of the juvenile crust during the Late Mesozoic that was triggered by the tectonic extension and subsequent asthenospheric upwelling that occurred in eastern China.
基金supported by the National Natural Science Foundation of China (Nos. 71471087, 71071076, 61673209)the Funding for Outstanding Doctoral Dissertation in Nanjing University of Aeronautics and Astronautics (No. BCXJ17-11)the Research and Innovation Program for Graduate Education of Jiangsu Province (No. KYZZ160145)
文摘To reduce the uncertainty and reworks in complex projects,a novel mechanism is systematically developed in this paper based on two classical design structure matrix(DSM)clustering methods:Loop searching method(LSM)and function searching method(FSM).Specifically,the optimal working areas for the two clustering methods are first obtained quantitatively in terms of non-zero fraction(NZF)and singular value modularity index(SMI),in which the whole working area is divided into six sub-zones.Then,a judgement procedure is proposed for conveniently choosing the optimal DSM clustering method,which makes it easy to determine which DSM clustering method performs better for a given case.Subsequently,a conceptual model is constructed to assist project managers in effectively analyzing the network of projects and greatly reducing reworks in complex projects by defining preventive actions.Finally,the aircraft design process is presented to show how the proposed judgement mechanism can be utilized to reduce the reworks in actual projects.
基金supported by the Chinese Natural Science Foundation(Funding Numbers:41303070,21307045)
文摘The infaunal polychaete Perinereis aibuhitensis Grube, distributes widelyalong Asian coasts and estuaries. In this research the particle reworking function of P.aibuhitensis was investigated in Beitang Estuary, Tianjin. The result showed that P.aibuhitensis displayed significant particle mixing function, in which small grain sizesediment particles were mixed more than the large size ones. Some small grain sizesediment particles could be ingested by P. aibuhitensis and egested with fecal pellets.
基金supported by funds from the Natural Science Foundation of China(41772228)。
文摘Intensive mid-Neoproterozoic magmatism is the salient feature of the Yangtze Block,preserving abundant information about crustal reworking and growth.Zircon U-Pb-Lu-Hf isotope analysis was performed on material from the Feidong Complex(FDC)and Zhangbaling Group(ZBLG)of the Zhangbaling Uplift,in order to determine the age and magmatic source of the Neoproterozoic igneous rocks as well as the detrital provenance for the sedimentary rocks,to further provide important data for understanding the mid-Neoproterozoic crustal evolution of the Northeast Yangtze Block.The amphibolite and gneissic granites in the Feidong Complex(FDC)gave similar protolith ages of 782-776 Ma.The synmagmatic zircons exhibited variable negativeεHf(t)values of-26.9 to-8.3.Early(ca.2.4 Ga)to late Paleoproterozoic(ca.2.0-1.9 Ga)inherited zircons were found in the gneissic monzogranite,with negativeεHf(t)values of-11.2 to-7.2,indicating strong reworking of the ancient crustal materials of the Northeast Yangtze Block.Whereas the amphibolites represent minor crustal growth through emplacement of continental rifting-related mafic magmas.The quartz-keratophyres in the Xileng Formation of the ZBLG in contrast systematically yield young protolith crystallization ages of 754-727 Ma with highεHf(t)values of-2.0 to+5.6,indicating their derivation from the reworking of juvenile crustal materials.The detrital zircons from the metasiltstone in the Beijiangjun Formation yield variable^(206)Pb/^(238)U ages(871-644 Ma)with a peak age at 741±11 Ma andεHf(t)values of-4.3 to+5.3,which is consistent with those of the Xileng Formation,but distinct from the FDC,indicating that the provenance of the metasiltstone is primarily the underlying Xileng Formation.The mid-Neoproterozoic igneous and sedimentary rocks of the Zhangbaling Uplift were products from continental rifting zones along the northern margin of the Yangtze Block,situated in different positions from the Susong Complex and the Haizhou Group.The transition from ancient to juvenile crustal sources for felsic magmatic rocks is attributed to gradually increased crustal extension during continental rifting.