Background,aim,and scope In the context of climate change,extreme precipitation and resulting flooding events are becoming increasingly severe.Remote sensing technologies are advantageous for monitoring such disasters...Background,aim,and scope In the context of climate change,extreme precipitation and resulting flooding events are becoming increasingly severe.Remote sensing technologies are advantageous for monitoring such disasters due to their wide observation range,periodic revisit capabilities,and continuous spatial coverage.These tools enable real-time and quantitative assessment of flood inundation.Over the past 20 years,the field of remote sensing for floods has seen significant advancements.Understanding the evolution of research hotspots within this field can offer valuable insights for future research directions.Materials and methods This study systematically analyzes the development and hotspot evolution in the field of flood remote sensing,both domestically and internationally during 2000—2021.Data from CNKI(China National Knowledge Infrastructure)and WOS(Web of Science)databases are utilized for this analysis.Results(1)A total of 1693 articles have been published in this field,showing a stable growth trend post-2008.Significant contributors include the Chinese Academy of Sciences,Beijing Normal University,Wuhan University,the Italian National Research Council,and National Aeronautics and Space Administration.(2)High-frequency keywords from 2000 to 2021 include“remote sensing”“flood”“model”“classification”“GIS”“climate change”“area”,and“MODIS”.(3)The most prominent keywords were“GIS”(8.65),“surface water”(7.16),“remote sensing”(7.07),“machine learning”(6.52),and“sentinel-2”(5.86).(4)Thirteen cluster labels were identified through clustering,divided into three phases:2000—2009(initial exploratory stage),2010—2014(period of rapid development),and 2015—2021(steady development of remote sensing for floods and related disasters).Discussion The field exhibits strong phase-based development,with research focuses shifting over time.From 2000 to 2009,emphasis was on remote sensing image application and flood model development.From 2010 to 2014,the focus shifted to accurate interpretation of remote sensing images,multispectral image applications,and long time series detection.From 2015 to 2021,research concentrated on steady development,leveraging large datasets and advanced data processing techniques,including improvements in water body indices,big data fusion,deep learning,and drone monitoring.Early on,SAR data,known for its all-weather capability,was crucial for rapid flood hazard extraction and flood hydrological models.With the rise of high-quality optical satellites,optical remote sensing has become more prevalent,though algorithm accuracy and efficiency for water body index methods still require improvement.Conclusions Data sources and methodologies have evolved from early reliance on radar data to the current exploration of optical image fusion and multi-source data integration.Algorithms now increasingly employ deep learning,super image elements,and object-oriented methods to enhance flood identification accuracy.Recent studies focus on spatial and temporal changes in flooding,risk identification,and early warning for climate change-related flooding,including glacial melting and lake outbursts.Recommendations and perspectives To enhance monitoring accuracy and timeliness,UAV technology should be further utilized.Strengthening multi-source data fusion and assimilation is crucial,as is analyzing long-term flood disaster sequences to better understand their mechanisms.展开更多
Some studies have confirmed the neuroprotective effect of remote ischemic conditioning against stroke. Although numerous animal researches have shown that the neuroprotective effect of remote ischemic conditioning may...Some studies have confirmed the neuroprotective effect of remote ischemic conditioning against stroke. Although numerous animal researches have shown that the neuroprotective effect of remote ischemic conditioning may be related to neuroinflammation, cellular immunity, apoptosis, and autophagy, the exact underlying molecular mechanisms are unclear. This review summarizes the current status of different types of remote ischemic conditioning methods in animal and clinical studies and analyzes their commonalities and differences in neuroprotective mechanisms and signaling pathways. Remote ischemic conditioning has emerged as a potential therapeutic approach for improving stroke-induced brain injury owing to its simplicity, non-invasiveness, safety, and patient tolerability. Different forms of remote ischemic conditioning exhibit distinct intervention patterns, timing, and application range. Mechanistically, remote ischemic conditioning can exert neuroprotective effects by activating the Notch1/phosphatidylinositol 3-kinase/Akt signaling pathway, improving cerebral perfusion, suppressing neuroinflammation, inhibiting cell apoptosis, activating autophagy, and promoting neural regeneration. While remote ischemic conditioning has shown potential in improving stroke outcomes, its full clinical translation has not yet been achieved.展开更多
An improved model based on you only look once version 8(YOLOv8)is proposed to solve the problem of low detection accuracy due to the diversity of object sizes in optical remote sensing images.Firstly,the feature pyram...An improved model based on you only look once version 8(YOLOv8)is proposed to solve the problem of low detection accuracy due to the diversity of object sizes in optical remote sensing images.Firstly,the feature pyramid network(FPN)structure of the original YOLOv8 mode is replaced by the generalized-FPN(GFPN)structure in GiraffeDet to realize the"cross-layer"and"cross-scale"adaptive feature fusion,to enrich the semantic information and spatial information on the feature map to improve the target detection ability of the model.Secondly,a pyramid-pool module of multi atrous spatial pyramid pooling(MASPP)is designed by using the idea of atrous convolution and feature pyramid structure to extract multi-scale features,so as to improve the processing ability of the model for multi-scale objects.The experimental results show that the detection accuracy of the improved YOLOv8 model on DIOR dataset is 92%and mean average precision(mAP)is 87.9%,respectively 3.5%and 1.7%higher than those of the original model.It is proved the detection and classification ability of the proposed model on multi-dimensional optical remote sensing target has been improved.展开更多
This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hype...This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hypersonic vehicles.In order to increase the control amount,this online control legislation makes use of model predictive control(MPC)that is based on the concept of iterative learning control(ILC).By using offline data to decrease the linearized model’s faults,the strategy may effectively increase the robustness of the control system and guarantee that disturbances can be suppressed.An adaptive fault observer is created based on the suggested ILMPC approach in order to enhance overall fault tolerance by estimating and compensating for actuator disturbance and fault degree.During the derivation process,a linearized model of longitudinal dynamics is established.The suggested ILMPC approach is likely to be used in the design of hypersonic vehicle control systems since numerical simulations have demonstrated that it can decrease tracking error and speed up convergence when compared to the offline controller.展开更多
This paper investigates the challenges associated with Unmanned Aerial Vehicle (UAV) collaborative search and target tracking in dynamic and unknown environments characterized by limited field of view. The primary obj...This paper investigates the challenges associated with Unmanned Aerial Vehicle (UAV) collaborative search and target tracking in dynamic and unknown environments characterized by limited field of view. The primary objective is to explore the unknown environments to locate and track targets effectively. To address this problem, we propose a novel Multi-Agent Reinforcement Learning (MARL) method based on Graph Neural Network (GNN). Firstly, a method is introduced for encoding continuous-space multi-UAV problem data into spatial graphs which establish essential relationships among agents, obstacles, and targets. Secondly, a Graph AttenTion network (GAT) model is presented, which focuses exclusively on adjacent nodes, learns attention weights adaptively and allows agents to better process information in dynamic environments. Reward functions are specifically designed to tackle exploration challenges in environments with sparse rewards. By introducing a framework that integrates centralized training and distributed execution, the advancement of models is facilitated. Simulation results show that the proposed method outperforms the existing MARL method in search rate and tracking performance with less collisions. The experiments show that the proposed method can be extended to applications with a larger number of agents, which provides a potential solution to the challenging problem of multi-UAV autonomous tracking in dynamic unknown environments.展开更多
Yellow rust(Puccinia striiformis f.sp.Tritici,YR)and fusarium head blight(Fusarium graminearum,FHB)are the two main diseases affecting wheat in the main grain-producing areas of East China,which is common for the two ...Yellow rust(Puccinia striiformis f.sp.Tritici,YR)and fusarium head blight(Fusarium graminearum,FHB)are the two main diseases affecting wheat in the main grain-producing areas of East China,which is common for the two diseases to appear simultaneously in some main production areas.It is necessary to discriminate wheat YR and FHB at the regional scale to accurately locate the disease in space,conduct detailed disease severity monitoring,and scientific control.Four images on different dates were acquired from Sentinel-2,Landsat-8,and Gaofen-1 during the critical period of winter wheat,and 22 remote sensing features that characterize the wheat growth status were then calculated.Meanwhile,6 meteorological parameters that reflect the wheat phenological information were also obtained by combining the site meteorological data and spatial interpolation technology.Then,the principal components(PCs)of comprehensive remote sensing and meteorological features were extracted with principal component analysis(PCA).The PCs-based discrimination models were established to map YR and FHB damage using the random forest(RF)and backpropagation neural network(BPNN).The models’performance was verified based on the disease field truth data(57 plots during the filling period)and 5-fold cross-validation.The results revealed that the PCs obtained after PCA dimensionality reduction outperformed the initial features(IFs)from remote sensing and meteorology in discriminating between the two diseases.Compared to the IFs,the average area under the curve for both micro-average and macro-average ROC curves increased by 0.07 in the PCs-based RF models and increased by 0.16 and 0.13,respectively,in the PCs-based BPNN models.Notably,the PCs-based BPNN discrimination model emerged as the most effective,achieving an overall accuracy of 83.9%.Our proposed discrimination model for wheat YR and FHB,coupled with multi-source remote sensing images and meteorological data,overcomes the limitations of a single-sensor and single-phase remote sensing information in multiple stress discrimination in cloudy and rainy areas.It performs well in revealing the damage spatial distribution of the two diseases at a regional scale,providing a basis for detailed disease severity monitoring,and scientific prevention and control.展开更多
To realize effective co-phasing adjustment in large-aperture sparse-aperture telescopes,a multichannel stripe tracking approach is employed,allowing simultaneous interferometric measurements of multiple optical paths ...To realize effective co-phasing adjustment in large-aperture sparse-aperture telescopes,a multichannel stripe tracking approach is employed,allowing simultaneous interferometric measurements of multiple optical paths and circumventing the need for pairwise measurements along the mirror boundaries in traditional interferometric methods.This approach enhances detection efficiency and reduces system complexity.Here,the principles of the multibeam interference process and construction of a co-phasing detection module based on direct optical fiber connections were analyzed using wavefront optics theory.Error analysis was conducted on the system surface obtained through multipath interference.Potential applications of the interferometric method were explored.Finally,the principle was verified by experiment,an interferometric fringe contrast better than 0.4 is achieved through flat field calibration and incoherent digital synthesis.The dynamic range of the measurement exceeds 10 times of the center wavelength of the working band(1550 nm).Moreover,a resolution better than one-tenth of the working center wavelength(1550 nm)was achieved.Simultaneous three-beam interference can be achieved,leading to a 50%improvement in detection efficiency.This method can effectively enhance the efficiency of sparse aperture telescope co-phasing,meeting the requirements for observations of 8-10 m telescopes.This study provides a technological foundation for observing distant and faint celestial objects.展开更多
Cloud detection is a critical preprocessing step in remote sensing image processing, as the presence of clouds significantly affects the accuracy of remote sensing data and limits its applicability across various doma...Cloud detection is a critical preprocessing step in remote sensing image processing, as the presence of clouds significantly affects the accuracy of remote sensing data and limits its applicability across various domains. This study presents an enhanced cloud detection method based on the U-Net architecture, designed to address the challenges of multi-scale cloud features and long-range dependencies inherent in remote sensing imagery. A Multi-Scale Dilated Attention (MSDA) module is introduced to effectively integrate multi-scale information and model long-range dependencies across different scales, enhancing the model’s ability to detect clouds of varying sizes. Additionally, a Multi-Head Self-Attention (MHSA) mechanism is incorporated to improve the model’s capacity for capturing finer details, particularly in distinguishing thin clouds from surface features. A multi-path supervision mechanism is also devised to ensure the model learns cloud features at multiple scales, further boosting the accuracy and robustness of cloud mask generation. Experimental results demonstrate that the enhanced model achieves superior performance compared to other benchmarked methods in complex scenarios. It significantly improves cloud detection accuracy, highlighting its strong potential for practical applications in cloud detection tasks.展开更多
Remote sensing and web-based platforms have emerged as vital tools in the effective monitoring of mangrove ecosystems, which are crucial for coastal protection, biodiversity, and carbon sequestration. Utilizing satell...Remote sensing and web-based platforms have emerged as vital tools in the effective monitoring of mangrove ecosystems, which are crucial for coastal protection, biodiversity, and carbon sequestration. Utilizing satellite imagery and aerial data, remote sensing allows researchers to assess the health and extent of mangrove forests over large areas and time periods, providing insights into changes due to environmental stressors like climate change, urbanization, and deforestation. Coupled with web-based platforms, this technology facilitates real-time data sharing and collaborative research efforts among scientists, policymakers, and conservationists. Thus, there is a need to grow this research interest among experts working in this kind of ecosystem. The aim of this paper is to provide a comprehensive literature review on the effective role of remote sensing and web-based platform in monitoring mangrove ecosystem. The research paper utilized the thematic approach to extract specific information to use in the discussion which helped realize the efficiency of digital monitoring for the environment. Web-based platforms and remote sensing represent a powerful tool for environmental monitoring, particularly in the context of forest ecosystems. They facilitate the accessibility of vital data, promote collaboration among stakeholders, support evidence-based policymaking, and engage communities in conservation efforts. As experts confront the urgent challenges posed by climate change and environmental degradation, leveraging technology through web-based platforms is essential for fostering a sustainable future for the forests of the world.展开更多
Asymmetric allylic C—H functionalization is a valuable and challenging research area. Different from the conventional direct allylic C—H cleavage strategy, transition metal-catalyzed migratory allylic substitution o...Asymmetric allylic C—H functionalization is a valuable and challenging research area. Different from the conventional direct allylic C—H cleavage strategy, transition metal-catalyzed migratory allylic substitution of remote dienes has emerged as a new route to achieve allylic C—H functionalization enantioselectively. This review provides a detailed summary of the development and advance of this strategy, introduces the related mechanistic processes, and discusses the area based on the types of catalysts and products.展开更多
This study investigates the effects of AI-mediated communication (AMC) on trust-building and negotiation outcomes in professional remote collaboration settings. Through a mixed-methods approach combining experimental ...This study investigates the effects of AI-mediated communication (AMC) on trust-building and negotiation outcomes in professional remote collaboration settings. Through a mixed-methods approach combining experimental design and qualitative analysis (N = 120), we examine how AI intermediaries influence communication dynamics, relationship building, and decision-making processes. Results indicate that while AMC initially creates barriers to trust formation, it ultimately leads to enhanced communication outcomes and stronger professional relationships when implemented with appropriate transparency and support. The study revealed a 31% improvement in cross-cultural understanding and a 24% increase in negotiation satisfaction rates when using AI-mediated channels with proper transparency measures. These findings contribute to the theoretical understanding of technology-mediated communication and practical applications for organizations implementing AI communication tools.展开更多
Unmanned aerial vehicles(UAVs)have become crucial tools in moving target tracking due to their agility and ability to operate in complex,dynamic environments.UAVs must meet several requirements to achieve stable track...Unmanned aerial vehicles(UAVs)have become crucial tools in moving target tracking due to their agility and ability to operate in complex,dynamic environments.UAVs must meet several requirements to achieve stable tracking,including maintaining continuous target visibility amidst occlusions,ensuring flight safety,and achieving smooth trajectory planning.This paper reviews the latest advancements in UAV-based target tracking,highlighting information prediction,tracking strategies,and swarm cooperation.To address challenges including target visibility and occlusion,real-time prediction and tracking in dynamic environments,flight safety and coordination,resource management and energy efficiency,the paper identifies future research directions aimed at improving the performance,reliability,and scalability of UAV tracking system.展开更多
Multiple Object Tracking(MOT)is essential for applications such as autonomous driving,surveillance,and analytics;However,challenges such as occlusion,low-resolution imaging,and identity switches remain persistent.We p...Multiple Object Tracking(MOT)is essential for applications such as autonomous driving,surveillance,and analytics;However,challenges such as occlusion,low-resolution imaging,and identity switches remain persistent.We propose HAMOT,a hierarchical adaptive multi-object tracker that solves these challenges with a novel,unified framework.Unlike previous methods that rely on isolated components,HAMOT incorporates a Swin Transformer-based Adaptive Enhancement(STAE)module—comprising Scene-Adaptive Transformer Enhancement and Confidence-Adaptive Feature Refinement—to improve detection under low-visibility conditions.The hierarchical DynamicGraphNeuralNetworkwith TemporalAttention(DGNN-TA)models both short-and long-termassociations,and the Adaptive Unscented Kalman Filter with Gated Recurrent Unit(AUKF-GRU)ensures accurate motion prediction.The novel Graph-Based Density-Aware Clustering(GDAC)improves occlusion recovery by adapting to scene density,preserving identity integrity.This integrated approach enables adaptive responses to complex visual scenarios,Achieving exceptional performance across all evaluation metrics,including aHigher Order TrackingAccuracy(HOTA)of 67.05%,a Multiple Object Tracking Accuracy(MOTA)of 82.4%,an ID F1 Score(IDF1)of 83.1%,and a total of 1052 Identity Switches(IDSW)on theMOT17;66.61%HOTA,78.3%MOTA,82.1%IDF1,and a total of 748 IDSWonMOT20;and 66.4%HOTA,92.32%MOTA,and 68.96%IDF1 on DanceTrack.With fixed thresholds,the full HAMOT model(all six components)achieves real-time functionality at 24 FPS on MOT17 using RTX3090,ensuring robustness and scalability for real-world MOT applications.展开更多
This study presents an AI-driven Spatial Decision Support System (SDSS) aimed at transforming groundwater suitability assessments for domestic and irrigation uses in Visakhapatnam District, Andhra Pradesh, India. By e...This study presents an AI-driven Spatial Decision Support System (SDSS) aimed at transforming groundwater suitability assessments for domestic and irrigation uses in Visakhapatnam District, Andhra Pradesh, India. By employing advanced remote sensing, GIS, and machine learning techniques, groundwater quality data from 50 monitoring wells, sourced from the Central Ground Water Board (CGWB), was meticulously analysed. Key parameters, including pH, electrical conductivity, total dissolved solids, and major ion concentrations, were evaluated against World Health Organization (WHO) standards to determine domestic suitability. For irrigation, advanced metrics such as Sodium Adsorption Ratio (SAR), Kelly’s Ratio, Residual Sodium Carbonate (RSC), and percentage sodium (% Na) were utilized to assess water quality. The integration of GIS for spatial mapping and AI models for predictive analytics allows for a comprehensive visualization of groundwater quality distribution across the district. Additionally, the irrigation water quality was evaluated using the USA Salinity Laboratory diagram, providing essential insights for effective agricultural water management. This innovative SDSS framework promises to significantly enhance groundwater resource management, fostering sustainable practices for both domestic use and agriculture in the region.展开更多
Unlike ensemble-averaging measurements,single-molecule tracking provides quantitative information on the kinetics of individual molecules within living cells in real time and may provide insight into the respective mo...Unlike ensemble-averaging measurements,single-molecule tracking provides quantitative information on the kinetics of individual molecules within living cells in real time and may provide insight into the respective molecular interactions behind that.The advancement of single-molecule tracking has been signi-cantly boosted by the development of high-resolution microscopy techniques.In this review,we will discuss this aspect with a particular focus on their recent advance in MINFLUX nanoscopy with feedback approaches where tracking is performed in real time.MINFLUX localization requires fewer than 100 photons from a-1 nm-sized°uorophore,enabling precise tracking.This approach,which demands over an order of magnitude fewer photons than other localization-based techniques(such as STORM,PLAM),allows molecular tracking with single-digit nanometer accuracy in less than 1 ms—an achievement previously unattainable.展开更多
Background:Early identification of concussion-related vision disorders(CRVDs)may improve outcomes by enabling earlier management,referral,and treatment.Objective eye tracking may provide additional data to support the...Background:Early identification of concussion-related vision disorders(CRVDs)may improve outcomes by enabling earlier management,referral,and treatment.Objective eye tracking may provide additional data to support the diagnose of CRVDs.The purpose of this study was to determine the utility of objective infrared eye tracking in identifying CRVDs among adolescents experiencing persisting post-concussive symptoms(PPCS)more than 28 days after injury.Methods:This was a prospective study of adolescents with PPCS evaluated with visio-vestibular examination(VVE),comprehensive vision examination,and an eye tracking device.Results:Of the 108 adolescents enrolled,67(62%)were diagnosed with a CRVD by comprehensive vision examination.On VVE,the near point of convergence break(5.5±3.2 cm vs.3.9±1.7 cm(mean±SD),p<0.001)and recovery(8.1±3.3 cm vs.6.8±2.3 cm,p=0.02)distinguished between those with and without CRVD.Concussion symptom provocation on VVE with horizontal saccades(35(52%)vs.12(29%),p=0.02)and horizontal vestibulo-ocular reflex testing(37(55%)vs.14(34%),p=0.03),and sway on tandem gait under the forward eyes closed condition(25(37%)vs.6(15%),p=0.01)also identified those with CRVD.From the eye tracking device,the BOX score(8.1±5.8 vs.5.2±4.1,p=0.007)and a metric of the left eye tracking along the bottom of the visual target(0.094±0.500 vs.-0.124±0.410,p=0.02)identified those with CRVD,with a multivariable receiver operating characteristic curve analysis,including the BOX score,achieving an area under the receiver operating characteristic curve of 0.7637.Conclusion:CRVDs are common in those with PPCS,with impact on recovery after concussion.Novel eye-tracking metrics can serve as an aid in the identification of those with CRVDs who would benefit from referral for comprehensive diagnosis and treatment.展开更多
Multifarious regions around the world are exposed to natural hazards and disasters,each with unique characteristics.A higher frequency of extreme hydro-meteorological events,most probably related to climate change,and...Multifarious regions around the world are exposed to natural hazards and disasters,each with unique characteristics.A higher frequency of extreme hydro-meteorological events,most probably related to climate change,and an increase in vulnerable population have been addressed as potential causes of such disasters.To mitigate the consequences of these disasters,Disaster Risk Management,including hazard assessment,elements-at-risk mapping,vulnerability and risk assessment of spatial components as well as Earth Observation(EO)products and Geographic Information Systems(GIS),should be considered.Multihazard assessment entails the evaluation of relationships between various hazards,including interconnected or cascading events,as well as focusing on various levels from global to local community levels,as each level manifests particular objectives and spatial data.This paper presents an overview of the diverse types of spatial data and explores the methods applied in hazard and risk assessments,with volcanic eruptions serving as a specific example.The rapid development of scientific research and the advancement of Earth Observation satellites in recent years have revolutionized the concepts of geologists and researchers.These satellites now play an indispensable role in supporting first responders during major disasters.The coordination of satellite deployment ensures a swift response along with allowing for the timely delivery of critical images.In tandem,remote sensing technologies and geographic information systems(GIS)have emerged as essential tools for geospatial analysis.The application of remote sensing and GIS for the detection of natural disasters was examined through a review of academic papers,offering an analysis of how remote sensing is utilized to assess natural hazards and their link to climate change.展开更多
The publisher regrets that the Appendix A.Supplementary data was not updated as per author and editor’s request.The publisher would like to apologise for any inconvenience caused.
Syntax and semantics are two important factors that influence sentence processing.Studies have found different aging effects in syntactic and semantic processing during sentence comprehension.While there is consensus ...Syntax and semantics are two important factors that influence sentence processing.Studies have found different aging effects in syntactic and semantic processing during sentence comprehension.While there is consensus on the aging effects in syntactic processing,the presence of aging in semantic processing remains debated.The present study aimed to explore whether there were aging effects in lexical-semantic information processing in complex sentence.79 participants were recruited to take part in this study,including 40 younger adults(mean age of 21.1±1.19 years)and 39 older adults(mean age of 66.24±3.02 years).Using eye-movement tracking technology and manipulating the animacy of head nouns in Chinese subject relative clauses(SRCs)and object relative clauses(ORCs),we investigated the abilities of young and old adults in relative clauses(RCs)processing.The results of comprehension accuracy revealed a significant effect of aging in RCs processing,with older participants exhibiting poor performance compared with younger counterparts across all four clause conditions.Furthermore,younger participants demonstrated a clear animacy effect in RCs processing,but this effect was not found in older participants.Reading times indicated a prominent aging effect in clause processing,with older participants showing significantly longer reading times across all four types of RCs compared to younger participants.It was observed that processing ORCs in Chinese was relatively easier than processing SRCs.Additionally,a noticeable aging effect in semantic processing was found,specifically,the difficulties of processing SRCs and ORCs vary with the animacy configuration of the head nouns for younger participants but were not observed in older participants.In summary,aging in cognition would also inhinder semantic processing in complex sentence comprehension.展开更多
文摘Background,aim,and scope In the context of climate change,extreme precipitation and resulting flooding events are becoming increasingly severe.Remote sensing technologies are advantageous for monitoring such disasters due to their wide observation range,periodic revisit capabilities,and continuous spatial coverage.These tools enable real-time and quantitative assessment of flood inundation.Over the past 20 years,the field of remote sensing for floods has seen significant advancements.Understanding the evolution of research hotspots within this field can offer valuable insights for future research directions.Materials and methods This study systematically analyzes the development and hotspot evolution in the field of flood remote sensing,both domestically and internationally during 2000—2021.Data from CNKI(China National Knowledge Infrastructure)and WOS(Web of Science)databases are utilized for this analysis.Results(1)A total of 1693 articles have been published in this field,showing a stable growth trend post-2008.Significant contributors include the Chinese Academy of Sciences,Beijing Normal University,Wuhan University,the Italian National Research Council,and National Aeronautics and Space Administration.(2)High-frequency keywords from 2000 to 2021 include“remote sensing”“flood”“model”“classification”“GIS”“climate change”“area”,and“MODIS”.(3)The most prominent keywords were“GIS”(8.65),“surface water”(7.16),“remote sensing”(7.07),“machine learning”(6.52),and“sentinel-2”(5.86).(4)Thirteen cluster labels were identified through clustering,divided into three phases:2000—2009(initial exploratory stage),2010—2014(period of rapid development),and 2015—2021(steady development of remote sensing for floods and related disasters).Discussion The field exhibits strong phase-based development,with research focuses shifting over time.From 2000 to 2009,emphasis was on remote sensing image application and flood model development.From 2010 to 2014,the focus shifted to accurate interpretation of remote sensing images,multispectral image applications,and long time series detection.From 2015 to 2021,research concentrated on steady development,leveraging large datasets and advanced data processing techniques,including improvements in water body indices,big data fusion,deep learning,and drone monitoring.Early on,SAR data,known for its all-weather capability,was crucial for rapid flood hazard extraction and flood hydrological models.With the rise of high-quality optical satellites,optical remote sensing has become more prevalent,though algorithm accuracy and efficiency for water body index methods still require improvement.Conclusions Data sources and methodologies have evolved from early reliance on radar data to the current exploration of optical image fusion and multi-source data integration.Algorithms now increasingly employ deep learning,super image elements,and object-oriented methods to enhance flood identification accuracy.Recent studies focus on spatial and temporal changes in flooding,risk identification,and early warning for climate change-related flooding,including glacial melting and lake outbursts.Recommendations and perspectives To enhance monitoring accuracy and timeliness,UAV technology should be further utilized.Strengthening multi-source data fusion and assimilation is crucial,as is analyzing long-term flood disaster sequences to better understand their mechanisms.
基金supported partly by the National Natural Science Foundation of China,No.82071332the Chongqing Natural Science Foundation Joint Fund for Innovation and Development,No.CSTB2023NSCQ-LZX0041 (both to ZG)。
文摘Some studies have confirmed the neuroprotective effect of remote ischemic conditioning against stroke. Although numerous animal researches have shown that the neuroprotective effect of remote ischemic conditioning may be related to neuroinflammation, cellular immunity, apoptosis, and autophagy, the exact underlying molecular mechanisms are unclear. This review summarizes the current status of different types of remote ischemic conditioning methods in animal and clinical studies and analyzes their commonalities and differences in neuroprotective mechanisms and signaling pathways. Remote ischemic conditioning has emerged as a potential therapeutic approach for improving stroke-induced brain injury owing to its simplicity, non-invasiveness, safety, and patient tolerability. Different forms of remote ischemic conditioning exhibit distinct intervention patterns, timing, and application range. Mechanistically, remote ischemic conditioning can exert neuroprotective effects by activating the Notch1/phosphatidylinositol 3-kinase/Akt signaling pathway, improving cerebral perfusion, suppressing neuroinflammation, inhibiting cell apoptosis, activating autophagy, and promoting neural regeneration. While remote ischemic conditioning has shown potential in improving stroke outcomes, its full clinical translation has not yet been achieved.
基金supported by the National Natural Science Foundation of China(No.62241109)the Tianjin Science and Technology Commissioner Project(No.20YDTPJC01110)。
文摘An improved model based on you only look once version 8(YOLOv8)is proposed to solve the problem of low detection accuracy due to the diversity of object sizes in optical remote sensing images.Firstly,the feature pyramid network(FPN)structure of the original YOLOv8 mode is replaced by the generalized-FPN(GFPN)structure in GiraffeDet to realize the"cross-layer"and"cross-scale"adaptive feature fusion,to enrich the semantic information and spatial information on the feature map to improve the target detection ability of the model.Secondly,a pyramid-pool module of multi atrous spatial pyramid pooling(MASPP)is designed by using the idea of atrous convolution and feature pyramid structure to extract multi-scale features,so as to improve the processing ability of the model for multi-scale objects.The experimental results show that the detection accuracy of the improved YOLOv8 model on DIOR dataset is 92%and mean average precision(mAP)is 87.9%,respectively 3.5%and 1.7%higher than those of the original model.It is proved the detection and classification ability of the proposed model on multi-dimensional optical remote sensing target has been improved.
基金supported by the National Natural Science Foundation of China(12072090).
文摘This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hypersonic vehicles.In order to increase the control amount,this online control legislation makes use of model predictive control(MPC)that is based on the concept of iterative learning control(ILC).By using offline data to decrease the linearized model’s faults,the strategy may effectively increase the robustness of the control system and guarantee that disturbances can be suppressed.An adaptive fault observer is created based on the suggested ILMPC approach in order to enhance overall fault tolerance by estimating and compensating for actuator disturbance and fault degree.During the derivation process,a linearized model of longitudinal dynamics is established.The suggested ILMPC approach is likely to be used in the design of hypersonic vehicle control systems since numerical simulations have demonstrated that it can decrease tracking error and speed up convergence when compared to the offline controller.
基金supported by the National Natural Science Foundation of China(Nos.12272104,U22B2013).
文摘This paper investigates the challenges associated with Unmanned Aerial Vehicle (UAV) collaborative search and target tracking in dynamic and unknown environments characterized by limited field of view. The primary objective is to explore the unknown environments to locate and track targets effectively. To address this problem, we propose a novel Multi-Agent Reinforcement Learning (MARL) method based on Graph Neural Network (GNN). Firstly, a method is introduced for encoding continuous-space multi-UAV problem data into spatial graphs which establish essential relationships among agents, obstacles, and targets. Secondly, a Graph AttenTion network (GAT) model is presented, which focuses exclusively on adjacent nodes, learns attention weights adaptively and allows agents to better process information in dynamic environments. Reward functions are specifically designed to tackle exploration challenges in environments with sparse rewards. By introducing a framework that integrates centralized training and distributed execution, the advancement of models is facilitated. Simulation results show that the proposed method outperforms the existing MARL method in search rate and tracking performance with less collisions. The experiments show that the proposed method can be extended to applications with a larger number of agents, which provides a potential solution to the challenging problem of multi-UAV autonomous tracking in dynamic unknown environments.
基金supported by National Key R&D Program of China(2022YFD2000100)National Natural Science Foundation of China(42401400)Zhejiang Provincial Key Research and Development Program(2023C02018).
文摘Yellow rust(Puccinia striiformis f.sp.Tritici,YR)and fusarium head blight(Fusarium graminearum,FHB)are the two main diseases affecting wheat in the main grain-producing areas of East China,which is common for the two diseases to appear simultaneously in some main production areas.It is necessary to discriminate wheat YR and FHB at the regional scale to accurately locate the disease in space,conduct detailed disease severity monitoring,and scientific control.Four images on different dates were acquired from Sentinel-2,Landsat-8,and Gaofen-1 during the critical period of winter wheat,and 22 remote sensing features that characterize the wheat growth status were then calculated.Meanwhile,6 meteorological parameters that reflect the wheat phenological information were also obtained by combining the site meteorological data and spatial interpolation technology.Then,the principal components(PCs)of comprehensive remote sensing and meteorological features were extracted with principal component analysis(PCA).The PCs-based discrimination models were established to map YR and FHB damage using the random forest(RF)and backpropagation neural network(BPNN).The models’performance was verified based on the disease field truth data(57 plots during the filling period)and 5-fold cross-validation.The results revealed that the PCs obtained after PCA dimensionality reduction outperformed the initial features(IFs)from remote sensing and meteorology in discriminating between the two diseases.Compared to the IFs,the average area under the curve for both micro-average and macro-average ROC curves increased by 0.07 in the PCs-based RF models and increased by 0.16 and 0.13,respectively,in the PCs-based BPNN models.Notably,the PCs-based BPNN discrimination model emerged as the most effective,achieving an overall accuracy of 83.9%.Our proposed discrimination model for wheat YR and FHB,coupled with multi-source remote sensing images and meteorological data,overcomes the limitations of a single-sensor and single-phase remote sensing information in multiple stress discrimination in cloudy and rainy areas.It performs well in revealing the damage spatial distribution of the two diseases at a regional scale,providing a basis for detailed disease severity monitoring,and scientific prevention and control.
文摘To realize effective co-phasing adjustment in large-aperture sparse-aperture telescopes,a multichannel stripe tracking approach is employed,allowing simultaneous interferometric measurements of multiple optical paths and circumventing the need for pairwise measurements along the mirror boundaries in traditional interferometric methods.This approach enhances detection efficiency and reduces system complexity.Here,the principles of the multibeam interference process and construction of a co-phasing detection module based on direct optical fiber connections were analyzed using wavefront optics theory.Error analysis was conducted on the system surface obtained through multipath interference.Potential applications of the interferometric method were explored.Finally,the principle was verified by experiment,an interferometric fringe contrast better than 0.4 is achieved through flat field calibration and incoherent digital synthesis.The dynamic range of the measurement exceeds 10 times of the center wavelength of the working band(1550 nm).Moreover,a resolution better than one-tenth of the working center wavelength(1550 nm)was achieved.Simultaneous three-beam interference can be achieved,leading to a 50%improvement in detection efficiency.This method can effectively enhance the efficiency of sparse aperture telescope co-phasing,meeting the requirements for observations of 8-10 m telescopes.This study provides a technological foundation for observing distant and faint celestial objects.
文摘Cloud detection is a critical preprocessing step in remote sensing image processing, as the presence of clouds significantly affects the accuracy of remote sensing data and limits its applicability across various domains. This study presents an enhanced cloud detection method based on the U-Net architecture, designed to address the challenges of multi-scale cloud features and long-range dependencies inherent in remote sensing imagery. A Multi-Scale Dilated Attention (MSDA) module is introduced to effectively integrate multi-scale information and model long-range dependencies across different scales, enhancing the model’s ability to detect clouds of varying sizes. Additionally, a Multi-Head Self-Attention (MHSA) mechanism is incorporated to improve the model’s capacity for capturing finer details, particularly in distinguishing thin clouds from surface features. A multi-path supervision mechanism is also devised to ensure the model learns cloud features at multiple scales, further boosting the accuracy and robustness of cloud mask generation. Experimental results demonstrate that the enhanced model achieves superior performance compared to other benchmarked methods in complex scenarios. It significantly improves cloud detection accuracy, highlighting its strong potential for practical applications in cloud detection tasks.
文摘Remote sensing and web-based platforms have emerged as vital tools in the effective monitoring of mangrove ecosystems, which are crucial for coastal protection, biodiversity, and carbon sequestration. Utilizing satellite imagery and aerial data, remote sensing allows researchers to assess the health and extent of mangrove forests over large areas and time periods, providing insights into changes due to environmental stressors like climate change, urbanization, and deforestation. Coupled with web-based platforms, this technology facilitates real-time data sharing and collaborative research efforts among scientists, policymakers, and conservationists. Thus, there is a need to grow this research interest among experts working in this kind of ecosystem. The aim of this paper is to provide a comprehensive literature review on the effective role of remote sensing and web-based platform in monitoring mangrove ecosystem. The research paper utilized the thematic approach to extract specific information to use in the discussion which helped realize the efficiency of digital monitoring for the environment. Web-based platforms and remote sensing represent a powerful tool for environmental monitoring, particularly in the context of forest ecosystems. They facilitate the accessibility of vital data, promote collaboration among stakeholders, support evidence-based policymaking, and engage communities in conservation efforts. As experts confront the urgent challenges posed by climate change and environmental degradation, leveraging technology through web-based platforms is essential for fostering a sustainable future for the forests of the world.
文摘Asymmetric allylic C—H functionalization is a valuable and challenging research area. Different from the conventional direct allylic C—H cleavage strategy, transition metal-catalyzed migratory allylic substitution of remote dienes has emerged as a new route to achieve allylic C—H functionalization enantioselectively. This review provides a detailed summary of the development and advance of this strategy, introduces the related mechanistic processes, and discusses the area based on the types of catalysts and products.
文摘This study investigates the effects of AI-mediated communication (AMC) on trust-building and negotiation outcomes in professional remote collaboration settings. Through a mixed-methods approach combining experimental design and qualitative analysis (N = 120), we examine how AI intermediaries influence communication dynamics, relationship building, and decision-making processes. Results indicate that while AMC initially creates barriers to trust formation, it ultimately leads to enhanced communication outcomes and stronger professional relationships when implemented with appropriate transparency and support. The study revealed a 31% improvement in cross-cultural understanding and a 24% increase in negotiation satisfaction rates when using AI-mediated channels with proper transparency measures. These findings contribute to the theoretical understanding of technology-mediated communication and practical applications for organizations implementing AI communication tools.
基金financial support provided by the Natural Science Foundation of Hunan Province of China(Grant No.2021JJ10045)the Open Research Subject of State Key Laboratory of Intelligent Game(Grant No.ZBKF-24-01)+1 种基金the Postdoctoral Fellowship Program of CPSF(Grant No.GZB20240989)the China Postdoctoral Science Foundation(Grant No.2024M754304)。
文摘Unmanned aerial vehicles(UAVs)have become crucial tools in moving target tracking due to their agility and ability to operate in complex,dynamic environments.UAVs must meet several requirements to achieve stable tracking,including maintaining continuous target visibility amidst occlusions,ensuring flight safety,and achieving smooth trajectory planning.This paper reviews the latest advancements in UAV-based target tracking,highlighting information prediction,tracking strategies,and swarm cooperation.To address challenges including target visibility and occlusion,real-time prediction and tracking in dynamic environments,flight safety and coordination,resource management and energy efficiency,the paper identifies future research directions aimed at improving the performance,reliability,and scalability of UAV tracking system.
基金supported in part by Multimedia University under the Research Fellow Grant MMUI/250008in part by Telekom Research&Development Sdn Bhd under Grants RDTC/241149 and RDTC/231095+1 种基金Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2025R140)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Multiple Object Tracking(MOT)is essential for applications such as autonomous driving,surveillance,and analytics;However,challenges such as occlusion,low-resolution imaging,and identity switches remain persistent.We propose HAMOT,a hierarchical adaptive multi-object tracker that solves these challenges with a novel,unified framework.Unlike previous methods that rely on isolated components,HAMOT incorporates a Swin Transformer-based Adaptive Enhancement(STAE)module—comprising Scene-Adaptive Transformer Enhancement and Confidence-Adaptive Feature Refinement—to improve detection under low-visibility conditions.The hierarchical DynamicGraphNeuralNetworkwith TemporalAttention(DGNN-TA)models both short-and long-termassociations,and the Adaptive Unscented Kalman Filter with Gated Recurrent Unit(AUKF-GRU)ensures accurate motion prediction.The novel Graph-Based Density-Aware Clustering(GDAC)improves occlusion recovery by adapting to scene density,preserving identity integrity.This integrated approach enables adaptive responses to complex visual scenarios,Achieving exceptional performance across all evaluation metrics,including aHigher Order TrackingAccuracy(HOTA)of 67.05%,a Multiple Object Tracking Accuracy(MOTA)of 82.4%,an ID F1 Score(IDF1)of 83.1%,and a total of 1052 Identity Switches(IDSW)on theMOT17;66.61%HOTA,78.3%MOTA,82.1%IDF1,and a total of 748 IDSWonMOT20;and 66.4%HOTA,92.32%MOTA,and 68.96%IDF1 on DanceTrack.With fixed thresholds,the full HAMOT model(all six components)achieves real-time functionality at 24 FPS on MOT17 using RTX3090,ensuring robustness and scalability for real-world MOT applications.
文摘This study presents an AI-driven Spatial Decision Support System (SDSS) aimed at transforming groundwater suitability assessments for domestic and irrigation uses in Visakhapatnam District, Andhra Pradesh, India. By employing advanced remote sensing, GIS, and machine learning techniques, groundwater quality data from 50 monitoring wells, sourced from the Central Ground Water Board (CGWB), was meticulously analysed. Key parameters, including pH, electrical conductivity, total dissolved solids, and major ion concentrations, were evaluated against World Health Organization (WHO) standards to determine domestic suitability. For irrigation, advanced metrics such as Sodium Adsorption Ratio (SAR), Kelly’s Ratio, Residual Sodium Carbonate (RSC), and percentage sodium (% Na) were utilized to assess water quality. The integration of GIS for spatial mapping and AI models for predictive analytics allows for a comprehensive visualization of groundwater quality distribution across the district. Additionally, the irrigation water quality was evaluated using the USA Salinity Laboratory diagram, providing essential insights for effective agricultural water management. This innovative SDSS framework promises to significantly enhance groundwater resource management, fostering sustainable practices for both domestic use and agriculture in the region.
基金supported by the Science and Technology Commission of Shanghai Municipality(21DZ1100500)the Shanghai Municipal Science and Technology Major Project+2 种基金the Shanghai Frontiers Science Center Program(2021–2025 No.20)The National Natural Science Foundation of China(32471545)the Natural Science Foundation of Shanghai(24ZR1454300).
文摘Unlike ensemble-averaging measurements,single-molecule tracking provides quantitative information on the kinetics of individual molecules within living cells in real time and may provide insight into the respective molecular interactions behind that.The advancement of single-molecule tracking has been signi-cantly boosted by the development of high-resolution microscopy techniques.In this review,we will discuss this aspect with a particular focus on their recent advance in MINFLUX nanoscopy with feedback approaches where tracking is performed in real time.MINFLUX localization requires fewer than 100 photons from a-1 nm-sized°uorophore,enabling precise tracking.This approach,which demands over an order of magnitude fewer photons than other localization-based techniques(such as STORM,PLAM),allows molecular tracking with single-digit nanometer accuracy in less than 1 ms—an achievement previously unattainable.
基金supported by funding from the National Institution of Neurological Disorders and Stroke(1R41NS103698-01A1 to CLM)。
文摘Background:Early identification of concussion-related vision disorders(CRVDs)may improve outcomes by enabling earlier management,referral,and treatment.Objective eye tracking may provide additional data to support the diagnose of CRVDs.The purpose of this study was to determine the utility of objective infrared eye tracking in identifying CRVDs among adolescents experiencing persisting post-concussive symptoms(PPCS)more than 28 days after injury.Methods:This was a prospective study of adolescents with PPCS evaluated with visio-vestibular examination(VVE),comprehensive vision examination,and an eye tracking device.Results:Of the 108 adolescents enrolled,67(62%)were diagnosed with a CRVD by comprehensive vision examination.On VVE,the near point of convergence break(5.5±3.2 cm vs.3.9±1.7 cm(mean±SD),p<0.001)and recovery(8.1±3.3 cm vs.6.8±2.3 cm,p=0.02)distinguished between those with and without CRVD.Concussion symptom provocation on VVE with horizontal saccades(35(52%)vs.12(29%),p=0.02)and horizontal vestibulo-ocular reflex testing(37(55%)vs.14(34%),p=0.03),and sway on tandem gait under the forward eyes closed condition(25(37%)vs.6(15%),p=0.01)also identified those with CRVD.From the eye tracking device,the BOX score(8.1±5.8 vs.5.2±4.1,p=0.007)and a metric of the left eye tracking along the bottom of the visual target(0.094±0.500 vs.-0.124±0.410,p=0.02)identified those with CRVD,with a multivariable receiver operating characteristic curve analysis,including the BOX score,achieving an area under the receiver operating characteristic curve of 0.7637.Conclusion:CRVDs are common in those with PPCS,with impact on recovery after concussion.Novel eye-tracking metrics can serve as an aid in the identification of those with CRVDs who would benefit from referral for comprehensive diagnosis and treatment.
文摘Multifarious regions around the world are exposed to natural hazards and disasters,each with unique characteristics.A higher frequency of extreme hydro-meteorological events,most probably related to climate change,and an increase in vulnerable population have been addressed as potential causes of such disasters.To mitigate the consequences of these disasters,Disaster Risk Management,including hazard assessment,elements-at-risk mapping,vulnerability and risk assessment of spatial components as well as Earth Observation(EO)products and Geographic Information Systems(GIS),should be considered.Multihazard assessment entails the evaluation of relationships between various hazards,including interconnected or cascading events,as well as focusing on various levels from global to local community levels,as each level manifests particular objectives and spatial data.This paper presents an overview of the diverse types of spatial data and explores the methods applied in hazard and risk assessments,with volcanic eruptions serving as a specific example.The rapid development of scientific research and the advancement of Earth Observation satellites in recent years have revolutionized the concepts of geologists and researchers.These satellites now play an indispensable role in supporting first responders during major disasters.The coordination of satellite deployment ensures a swift response along with allowing for the timely delivery of critical images.In tandem,remote sensing technologies and geographic information systems(GIS)have emerged as essential tools for geospatial analysis.The application of remote sensing and GIS for the detection of natural disasters was examined through a review of academic papers,offering an analysis of how remote sensing is utilized to assess natural hazards and their link to climate change.
文摘The publisher regrets that the Appendix A.Supplementary data was not updated as per author and editor’s request.The publisher would like to apologise for any inconvenience caused.
基金supported by the National Social Science Foundation of China(Grant No.24BYY117).
文摘Syntax and semantics are two important factors that influence sentence processing.Studies have found different aging effects in syntactic and semantic processing during sentence comprehension.While there is consensus on the aging effects in syntactic processing,the presence of aging in semantic processing remains debated.The present study aimed to explore whether there were aging effects in lexical-semantic information processing in complex sentence.79 participants were recruited to take part in this study,including 40 younger adults(mean age of 21.1±1.19 years)and 39 older adults(mean age of 66.24±3.02 years).Using eye-movement tracking technology and manipulating the animacy of head nouns in Chinese subject relative clauses(SRCs)and object relative clauses(ORCs),we investigated the abilities of young and old adults in relative clauses(RCs)processing.The results of comprehension accuracy revealed a significant effect of aging in RCs processing,with older participants exhibiting poor performance compared with younger counterparts across all four clause conditions.Furthermore,younger participants demonstrated a clear animacy effect in RCs processing,but this effect was not found in older participants.Reading times indicated a prominent aging effect in clause processing,with older participants showing significantly longer reading times across all four types of RCs compared to younger participants.It was observed that processing ORCs in Chinese was relatively easier than processing SRCs.Additionally,a noticeable aging effect in semantic processing was found,specifically,the difficulties of processing SRCs and ORCs vary with the animacy configuration of the head nouns for younger participants but were not observed in older participants.In summary,aging in cognition would also inhinder semantic processing in complex sentence comprehension.