We investigated the parametric optimization on incremental sheet forming of stainless steel using Grey Relational Analysis(GRA) coupled with Principal Component Analysis(PCA). AISI 316L stainless steel sheets were use...We investigated the parametric optimization on incremental sheet forming of stainless steel using Grey Relational Analysis(GRA) coupled with Principal Component Analysis(PCA). AISI 316L stainless steel sheets were used to develop double wall angle pyramid with aid of tungsten carbide tool. GRA coupled with PCA was used to plan the experiment conditions. Control factors such as Tool Diameter(TD), Step Depth(SD), Bottom Wall Angle(BWA), Feed Rate(FR) and Spindle Speed(SS) on Top Wall Angle(TWA) and Top Wall Angle Surface Roughness(TWASR) have been studied. Wall angle increases with increasing tool diameter due to large contact area between tool and workpiece. As the step depth, feed rate and spindle speed increase,TWASR decreases with increasing tool diameter. As the step depth increasing, the hydrostatic stress is raised causing severe cracks in the deformed surface. Hence it was concluded that the proposed hybrid method was suitable for optimizing the factors and response.展开更多
[Objective] This study was conducted to explore the internal relationship among root biological traits of sweetpotato, as well as the regularity in their formation and differentiation. [Method] The root traits of 10 s...[Objective] This study was conducted to explore the internal relationship among root biological traits of sweetpotato, as well as the regularity in their formation and differentiation. [Method] The root traits of 10 sweetpotato cultivars were measured through hydroponic culture in a greenhouse and field survey, and then their correlations were analyzed by statistical methods. [Result] The root morphological traits of sweetpotato at seedling stage such as projected area, surface area, average diameter and volume processed the highest contribution rate (80.56%) 10 d after transplanting, and the contribution rate of root average diameter reached 27.79% 20 d after transplanting. Storage root fresh weight per plant shared extremely significant positive correlations with storage root fresh weight of penultimate node and storage root fresh weight of antepenultimate node, and a significant positive corre- lation with commercial storage root number, and a significant negative correlation with storage root number of penultimate node. Among them, the correlation coeffi- cient of storage root fresh weight per plant with storage root fresh weight of antepenultimate node was the highest (0.659 5). Fifteen days after transplanting, storage root fresh weight per plant had significant negative correlations with root projected area, surface area and volume. There was a significant positive correlation between root dry weight and storage root fresh weight per plant 25 d after transplanting. Root dry weight, volume, length, average diameter of sweetpotato seedlings had higher relational degrees with storage root fresh weight per plant. Ten and twenty days after transplanting were important time for the growth and differentiation of sweetpotato roots. In addition, node length and planting depth had certain influence on sweetpotato yield, and direct relationship existed between the seedling root biological traits and storage root yield of sweetpotato. [Conclusion] The results provide theoretical support for standard cultivation and new variety breeding of sweetpotato.展开更多
To screen out the rapeseed(Brassica napus) combinations that are suitable for the production of both oilseed and vegetable, we carried out a field experiment for 11 new combinations(hybrids) of rapeseed and then perfo...To screen out the rapeseed(Brassica napus) combinations that are suitable for the production of both oilseed and vegetable, we carried out a field experiment for 11 new combinations(hybrids) of rapeseed and then performed grey relation analysis and cluster analysis on 12 traits including the yield and quality of young stem,seed yield, and several agronomic traits after harvesting of young stem. The results showed that A11, A7, and A4 had higher main stalk yield than other combinations.The young stem/leaf ratios of A11, A5, A7, A4, A3, and A1 were in line with the quality requirements for young stem commodity. The soluble sugar content of A2,A8, and A10 was higher than that of CK(Fengyou 737), and the seed yields of A4,A3, A2, A1, A5, and A6 were higher than that of CK. The 11 rapeseed combinations were classified into 3 grades by grey relation analysis and cluster analysis. Two combinations, A4(Y20A×95C4R) and A11(3194A×09-5R), showed the weighted relation degrees higher than 0.95, which were clustered into grade I by cluster analysis. They had good agronomic traits and good performance as both oilseed and vegetable. A8, A5, A3, A7, A2, A10, A6, and A1 were clustered into grade Ⅱ and A9 into grade Ⅲ. In this study, the oilseed and vegetable dual-purpose rapeseed combinations were screened out based on grey relation analysis and cluster analysis,which can provide reference for the breeding of oilseed and vegetable dual-purpose rapeseed combinations.展开更多
Selection of air conditioning(AC) cold/heat sources generally concerns about certain aspects and cannot reveal the whole profile of the problems. Grey relation analysis (GRA) is a data processing method to categor...Selection of air conditioning(AC) cold/heat sources generally concerns about certain aspects and cannot reveal the whole profile of the problems. Grey relation analysis (GRA) is a data processing method to categorize the correlation extent of compared sequences and a certain reference sequence in a system with uncertain information. It is applied to evaluating and selecting AC cold/heat sources from four main aspects, which are technology, economy, reliability, and operation and management. Case study shows that the result for selecting AC cold/heat sources with the GRA method can be more reasonable and convincible. Thus it offers a new approach for designers in heating, ventilating and air conditioning field to compare and evaluate different AC cold/heat sou rces.展开更多
This paper analyzes the state of the art of partner selection and enumerates the advantage of partner selection based on gray relation analysis comparing to the other algorithms of the partner selection. Furthermore, ...This paper analyzes the state of the art of partner selection and enumerates the advantage of partner selection based on gray relation analysis comparing to the other algorithms of the partner selection. Furthermore, partner selection system based on gray relation for an Agile Virtual Enterprise(AVE) is analyzed and designed based on the definition and characteristics of the AVE. According to J2EE mode, the architecture of the partner selection system is put forward and the system is developed t^ing JSP, EJB and SQL Server. The paper lays emphasis on a gray relational mathematic model, AVE evaluation infrastructure, a core algorithm of partner selection and a multi-layer gray relation selection process.展开更多
Given a non-equidistant sequence or an equidistant series with one or more outliers, a grey interpolation approach considering the time lags is established for producing the missing data or correcting the abnormal val...Given a non-equidistant sequence or an equidistant series with one or more outliers, a grey interpolation approach considering the time lags is established for producing the missing data or correcting the abnormal values. To accomplish this, a new grey incidence model, called the grey dynamic incidence model GDIM(t), is constructed for determining whether the factors are effective to the known factor and what the time lag is between a useful factor and the specified sequence. Based on the results of the GDIM(t) model, two programming problems are designed to obtain the upper and lower bounds of the unknown or abnormal values which are regarded as grey numbers. The solutions based on the particle swarm optimization(PSO) for the nonlinear programming problems are given. To explain how it can be used in practice, this new grey interpolation approach is applied to correct an abnormal value in the sequence of an agriculture environment problem.展开更多
The asphalt pavement longitudinal crack is a common distress in cold regions,resulting from uneven deformation of the subgrade.Analysis of the correlation law between uneven deformation and crack distress is of positi...The asphalt pavement longitudinal crack is a common distress in cold regions,resulting from uneven deformation of the subgrade.Analysis of the correlation law between uneven deformation and crack distress is of positive significance for understanding the mechanism of crack initiation,and putting forward treatment measures.In view of the complexity of longitudinal crack inducement and road surface deformation,the grey relational method was used to analyze this relationship.Through long-term monitoring of the vertical deformation data of typical road sections,the vertical deformation law of the pavement surface and its deformation characteristics under the action of temperature field are analyzed.Parameters such as vertical relative deformation,vertical relative deformation rate and vertical differential deformation VDSr were constructed to describe vertical deformation characteristics.Typical distribution characteristics of longitudinal fractures and their length and distribution characteristics are also described.The grey correlation analysis theory was utilized to analyze the relationship between deformation characteristics of sections,cross sections and monitoring points and longitudinal crack characteristics(length and location).The analysis reveals a linear positive correlation or a high correlation between several indicators.This study can provide a deeper understanding of the occurrence and development mechanism of longitudinal cracks in asphalt pavement of cold areas,and give references for the research of road engineering structure,materials and distress prevention.展开更多
Anti-jamming performance evaluation has recently received significant attention. For Link-16, the anti-jamming performance evaluation and selection of the optimal anti-jamming technologies are urgent problems to be so...Anti-jamming performance evaluation has recently received significant attention. For Link-16, the anti-jamming performance evaluation and selection of the optimal anti-jamming technologies are urgent problems to be solved. A comprehensive evaluation method is proposed, which combines grey relational analysis (GRA) and cloud model, to evaluate the anti-jamming performances of Link-16. Firstly, on the basis of establishing the anti-jamming performance evaluation indicator system of Link-16, the linear combination of analytic hierarchy process(AHP) and entropy weight method (EWM) are used to calculate the combined weight. Secondly, the qualitative and quantitative concept transformation model, i.e., the cloud model, is introduced to evaluate the anti-jamming abilities of Link-16 under each jamming scheme. In addition, GRA calculates the correlation degree between evaluation indicators and the anti-jamming performance of Link-16, and assesses the best anti-jamming technology. Finally, simulation results prove that the proposed evaluation model can achieve the objective of feasible and practical evaluation, which opens up a novel way for the research of anti-jamming performance evaluations of Link-16.展开更多
Purpose–The deformation of the roadbed is easily influenced by the external environment to improve the accuracy of high-speed railway subgrade settlement prediction.Design/methodology/approach–A high-speed railway s...Purpose–The deformation of the roadbed is easily influenced by the external environment to improve the accuracy of high-speed railway subgrade settlement prediction.Design/methodology/approach–A high-speed railway subgrade settlement interval prediction method using the secretary bird optimization(SBOA)algorithm to optimize the BP neural network under the premise of gray relational analysis is proposed.Findings–Using the SBOA algorithm to optimize the BP neural network,the optimal weights and thresholds are obtained,and the best parameter prediction model is combined.The data were collected from the sensors deployed through the subgrade settlement monitoring system,and the gray relational analysis is used to verify that all four influencing factors had a great correlation to the subgrade settlement,and the collected data are verified using the model.Originality/value–The experimental results show that the SBOA-BP model has higher prediction accuracy than the BP model,and the SBOA-BP model has a wider range of prediction intervals for a given confidence level,which can provide higher guiding value for practical engineering applications.展开更多
Based on the variation of discrete surface,a new grey relational analysis model,called the grey variation relational ana-lysis(GVRA)model,is proposed in this paper.Meanwhile,the proposed model avoids the inconsistent ...Based on the variation of discrete surface,a new grey relational analysis model,called the grey variation relational ana-lysis(GVRA)model,is proposed in this paper.Meanwhile,the proposed model avoids the inconsistent results caused by diffe-rent construction of discrete surface of panel data or the change in the order of indicators or objects in existing grey relational analysis models.Firstly,the submatrix of the sample matrix is given according to the permutation and combination theory.Secondly,the amplitude of the submatrix is calculated and the variation of discrete surface is obtained.Then,a grey relational coefficient is presented by variation difference,and the GVRA model is established.Furthermore,the properties of the pro-posed model,such as normality,symmetry,reflexivity,transla-tion invariant,and number multiplication invariant,are also veri-fied.Finally,the proposed model is used to identify the driving factors of haze in the cities along the Yellow River in Shandong Province,China.The result reveals that the proposed model can effectively measure the relationship between panel data.展开更多
For effectively improving the overall performance of fire truck frame structure,and solving the complexity of previous methods in the frame optimization design process,the traditional grey relational grade ranking nee...For effectively improving the overall performance of fire truck frame structure,and solving the complexity of previous methods in the frame optimization design process,the traditional grey relational grade ranking needs to be improved.First,the first-order modal test was conducted to verify the validity of the initial frame model.Then,based on this model,a high-strength steel frame was designed to reduce deformation,maximum stress,and frame mass,and increase the fatigue life and the frequencies of the first bending modal and first torsional modal.Sixty groups of sample points were generated through Hammersley method.Subsequently,improved grey relational analysis with principal component analysis was proposed to realize the optimal design of the frame structure.Finally,the optimal combination of design parameters for the frame was obtained using the proposed method.Meanwhile,the optimized frame structure is found by comparing the models before and after optimization,and the mass is reduced by 14.8%.Moreover,the computational cost can be reduced by 135%when the proposed method is compared with the previous algorithm.Therefore,the proposed method can effectively improve the performance of the frame and improve the computational efficiency.展开更多
Taking into account the characteristics of non-Newtonian fluids and the influence of latent heat of wax crystallization,this study establishes physical and mathematical models for the synergy of tubular heating and me...Taking into account the characteristics of non-Newtonian fluids and the influence of latent heat of wax crystallization,this study establishes physical and mathematical models for the synergy of tubular heating and mechanical stirring during the waxy crude oil heating process.Numerical calculations are conducted using the sliding grid technique and FVM.The focus of this study is on the impact of stirring rate(τ),horizontal deflection angle(θ1),vertical deflection angle(θ2),and stirring diameter(D)on the heating effect of crude oil.Our results show that asτincreases from 200 rpm to 500 rpm and D increases from 400 mm to 600 mm,there is an improvement in the average crude oil temperature and temperature uniformity.Additionally,heating efficiency increases by 0.5%and 1%,while the volume of the low-temperature region decreases by 57.01 m^(3) and 36.87 m3,respectively.Asθ1 andθ2 increase from 0°to 12°,the average crude oil temperature,temperature uniformity,and heating efficiency decrease,while the volume of the low-temperature region remains basically the same.Grey correlation analysis is used to rank the importance of stirring parameters in the following order:τ>θ1>θ2>D.Subsequently,multiple regression analysis is used to quantitatively describe the relationship between different stirring parameters and heat transfer evaluation indices through equations.Finally,based on entropy generation minimization,the stirring parameters with optimal heat transfer performance are obtained when τ=350 rpm,θ1=θ2=0°,and D=500 mm.展开更多
[Objective] The aim was to explore effects of environmental factors on the content of Chlorophyll a in ShaHu Lake.[Method] Based on the data in Shahu Lake from November in 2007 to September in 2008,the relationship be...[Objective] The aim was to explore effects of environmental factors on the content of Chlorophyll a in ShaHu Lake.[Method] Based on the data in Shahu Lake from November in 2007 to September in 2008,the relationship between chlorophyll a and environmental factors like water temperature,pH,secchi-depth (SD),total nitrogen,total phosphorus and potassium permanganate index was studied by grey relational analysis method.[Result] The main environmental factors affecting the content of Chlorophyll a in ShaHu Lake were in order of water temperature potassium permanganate index 〉total nitrogen 〉pH〉 total phosphorus 〉SD.[Conclusion] The research provides reference for the control of eutrophication and the reasonable development and utilization of Shahu Lake.展开更多
[Objective] The aim was to study the main rainfall factors influencing runoff and sediment in the sloping farmland with different plants in the central south of Shandong Province.[Method] Through grey relational analy...[Objective] The aim was to study the main rainfall factors influencing runoff and sediment in the sloping farmland with different plants in the central south of Shandong Province.[Method] Through grey relational analysis,the effects of different rainfall factors on runoff and sediment with different plants in the central south of Shandong were studied.[Result] In the sloping farmland with different plants,the effects of rainfall factors on runoff and sediment weren’t consistent.Rainfall was the dominant influencing factor of runoff,but PI30 had the greatest influence on runoff in natural grassland.Meanwhile,rainfall intensity was the main influencing factor of sediment,but PI had the greatest influence on sediment in Astragalus adsurgens Pall.plot.The compound factor had the minimal influence on runoff and sediment in Arachis hypogaea plot and natural grassland.In A.adsurgens Pall.plot,rainfall intensity had the minimal impact on runoff,but the compound factor had the least effect on sediment.[Conclusion] The study could provide theoretical references for the comprehensive control of slope soil erosion,the optimum utilization and sustainable development of land.展开更多
Quantifying surface cracks in alpine meadows is a prerequisite and a key aspect in the study of grassland crack development.Crack characterization indices are crucial for the quantitative characterization of complex c...Quantifying surface cracks in alpine meadows is a prerequisite and a key aspect in the study of grassland crack development.Crack characterization indices are crucial for the quantitative characterization of complex cracks,serving as vital factors in assessing the degree of cracking and the development morphology.So far,research on evaluating the degree of grassland degradation through crack characterization indices is rare,especially the quantitative analysis of the development of surface cracks in alpine meadows is relatively scarce.Therefore,based on the phenomenon of surface cracking during the degradation of alpine meadows in some regions of the Qinghai-Tibet Plateau,we selected the alpine meadow in the Huangcheng Mongolian Township,Menyuan Hui Autonomous County,Qinghai Province,China as the study area,used unmanned aerial vehicle(UAV)sensing technology to acquire low-altitude images of alpine meadow surface cracks at different degrees of degradation(light,medium,and heavy degradation),and analyzed the representative metrics characterizing the degree of crack development by interpreting the crack length,length density,branch angle,and burrow(rat hole)distribution density and combining them with in situ crack width and depth measurements.Finally,the correlations between the crack characterization indices and the soil and root parameters of sample plots at different degrees of degradation in the study area were analyzed using the grey relation analysis.The results revealed that with the increase of degradation,the physical and chemical properties of soil and the mechanical properties of root-soil composite changed significantly,the vegetation coverage reduced,and the root system aggregated in the surface layer of alpine meadow.As the degree of degradation increased,the fracture morphology developed from"linear"to"dendritic",and eventually to a complex and irregular"polygonal"pattern.The crack length,width,depth,and length density were identified as the crack characterization indices via analysis of variance.The results of grey relation analysis also revealed that the crack length,width,depth,and length density were all highly correlated with root length density,and as the degradation of alpine meadows intensified,the underground biomass increased dramatically,forming a dense layer of grass felt,which has a significant impact on the formation and expansion of cracks.展开更多
Based on the daily observation data of shallow ground temperature, total cloud cover, precipitation, evaporation capacity and frozen soil of 5 stations in Shijiazhuang from 1981 to 2010, using methods such as linear t...Based on the daily observation data of shallow ground temperature, total cloud cover, precipitation, evaporation capacity and frozen soil of 5 stations in Shijiazhuang from 1981 to 2010, using methods such as linear trend and complete correlation coefficient, relation between variation characteristics and climatic influencing factors of shallow ground temperature was analyzed to lay the foundation for studying impact factors of shallow ground temperature and provide references for daily maintenance of automatic observation business. The results showed that fluctuant variability and fluctuant range of mean shallow layer ground temperature in Shijiazhuang became smaller with soil layer being deeper for all years and seasons, and the fluctuant variability was maximal in spring and minimal in winter, while the fluctuant range was maximal in summer and minimal in winter; mean shallow layer ground temperature for all years had a warming trend with an obvious warming trend in winter, and warming range in winter was smaller and the extent was weaker with soil layer being deeper while a cooling trend occurred in summer; there was a coincident trend between total cloud cover at night and shallow ground temperature in winter, and between evaporation capacity and shallow ground temperature in summer, while there was an inconsistent trend between maximum depth of frozen soil, period of freezing weather and shallow ground temperature in winter, and between total cloud cover in the davtime, orecioitation and shallow around temperature in summer.展开更多
To evaluate the effectiveness of weapon systems, the advantages and disadvantages of grey relational analysis and TOPSIS for multiattribute decision-making is pointed out, and an effectiveness evaluation model of weap...To evaluate the effectiveness of weapon systems, the advantages and disadvantages of grey relational analysis and TOPSIS for multiattribute decision-making is pointed out, and an effectiveness evaluation model of weapon systems by combining grey relational analysis and TOPSIS is proposed. The model aggregates the grey relational grade and the distance to a new integrated closeness and reflects not only the trend but also the situation of the alternative. The example illuminates that the model is effective for the effectiveness evaluation of weapon systems.展开更多
The effects of marine environmental factors-temperature (T), dissolved oxygen (DO), salinity (S) and pH--on the oxidation-reduction potential (ORP) of natural seawater were studied in laboratory. The results s...The effects of marine environmental factors-temperature (T), dissolved oxygen (DO), salinity (S) and pH--on the oxidation-reduction potential (ORP) of natural seawater were studied in laboratory. The results show an indistinct relationship between these four factors and the ORE but they did impact the ORP. Common mathematical methods were not applicable for describing the relationship. Therefore, a grey relational analysis (GRA) method was developed. The degrees of correlation were calculated according to GILA and the values of T, pH, DO and S were 0.744, 0.710, 0.692 and 0.690, respectively. From these values, the relations of these factors to the ORP could be described and evaluated, and those of T and pH were relatively major. In general, ORP is influenced by the synergic effect of T, DO, pH and S, with no single factor having an outstanding role.展开更多
As for the factors affecting the heat transfer performance of complex and nonlinear oscillating heat pipe (OHP),grey relational analysis (GRA) was used to deal with the relationship between heat transfer rate of a loo...As for the factors affecting the heat transfer performance of complex and nonlinear oscillating heat pipe (OHP),grey relational analysis (GRA) was used to deal with the relationship between heat transfer rate of a looped copper-water OHP and charging ratio,inner diameter,inclination angel,heat input,number of turns,and the main influencing factors were defined.Then,forecasting model was obtained by using main influencing factors (such as charging ratio,interior diameter,and inclination angel) as the inputs of function chain neural network.The results show that the relative average error between the predicted and actual value is 4%,which illustrates that the function chain neural network can be applied to predict the performance of OHP accurately.展开更多
Collisions between birds and aircraft are one of the most dangerous threats to flight safety. In this study, smoothed particles hydrodynamics(SPH) method is used for simulating the bird strike to an airplane wing lead...Collisions between birds and aircraft are one of the most dangerous threats to flight safety. In this study, smoothed particles hydrodynamics(SPH) method is used for simulating the bird strike to an airplane wing leading edge structure. In order to verify the model, first, experiment of bird strike to a flat aluminum plate is simulated, and then bird impact on an airplane wing leading edge structure is investigated. After that, considering dimensions of wing internal structural components like ribs, skin and spar as design variables, we try to minimize structural mass and wing skin deformation simultaneously. To do this, bird strike simulations to 18 different wing structures are made based on Taguchi’s L18 factorial design of experiment. Then grey relational analysis is used to minimize structural mass and wing skin deformation due to the bird strike. The analysis of variance(ANOVA) is also applied and it is concluded that the most significant parameter for the performance of wing structure against impact is the skin thickness. Finally, a validation simulation is conducted under the optimal condition to show the improvement of performance of the wing structure.展开更多
文摘We investigated the parametric optimization on incremental sheet forming of stainless steel using Grey Relational Analysis(GRA) coupled with Principal Component Analysis(PCA). AISI 316L stainless steel sheets were used to develop double wall angle pyramid with aid of tungsten carbide tool. GRA coupled with PCA was used to plan the experiment conditions. Control factors such as Tool Diameter(TD), Step Depth(SD), Bottom Wall Angle(BWA), Feed Rate(FR) and Spindle Speed(SS) on Top Wall Angle(TWA) and Top Wall Angle Surface Roughness(TWASR) have been studied. Wall angle increases with increasing tool diameter due to large contact area between tool and workpiece. As the step depth, feed rate and spindle speed increase,TWASR decreases with increasing tool diameter. As the step depth increasing, the hydrostatic stress is raised causing severe cracks in the deformed surface. Hence it was concluded that the proposed hybrid method was suitable for optimizing the factors and response.
文摘[Objective] This study was conducted to explore the internal relationship among root biological traits of sweetpotato, as well as the regularity in their formation and differentiation. [Method] The root traits of 10 sweetpotato cultivars were measured through hydroponic culture in a greenhouse and field survey, and then their correlations were analyzed by statistical methods. [Result] The root morphological traits of sweetpotato at seedling stage such as projected area, surface area, average diameter and volume processed the highest contribution rate (80.56%) 10 d after transplanting, and the contribution rate of root average diameter reached 27.79% 20 d after transplanting. Storage root fresh weight per plant shared extremely significant positive correlations with storage root fresh weight of penultimate node and storage root fresh weight of antepenultimate node, and a significant positive corre- lation with commercial storage root number, and a significant negative correlation with storage root number of penultimate node. Among them, the correlation coeffi- cient of storage root fresh weight per plant with storage root fresh weight of antepenultimate node was the highest (0.659 5). Fifteen days after transplanting, storage root fresh weight per plant had significant negative correlations with root projected area, surface area and volume. There was a significant positive correlation between root dry weight and storage root fresh weight per plant 25 d after transplanting. Root dry weight, volume, length, average diameter of sweetpotato seedlings had higher relational degrees with storage root fresh weight per plant. Ten and twenty days after transplanting were important time for the growth and differentiation of sweetpotato roots. In addition, node length and planting depth had certain influence on sweetpotato yield, and direct relationship existed between the seedling root biological traits and storage root yield of sweetpotato. [Conclusion] The results provide theoretical support for standard cultivation and new variety breeding of sweetpotato.
文摘To screen out the rapeseed(Brassica napus) combinations that are suitable for the production of both oilseed and vegetable, we carried out a field experiment for 11 new combinations(hybrids) of rapeseed and then performed grey relation analysis and cluster analysis on 12 traits including the yield and quality of young stem,seed yield, and several agronomic traits after harvesting of young stem. The results showed that A11, A7, and A4 had higher main stalk yield than other combinations.The young stem/leaf ratios of A11, A5, A7, A4, A3, and A1 were in line with the quality requirements for young stem commodity. The soluble sugar content of A2,A8, and A10 was higher than that of CK(Fengyou 737), and the seed yields of A4,A3, A2, A1, A5, and A6 were higher than that of CK. The 11 rapeseed combinations were classified into 3 grades by grey relation analysis and cluster analysis. Two combinations, A4(Y20A×95C4R) and A11(3194A×09-5R), showed the weighted relation degrees higher than 0.95, which were clustered into grade I by cluster analysis. They had good agronomic traits and good performance as both oilseed and vegetable. A8, A5, A3, A7, A2, A10, A6, and A1 were clustered into grade Ⅱ and A9 into grade Ⅲ. In this study, the oilseed and vegetable dual-purpose rapeseed combinations were screened out based on grey relation analysis and cluster analysis,which can provide reference for the breeding of oilseed and vegetable dual-purpose rapeseed combinations.
文摘Selection of air conditioning(AC) cold/heat sources generally concerns about certain aspects and cannot reveal the whole profile of the problems. Grey relation analysis (GRA) is a data processing method to categorize the correlation extent of compared sequences and a certain reference sequence in a system with uncertain information. It is applied to evaluating and selecting AC cold/heat sources from four main aspects, which are technology, economy, reliability, and operation and management. Case study shows that the result for selecting AC cold/heat sources with the GRA method can be more reasonable and convincible. Thus it offers a new approach for designers in heating, ventilating and air conditioning field to compare and evaluate different AC cold/heat sou rces.
文摘This paper analyzes the state of the art of partner selection and enumerates the advantage of partner selection based on gray relation analysis comparing to the other algorithms of the partner selection. Furthermore, partner selection system based on gray relation for an Agile Virtual Enterprise(AVE) is analyzed and designed based on the definition and characteristics of the AVE. According to J2EE mode, the architecture of the partner selection system is put forward and the system is developed t^ing JSP, EJB and SQL Server. The paper lays emphasis on a gray relational mathematic model, AVE evaluation infrastructure, a core algorithm of partner selection and a multi-layer gray relation selection process.
基金supported by the National Natural Science Foundation of China(7137109871071077)+4 种基金Funding of Jiangsu Innovation Program for Graduate Education(KYZZ15 0093)Fundamental Research Funds for the Central Universities(2017301)Natural Science Fund Project of Colleges in Jiangsu Province(16KJD120001)Funding for Major Project of Jiangsu Social Science(16GLA001)Funding for Outstanding Doctoral Dissertation in Nanjing University of Aeronautics and Astronautics(BCXJ15-10)
文摘Given a non-equidistant sequence or an equidistant series with one or more outliers, a grey interpolation approach considering the time lags is established for producing the missing data or correcting the abnormal values. To accomplish this, a new grey incidence model, called the grey dynamic incidence model GDIM(t), is constructed for determining whether the factors are effective to the known factor and what the time lag is between a useful factor and the specified sequence. Based on the results of the GDIM(t) model, two programming problems are designed to obtain the upper and lower bounds of the unknown or abnormal values which are regarded as grey numbers. The solutions based on the particle swarm optimization(PSO) for the nonlinear programming problems are given. To explain how it can be used in practice, this new grey interpolation approach is applied to correct an abnormal value in the sequence of an agriculture environment problem.
基金funded by Key Scientific Research Project of Heilongjiang Provincial Department of Transportation(Grant number MH20200828)National Natural Science Foundation of China joint fund for regional innovation and development(Grant number U20A20315)。
文摘The asphalt pavement longitudinal crack is a common distress in cold regions,resulting from uneven deformation of the subgrade.Analysis of the correlation law between uneven deformation and crack distress is of positive significance for understanding the mechanism of crack initiation,and putting forward treatment measures.In view of the complexity of longitudinal crack inducement and road surface deformation,the grey relational method was used to analyze this relationship.Through long-term monitoring of the vertical deformation data of typical road sections,the vertical deformation law of the pavement surface and its deformation characteristics under the action of temperature field are analyzed.Parameters such as vertical relative deformation,vertical relative deformation rate and vertical differential deformation VDSr were constructed to describe vertical deformation characteristics.Typical distribution characteristics of longitudinal fractures and their length and distribution characteristics are also described.The grey correlation analysis theory was utilized to analyze the relationship between deformation characteristics of sections,cross sections and monitoring points and longitudinal crack characteristics(length and location).The analysis reveals a linear positive correlation or a high correlation between several indicators.This study can provide a deeper understanding of the occurrence and development mechanism of longitudinal cracks in asphalt pavement of cold areas,and give references for the research of road engineering structure,materials and distress prevention.
基金Heilongjiang Provincial Natural Science Foundation of China (LH2021F009)。
文摘Anti-jamming performance evaluation has recently received significant attention. For Link-16, the anti-jamming performance evaluation and selection of the optimal anti-jamming technologies are urgent problems to be solved. A comprehensive evaluation method is proposed, which combines grey relational analysis (GRA) and cloud model, to evaluate the anti-jamming performances of Link-16. Firstly, on the basis of establishing the anti-jamming performance evaluation indicator system of Link-16, the linear combination of analytic hierarchy process(AHP) and entropy weight method (EWM) are used to calculate the combined weight. Secondly, the qualitative and quantitative concept transformation model, i.e., the cloud model, is introduced to evaluate the anti-jamming abilities of Link-16 under each jamming scheme. In addition, GRA calculates the correlation degree between evaluation indicators and the anti-jamming performance of Link-16, and assesses the best anti-jamming technology. Finally, simulation results prove that the proposed evaluation model can achieve the objective of feasible and practical evaluation, which opens up a novel way for the research of anti-jamming performance evaluations of Link-16.
文摘Purpose–The deformation of the roadbed is easily influenced by the external environment to improve the accuracy of high-speed railway subgrade settlement prediction.Design/methodology/approach–A high-speed railway subgrade settlement interval prediction method using the secretary bird optimization(SBOA)algorithm to optimize the BP neural network under the premise of gray relational analysis is proposed.Findings–Using the SBOA algorithm to optimize the BP neural network,the optimal weights and thresholds are obtained,and the best parameter prediction model is combined.The data were collected from the sensors deployed through the subgrade settlement monitoring system,and the gray relational analysis is used to verify that all four influencing factors had a great correlation to the subgrade settlement,and the collected data are verified using the model.Originality/value–The experimental results show that the SBOA-BP model has higher prediction accuracy than the BP model,and the SBOA-BP model has a wider range of prediction intervals for a given confidence level,which can provide higher guiding value for practical engineering applications.
基金supported by the National Natural Science Foundation of China(72271124,72071111)Shandong Natural Science Foundation(ZR2023MG070)the Social Science Planning Project of Shandong Province(23CGLJ03,21CTJJ01).
文摘Based on the variation of discrete surface,a new grey relational analysis model,called the grey variation relational ana-lysis(GVRA)model,is proposed in this paper.Meanwhile,the proposed model avoids the inconsistent results caused by diffe-rent construction of discrete surface of panel data or the change in the order of indicators or objects in existing grey relational analysis models.Firstly,the submatrix of the sample matrix is given according to the permutation and combination theory.Secondly,the amplitude of the submatrix is calculated and the variation of discrete surface is obtained.Then,a grey relational coefficient is presented by variation difference,and the GVRA model is established.Furthermore,the properties of the pro-posed model,such as normality,symmetry,reflexivity,transla-tion invariant,and number multiplication invariant,are also veri-fied.Finally,the proposed model is used to identify the driving factors of haze in the cities along the Yellow River in Shandong Province,China.The result reveals that the proposed model can effectively measure the relationship between panel data.
基金the National Natural Science Foundation of China(No.51975244)。
文摘For effectively improving the overall performance of fire truck frame structure,and solving the complexity of previous methods in the frame optimization design process,the traditional grey relational grade ranking needs to be improved.First,the first-order modal test was conducted to verify the validity of the initial frame model.Then,based on this model,a high-strength steel frame was designed to reduce deformation,maximum stress,and frame mass,and increase the fatigue life and the frequencies of the first bending modal and first torsional modal.Sixty groups of sample points were generated through Hammersley method.Subsequently,improved grey relational analysis with principal component analysis was proposed to realize the optimal design of the frame structure.Finally,the optimal combination of design parameters for the frame was obtained using the proposed method.Meanwhile,the optimized frame structure is found by comparing the models before and after optimization,and the mass is reduced by 14.8%.Moreover,the computational cost can be reduced by 135%when the proposed method is compared with the previous algorithm.Therefore,the proposed method can effectively improve the performance of the frame and improve the computational efficiency.
基金supported by the National Natural Science Foundation of China(Grant no.52304065)China Postdoctoral Science Foundation(Grant no.2022MD723759).
文摘Taking into account the characteristics of non-Newtonian fluids and the influence of latent heat of wax crystallization,this study establishes physical and mathematical models for the synergy of tubular heating and mechanical stirring during the waxy crude oil heating process.Numerical calculations are conducted using the sliding grid technique and FVM.The focus of this study is on the impact of stirring rate(τ),horizontal deflection angle(θ1),vertical deflection angle(θ2),and stirring diameter(D)on the heating effect of crude oil.Our results show that asτincreases from 200 rpm to 500 rpm and D increases from 400 mm to 600 mm,there is an improvement in the average crude oil temperature and temperature uniformity.Additionally,heating efficiency increases by 0.5%and 1%,while the volume of the low-temperature region decreases by 57.01 m^(3) and 36.87 m3,respectively.Asθ1 andθ2 increase from 0°to 12°,the average crude oil temperature,temperature uniformity,and heating efficiency decrease,while the volume of the low-temperature region remains basically the same.Grey correlation analysis is used to rank the importance of stirring parameters in the following order:τ>θ1>θ2>D.Subsequently,multiple regression analysis is used to quantitatively describe the relationship between different stirring parameters and heat transfer evaluation indices through equations.Finally,based on entropy generation minimization,the stirring parameters with optimal heat transfer performance are obtained when τ=350 rpm,θ1=θ2=0°,and D=500 mm.
基金Supported by Natural Science Foundation of Ningxia (NZ0829)~~
文摘[Objective] The aim was to explore effects of environmental factors on the content of Chlorophyll a in ShaHu Lake.[Method] Based on the data in Shahu Lake from November in 2007 to September in 2008,the relationship between chlorophyll a and environmental factors like water temperature,pH,secchi-depth (SD),total nitrogen,total phosphorus and potassium permanganate index was studied by grey relational analysis method.[Result] The main environmental factors affecting the content of Chlorophyll a in ShaHu Lake were in order of water temperature potassium permanganate index 〉total nitrogen 〉pH〉 total phosphorus 〉SD.[Conclusion] The research provides reference for the control of eutrophication and the reasonable development and utilization of Shahu Lake.
基金Supported by Project of Shandong Water Resources Department" Study on the Mechanism and Comprehensive Control Benefit of Soil Erosion in the Typical Eroded Area of Shandong"
文摘[Objective] The aim was to study the main rainfall factors influencing runoff and sediment in the sloping farmland with different plants in the central south of Shandong Province.[Method] Through grey relational analysis,the effects of different rainfall factors on runoff and sediment with different plants in the central south of Shandong were studied.[Result] In the sloping farmland with different plants,the effects of rainfall factors on runoff and sediment weren’t consistent.Rainfall was the dominant influencing factor of runoff,but PI30 had the greatest influence on runoff in natural grassland.Meanwhile,rainfall intensity was the main influencing factor of sediment,but PI had the greatest influence on sediment in Astragalus adsurgens Pall.plot.The compound factor had the minimal influence on runoff and sediment in Arachis hypogaea plot and natural grassland.In A.adsurgens Pall.plot,rainfall intensity had the minimal impact on runoff,but the compound factor had the least effect on sediment.[Conclusion] The study could provide theoretical references for the comprehensive control of slope soil erosion,the optimum utilization and sustainable development of land.
基金This study was funded by the National Natural Science Foundation of China(42062019,42002283)the Project of Qinghai Science&Technology Department(2021-ZJ-927).
文摘Quantifying surface cracks in alpine meadows is a prerequisite and a key aspect in the study of grassland crack development.Crack characterization indices are crucial for the quantitative characterization of complex cracks,serving as vital factors in assessing the degree of cracking and the development morphology.So far,research on evaluating the degree of grassland degradation through crack characterization indices is rare,especially the quantitative analysis of the development of surface cracks in alpine meadows is relatively scarce.Therefore,based on the phenomenon of surface cracking during the degradation of alpine meadows in some regions of the Qinghai-Tibet Plateau,we selected the alpine meadow in the Huangcheng Mongolian Township,Menyuan Hui Autonomous County,Qinghai Province,China as the study area,used unmanned aerial vehicle(UAV)sensing technology to acquire low-altitude images of alpine meadow surface cracks at different degrees of degradation(light,medium,and heavy degradation),and analyzed the representative metrics characterizing the degree of crack development by interpreting the crack length,length density,branch angle,and burrow(rat hole)distribution density and combining them with in situ crack width and depth measurements.Finally,the correlations between the crack characterization indices and the soil and root parameters of sample plots at different degrees of degradation in the study area were analyzed using the grey relation analysis.The results revealed that with the increase of degradation,the physical and chemical properties of soil and the mechanical properties of root-soil composite changed significantly,the vegetation coverage reduced,and the root system aggregated in the surface layer of alpine meadow.As the degree of degradation increased,the fracture morphology developed from"linear"to"dendritic",and eventually to a complex and irregular"polygonal"pattern.The crack length,width,depth,and length density were identified as the crack characterization indices via analysis of variance.The results of grey relation analysis also revealed that the crack length,width,depth,and length density were all highly correlated with root length density,and as the degradation of alpine meadows intensified,the underground biomass increased dramatically,forming a dense layer of grass felt,which has a significant impact on the formation and expansion of cracks.
文摘Based on the daily observation data of shallow ground temperature, total cloud cover, precipitation, evaporation capacity and frozen soil of 5 stations in Shijiazhuang from 1981 to 2010, using methods such as linear trend and complete correlation coefficient, relation between variation characteristics and climatic influencing factors of shallow ground temperature was analyzed to lay the foundation for studying impact factors of shallow ground temperature and provide references for daily maintenance of automatic observation business. The results showed that fluctuant variability and fluctuant range of mean shallow layer ground temperature in Shijiazhuang became smaller with soil layer being deeper for all years and seasons, and the fluctuant variability was maximal in spring and minimal in winter, while the fluctuant range was maximal in summer and minimal in winter; mean shallow layer ground temperature for all years had a warming trend with an obvious warming trend in winter, and warming range in winter was smaller and the extent was weaker with soil layer being deeper while a cooling trend occurred in summer; there was a coincident trend between total cloud cover at night and shallow ground temperature in winter, and between evaporation capacity and shallow ground temperature in summer, while there was an inconsistent trend between maximum depth of frozen soil, period of freezing weather and shallow ground temperature in winter, and between total cloud cover in the davtime, orecioitation and shallow around temperature in summer.
文摘To evaluate the effectiveness of weapon systems, the advantages and disadvantages of grey relational analysis and TOPSIS for multiattribute decision-making is pointed out, and an effectiveness evaluation model of weapon systems by combining grey relational analysis and TOPSIS is proposed. The model aggregates the grey relational grade and the distance to a new integrated closeness and reflects not only the trend but also the situation of the alternative. The example illuminates that the model is effective for the effectiveness evaluation of weapon systems.
基金Supporte by the Knowledge Innovation Project of the Chinese Academy of Sciences (No KZCX2-YW-210)National Key Technology Research and Development Program (No2007BAB27B04)the High Technology Research and Development Program of China (No 2001AA635080)
文摘The effects of marine environmental factors-temperature (T), dissolved oxygen (DO), salinity (S) and pH--on the oxidation-reduction potential (ORP) of natural seawater were studied in laboratory. The results show an indistinct relationship between these four factors and the ORE but they did impact the ORP. Common mathematical methods were not applicable for describing the relationship. Therefore, a grey relational analysis (GRA) method was developed. The degrees of correlation were calculated according to GILA and the values of T, pH, DO and S were 0.744, 0.710, 0.692 and 0.690, respectively. From these values, the relations of these factors to the ORP could be described and evaluated, and those of T and pH were relatively major. In general, ORP is influenced by the synergic effect of T, DO, pH and S, with no single factor having an outstanding role.
基金Project(531107040300) supported by the Fundamental Research Funds for the Central Universities in ChinaProject(2006BAJ04B04) supported by the National Science and Technology Pillar Program during the Eleventh Five-year Plan Period of China
文摘As for the factors affecting the heat transfer performance of complex and nonlinear oscillating heat pipe (OHP),grey relational analysis (GRA) was used to deal with the relationship between heat transfer rate of a looped copper-water OHP and charging ratio,inner diameter,inclination angel,heat input,number of turns,and the main influencing factors were defined.Then,forecasting model was obtained by using main influencing factors (such as charging ratio,interior diameter,and inclination angel) as the inputs of function chain neural network.The results show that the relative average error between the predicted and actual value is 4%,which illustrates that the function chain neural network can be applied to predict the performance of OHP accurately.
文摘Collisions between birds and aircraft are one of the most dangerous threats to flight safety. In this study, smoothed particles hydrodynamics(SPH) method is used for simulating the bird strike to an airplane wing leading edge structure. In order to verify the model, first, experiment of bird strike to a flat aluminum plate is simulated, and then bird impact on an airplane wing leading edge structure is investigated. After that, considering dimensions of wing internal structural components like ribs, skin and spar as design variables, we try to minimize structural mass and wing skin deformation simultaneously. To do this, bird strike simulations to 18 different wing structures are made based on Taguchi’s L18 factorial design of experiment. Then grey relational analysis is used to minimize structural mass and wing skin deformation due to the bird strike. The analysis of variance(ANOVA) is also applied and it is concluded that the most significant parameter for the performance of wing structure against impact is the skin thickness. Finally, a validation simulation is conducted under the optimal condition to show the improvement of performance of the wing structure.