The selection of hyperparameters in regularized least squares plays an important role in large-scale system identification. The traditional methods for selecting hyperparameters are based on experience or marginal lik...The selection of hyperparameters in regularized least squares plays an important role in large-scale system identification. The traditional methods for selecting hyperparameters are based on experience or marginal likelihood maximization method, which are inaccurate or computationally expensive. In this paper, two posterior methods are proposed to select hyperparameters based on different prior knowledge (constraints), which can obtain the optimal hyperparameters using the optimization theory. Moreover, we also give the theoretical optimal constraints, and verify its effectiveness. Numerical simulation shows that the hyperparameters and parameter vector estimate obtained by the proposed methods are the optimal ones.展开更多
In this paper,we consider a two-stage robust production planning model where the first stage problem determines the optimal production quantity upon considering the worst-case revenue generated by the uncertain future...In this paper,we consider a two-stage robust production planning model where the first stage problem determines the optimal production quantity upon considering the worst-case revenue generated by the uncertain future demand,and the second stage problem determines the possible demand of consumers by using a utility-based model given the production quantity and a realization of the random variable.We derive an equivalent single-stage reformulation of the two-stage problem.However,it fails the convergence analysis of the sample average approximation(SAA)approach for the reformulation directly.Thus we develop a regularized approximation of the second stage problem and derive its closed-form solution.We then present conditions under which the optimal value and the optimal solution set of the proposed SAA regularized approximation problem converge to those of the single-stage reformulation problem as the regularization parameter shrinks to zero and the sample size tends to infinity.Finally,some preliminary numerical examples are presented to illustrate our theoretical results.展开更多
To overcome the shortcoming that the traditional minimum error threshold method can obtain satisfactory image segmentation results only when the object and background of the image strictly obey a certain type of proba...To overcome the shortcoming that the traditional minimum error threshold method can obtain satisfactory image segmentation results only when the object and background of the image strictly obey a certain type of probability distribution,one proposes the regularized minimum error threshold method and treats the traditional minimum error threshold method as its special case.Then one constructs the discrete probability distribution by using the separation between segmentation threshold and the average gray-scale values of the object and background of the image so as to compute the information energy of the probability distribution.The impact of the regularized parameter selection on the optimal segmentation threshold of the regularized minimum error threshold method is investigated.To verify the effectiveness of the proposed regularized minimum error threshold method,one selects typical grey-scale images and performs segmentation tests.The segmentation results obtained by the regularized minimum error threshold method are compared with those obtained with the traditional minimum error threshold method.The segmentation results and their analysis show that the regularized minimum error threshold method is feasible and produces more satisfactory segmentation results than the minimum error threshold method.It does not exert much impact on object acquisition in case of the addition of a certain noise to an image.Therefore,the method can meet the requirements for extracting a real object in the noisy environment.展开更多
This paper presents anew regularization method for solving operator equations of the first kind; the convergence rate of the regularized solution is improved, as compared with the ordinary Tikhonov regularization.
Aiming at the time-optimal control problem of hypersonic vehicles(HSV)in ascending stage,a trigonometric regularization method(TRM)is introduced based on the indirect method of optimal control.This method avoids analy...Aiming at the time-optimal control problem of hypersonic vehicles(HSV)in ascending stage,a trigonometric regularization method(TRM)is introduced based on the indirect method of optimal control.This method avoids analyzing the switching function and distinguishing between singular control and bang-bang control,where the singular control problem is more complicated.While in bang-bang control,the costate variables are unsmooth due to the control jumping,resulting in difficulty in solving the two-point boundary value problem(TPBVP)induced by the indirect method.Aiming at the easy divergence when solving the TPBVP,the continuation method is introduced.This method uses the solution of the simplified problem as the initial value of the iteration.Then through solving a series of TPBVP,it approximates to the solution of the original complex problem.The calculation results show that through the above two methods,the time-optimal control problem of HSV in ascending stage under the complex model can be solved conveniently.展开更多
In this paper,the Cauchy problem of biharmonic equation is considered.This problem is ill-posed,i.e.,the solution(if exists)does not depend on the measurable data.Firstly,we give the conditional stability result under...In this paper,the Cauchy problem of biharmonic equation is considered.This problem is ill-posed,i.e.,the solution(if exists)does not depend on the measurable data.Firstly,we give the conditional stability result under the a priori bound assumption for the exact solution.Secondly,a modified Tikhonov regularization method is used to solve this ill-posed problem.Under the a priori and the a posteriori regularization parameter choice rule,the error estimates between the regularization solutions and the exact solution are obtained.Finally,some numerical examples are presented to verify that our method is effective.展开更多
Tikhonov regularization(TR) method has played a very important role in the gravity data and magnetic data process. In this paper, the Tikhonov regularization method with respect to the inversion of gravity data is d...Tikhonov regularization(TR) method has played a very important role in the gravity data and magnetic data process. In this paper, the Tikhonov regularization method with respect to the inversion of gravity data is discussed. and the extrapolated TR method(EXTR) is introduced to improve the fitting error. Furthermore, the effect of the parameters in the EXTR method on the fitting error, number of iterations, and inversion results are discussed in details. The computation results using a synthetic model with the same and different densities indicated that. compared with the TR method, the EXTR method not only achieves the a priori fitting error level set by the interpreter but also increases the fitting precision, although it increases the computation time and number of iterations. And the EXTR inversion results are more compact than the TR inversion results, which are more divergent. The range of the inversion data is closer to the default range of the model parameters, and the model features and default model density distribution agree well.展开更多
In this paper, the adjoint method is applied to the statistical-dynamic model (SD-90) for the prediction of typhoon tracks along with the regularization thinking and optimal control techniques. The adjoint model and...In this paper, the adjoint method is applied to the statistical-dynamic model (SD-90) for the prediction of typhoon tracks along with the regularization thinking and optimal control techniques. The adjoint model and the gradient of objective function are deduced with the continual model respectively. For 4 typical typhoons, the forces and the initial velocity can be retrieved well, and the tracks of these typhoons are accurately fitted for an appropriate regularization parameter and optimal control parameter.展开更多
The Mohorovicic discontinuity(Moho)boundary separating the Earth’s crust and mantle reflects the evolutionary trajectory of the Earth’s crust,yielding crucial insights into crustal formation,tectonic evolution,and p...The Mohorovicic discontinuity(Moho)boundary separating the Earth’s crust and mantle reflects the evolutionary trajectory of the Earth’s crust,yielding crucial insights into crustal formation,tectonic evolution,and profound dynamic processes.However,the prevailing Moho models for China and its adjacent areas suffer from limited accuracy,owing to the irregular and sparse distribution of seismic data collection.In this study,we employ gravimetric data to derive Moho depth,and employ Bott’s regularization method,integrating gravity and seismic data to reconstruct the Moho structure with high precision in a three-dimensional framework across China and its adjacent areas.By optimizing gravity potential field separation and interface inversion techniques,we present a detailed and accurate zoning scheme for classifying China and its adjacent areas into 35 gradient belts,6 primary tectonic units,and 35 secondary tectonic units,based on the spatial distribution characteristics of the Moho discontinuity.Notably,our tectonic pattern division results surpass previous studies in terms of resolution,providing a wealth of tectonic information.Leveraging the Moho depth model of China and its adjacent areas,we discuss orogenic belts,sedimentary basins,fault systems,plate boundaries,and land-sea coupled tectonic patterns.We meticulously summarize the Moho depth distribution characteristics of each tectonic unit,while exploring the macrostructural framework and geological significance of the study area.Our findings highlight the close relationship between China and its adjacent areas Moho depth model and deep geodynamics,elucidating the tectonic evolution both between and within tectonic plates,as well as the tectonic effects induced by mantle dynamics.These insights have crucial implications for the study of deep geodynamics in China and its adjacent areas.展开更多
Measuring the internal stress of Al alloy forgings accurately is critical for controlling the deformation during the subsequent machine process.In this work,the crack compliance method was used to calculate the intern...Measuring the internal stress of Al alloy forgings accurately is critical for controlling the deformation during the subsequent machine process.In this work,the crack compliance method was used to calculate the internal residual stress of Al-Cu high strength alloys,and the effect of various model parameters of crack compliance method on the calculated precision was studied by combining the numerical simulation and experimental method.The results show that the precision first increased and then decreased with increasing the crack range.The decreased precision when using a high crack range was due to the strain fluctuation during the machining process,and the optimized crack range was 71%of the thickness of forgings.Low orders of Legendre polynomial can result in residual stress curve more smooth,while high orders led to the occurrence of distortion.The Tikhonov regularization method effectively suppressed the distortion of residual stress caused by the fluctuation of strain data,which significantly improved the precision.In addition,The crack compliance method with optimized parameters was used to measure the residual stress of Al-Cu alloy with different quenching methods.The calculated results demonstrated that the distribution of residual stress was obtained accurately.展开更多
The inverse heat conduction method is one of methods to identify the casting simulation parameters. A new inverse method was presented according to the Tikhonov regularization theory. One appropriate regularized funct...The inverse heat conduction method is one of methods to identify the casting simulation parameters. A new inverse method was presented according to the Tikhonov regularization theory. One appropriate regularized functional was established, and the functional was solved by the sensitivity coefficient and Newtonaphson iteration method. Moreover, the orthogonal experimental design was used to estimate the appropriate initial value and variation domain of each variable to decrease the number of iteration and improve the identification accuracy and efficiency. It illustrated a detailed case of AlSiTMg sand mold casting and the temperature measurement experiment was done. The physical properties of sand mold and the interracial heat transfer coefficient were identified at the meantime. The results indicated that the new regularization method was efficient in overcoming the ill-posedness of the inverse heat conduction problem and improving the stability and accuracy of the solutions.展开更多
The simplified linear model of Grad-Shafranov (GS) reconstruction can be reformulated into an inverse boundary value problem of Laplace's equation. Therefore, in this paper we focus on the method of solving the inv...The simplified linear model of Grad-Shafranov (GS) reconstruction can be reformulated into an inverse boundary value problem of Laplace's equation. Therefore, in this paper we focus on the method of solving the inverse boundary value problem of Laplace's equation. In the first place, the variational regularization method is used to deal with the ill- posedness of the Cauchy problem for Laplace's equation. Then, the 'L-Curve' principle is suggested to be adopted in choosing the optimal regularization parameter. Finally, a numerical experiment is implemented with a section of Neumann and Dirichlet boundary conditions with observation errors. The results well converge to the exact solution of the problem, which proves the efficiency and robustness of the proposed method. When the order of observation error δ is 10-1, the order of the approximate result error can reach 10-3.展开更多
The application of Tikhonov regularization method dealing with the ill-conditioned problems in the regional gravity field modeling by Poisson wavelets is studied. In particular, the choices of the regularization matri...The application of Tikhonov regularization method dealing with the ill-conditioned problems in the regional gravity field modeling by Poisson wavelets is studied. In particular, the choices of the regularization matrices as well as the approaches for estimating the regularization parameters are investigated in details. The numerical results show that the regularized solutions derived from the first-order regularization are better than the ones obtained from zero-order regularization. For cross validation, the optimal regularization parameters are estimated from L-curve, variance component estimation(VCE) and minimum standard deviation(MSTD) approach, respectively, and the results show that the derived regularization parameters from different methods are consistent with each other. Together with the firstorder Tikhonov regularization and VCE method, the optimal network of Poisson wavelets is derived, based on which the local gravimetric geoid is computed. The accuracy of the corresponding gravimetric geoid reaches 1.1 cm in Netherlands, which validates the reliability of using Tikhonov regularization method in tackling the ill-conditioned problem for regional gravity field modeling.展开更多
In this paper, the Tikhonov regularization method was used to solve the nondegenerate compact hnear operator equation, which is a well-known ill-posed problem. Apart from the usual error level, the noise data were sup...In this paper, the Tikhonov regularization method was used to solve the nondegenerate compact hnear operator equation, which is a well-known ill-posed problem. Apart from the usual error level, the noise data were supposed to satisfy some additional monotonic condition. Moreover, with the assumption that the singular values of operator have power form, the improved convergence rates of the regularized solution were worked out.展开更多
This paper proposes a new image restoration technique, in which the resulting regularized image approximates the optimal solution steadily. The affect of the regular-ization operator and parameter on the lower band an...This paper proposes a new image restoration technique, in which the resulting regularized image approximates the optimal solution steadily. The affect of the regular-ization operator and parameter on the lower band and upper band energy of the residue of the regularized image is theoretically analyzed by employing wavelet transform. This paper shows that regularization operator should generally be lowstop and highpass. So this paper chooses a lowstop and highpass operator as regularization operator, and construct an optimization model which minimizes the mean squares residue of regularized solution to determine regularization parameter. Although the model is random, on the condition of this paper, it can be solved and yields regularization parameter and regularized solution. Otherwise, the technique has a mechanism to predict noise energy. So, without noise information, it can also work and yield good restoration results.展开更多
Motivated by the study of regularization for sparse problems,we propose a new regularization method for sparse vector recovery.We derive sufficient conditions on the well-posedness of the new regularization,and design...Motivated by the study of regularization for sparse problems,we propose a new regularization method for sparse vector recovery.We derive sufficient conditions on the well-posedness of the new regularization,and design an iterative algorithm,namely the iteratively reweighted algorithm(IR-algorithm),for efficiently computing the sparse solutions to the proposed regularization model.The convergence of the IR-algorithm and the setting of the regularization parameters are analyzed at length.Finally,we present numerical examples to illustrate the features of the new regularization and algorithm.展开更多
Downward continuation is a key step in processing airborne geomagnetic data. However,downward continuation is a typically ill-posed problem because its computation is unstable; thus, regularization methods are needed ...Downward continuation is a key step in processing airborne geomagnetic data. However,downward continuation is a typically ill-posed problem because its computation is unstable; thus, regularization methods are needed to realize effective continuation. According to the Poisson integral plane approximate relationship between observation and continuation data, the computation formulae combined with the fast Fourier transform(FFT)algorithm are transformed to a frequency domain for accelerating the computational speed. The iterative Tikhonov regularization method and the iterative Landweber regularization method are used in this paper to overcome instability and improve the precision of the results. The availability of these two iterative regularization methods in the frequency domain is validated by simulated geomagnetic data, and the continuation results show good precision.展开更多
Scatterometer is an instrument which provides all-day and large-scale wind field information, and its application especially to wind retrieval always attracts meteorologists. Certain reasons cause large direction erro...Scatterometer is an instrument which provides all-day and large-scale wind field information, and its application especially to wind retrieval always attracts meteorologists. Certain reasons cause large direction error, so it is important to find where the error mainly comes. Does it mainly result from the background field, the normalized radar cross-section (NRCS) or the method of wind retrieval? It is valuable to research. First, depending on SDP2.0, the simulated 'true' NRCS is calculated from the simulated 'true' wind through the geophysical mode] function NSCAT2. The simulated background field is configured by adding a noise to the simulated 'true' wind with the non-divergence constraint. Also, the simulated 'measured' NRCS is formed by adding a noise to the simulated 'true' NRCS. Then, the sensitivity experiments are taken, and the new method of regularization is used to improve the ambiguity removal with simulation experiments. The results show that the accuracy of wind retrieval is more sensitive to the noise in the background than in the measured NRCS; compared with the two-dimensional variational (2DVAR) ambiguity removal method, the accuracy of wind retrieval can be improved with the new method of Tikhonov regularization through choosing an appropriate regularization parameter, especially for the case of large error in the background. The work will provide important information and a new method for the wind retrieval with real data.展开更多
Recently,inverse problems have attracted more and more attention in computational mathematics and become increasingly important in engineering applications.After the discretization,many of inverse problems are reduced...Recently,inverse problems have attracted more and more attention in computational mathematics and become increasingly important in engineering applications.After the discretization,many of inverse problems are reduced to linear systems.Due to the typical ill-posedness of inverse problems,the reduced linear systems are often illposed,especially when their scales are large.This brings great computational difficulty.Particularly,a small perturbation in the right side of an ill-posed linear system may cause a dramatical change in the solution.Therefore,regularization methods should be adopted for stable solutions.In this paper,a new class of accelerated iterative regularization methods is applied to solve this kind of large-scale ill-posed linear systems.An iterative scheme becomes a regularization method only when the iteration is early terminated.And a Morozov’s discrepancy principle is applied for the stop criterion.Compared with the conventional Landweber iteration,the new methods have acceleration effect,and can be compared to the well-known acceleratedν-method and Nesterov method.From the numerical results,it is observed that using appropriate discretization schemes,the proposed methods even have better behavior when comparing withν-method and Nesterov method.展开更多
Source term identification is very important for the contaminant gas emission event. Thus, it is necessary to study the source parameter estimation method with high computation efficiency, high estimation accuracy and...Source term identification is very important for the contaminant gas emission event. Thus, it is necessary to study the source parameter estimation method with high computation efficiency, high estimation accuracy and reasonable confidence interval. Tikhonov regularization method is a potential good tool to identify the source parameters. However, it is invalid for nonlinear inverse problem like gas emission process. 2-step nonlinear and linear PSO (partial swarm optimization)-Tikhonov regularization method proposed previously have estimated the emission source parameters successfully. But there are still some problems in computation efficiency and confidence interval. Hence, a new 1-step nonlinear method combined Tikhonov regularizafion and PSO algorithm with nonlinear forward dispersion model was proposed. First, the method was tested with simulation and experiment cases. The test results showed that 1-step nonlinear hybrid method is able to estimate multiple source parameters with reasonable confidence interval. Then, the estimation performances of different methods were compared with different cases. The estimation values with 1-step nonlinear method were close to that with 2-step nonlinear and linear PSO-Tikhonov regularization method, 1-step nonlinear method even performs better than other two methods in some cases, especially for source strength and downwind distance estimation. Compared with 2-step nonlinear method, 1-step method has higher computation efficiency. On the other hand, the confidence intervals with the method proposed in this paper seem more reasonable than that with other two methods. Finally, single PSO algorithm was compared with 1-step nonlinear PSO-Tikhonov hybrid regularization method. The results showed that the skill scores of 1-step nonlinear hybrid method to estimate source parameters were close to that of single PSO method and even better in some cases. One more important property of 1-step nonlinear PSO-Tikhonov regularization method is its reasonable confidence interval, which is not obtained by single PSO algorithm. Therefore, 1-step nonlinear hybrid regularization method proposed in this paper is a potential good method to estimate contaminant gas emission source term.展开更多
文摘The selection of hyperparameters in regularized least squares plays an important role in large-scale system identification. The traditional methods for selecting hyperparameters are based on experience or marginal likelihood maximization method, which are inaccurate or computationally expensive. In this paper, two posterior methods are proposed to select hyperparameters based on different prior knowledge (constraints), which can obtain the optimal hyperparameters using the optimization theory. Moreover, we also give the theoretical optimal constraints, and verify its effectiveness. Numerical simulation shows that the hyperparameters and parameter vector estimate obtained by the proposed methods are the optimal ones.
基金China Postdoctoral Science Foundation(No.2020M673117)the National Natural Science Foundation of China(Nos.11991023,11735011 and 11571270)the World-Class Universities(Disciplines)and the Characteristic Development Guidance Funds for the Central Universities(No.PY3A058).
文摘In this paper,we consider a two-stage robust production planning model where the first stage problem determines the optimal production quantity upon considering the worst-case revenue generated by the uncertain future demand,and the second stage problem determines the possible demand of consumers by using a utility-based model given the production quantity and a realization of the random variable.We derive an equivalent single-stage reformulation of the two-stage problem.However,it fails the convergence analysis of the sample average approximation(SAA)approach for the reformulation directly.Thus we develop a regularized approximation of the second stage problem and derive its closed-form solution.We then present conditions under which the optimal value and the optimal solution set of the proposed SAA regularized approximation problem converge to those of the single-stage reformulation problem as the regularization parameter shrinks to zero and the sample size tends to infinity.Finally,some preliminary numerical examples are presented to illustrate our theoretical results.
基金supported by the National Natural Science Foundations of China(Nos.61136002,61472324)the Natural Science Foundation of Shanxi Province(No.2014JM8331)
文摘To overcome the shortcoming that the traditional minimum error threshold method can obtain satisfactory image segmentation results only when the object and background of the image strictly obey a certain type of probability distribution,one proposes the regularized minimum error threshold method and treats the traditional minimum error threshold method as its special case.Then one constructs the discrete probability distribution by using the separation between segmentation threshold and the average gray-scale values of the object and background of the image so as to compute the information energy of the probability distribution.The impact of the regularized parameter selection on the optimal segmentation threshold of the regularized minimum error threshold method is investigated.To verify the effectiveness of the proposed regularized minimum error threshold method,one selects typical grey-scale images and performs segmentation tests.The segmentation results obtained by the regularized minimum error threshold method are compared with those obtained with the traditional minimum error threshold method.The segmentation results and their analysis show that the regularized minimum error threshold method is feasible and produces more satisfactory segmentation results than the minimum error threshold method.It does not exert much impact on object acquisition in case of the addition of a certain noise to an image.Therefore,the method can meet the requirements for extracting a real object in the noisy environment.
文摘This paper presents anew regularization method for solving operator equations of the first kind; the convergence rate of the regularized solution is improved, as compared with the ordinary Tikhonov regularization.
基金supported by the Na-tional Natural Science Foundation of China(No.52272369).
文摘Aiming at the time-optimal control problem of hypersonic vehicles(HSV)in ascending stage,a trigonometric regularization method(TRM)is introduced based on the indirect method of optimal control.This method avoids analyzing the switching function and distinguishing between singular control and bang-bang control,where the singular control problem is more complicated.While in bang-bang control,the costate variables are unsmooth due to the control jumping,resulting in difficulty in solving the two-point boundary value problem(TPBVP)induced by the indirect method.Aiming at the easy divergence when solving the TPBVP,the continuation method is introduced.This method uses the solution of the simplified problem as the initial value of the iteration.Then through solving a series of TPBVP,it approximates to the solution of the original complex problem.The calculation results show that through the above two methods,the time-optimal control problem of HSV in ascending stage under the complex model can be solved conveniently.
基金Supported by the National Natural Science Foundation of China(Grant No.11961044)。
文摘In this paper,the Cauchy problem of biharmonic equation is considered.This problem is ill-posed,i.e.,the solution(if exists)does not depend on the measurable data.Firstly,we give the conditional stability result under the a priori bound assumption for the exact solution.Secondly,a modified Tikhonov regularization method is used to solve this ill-posed problem.Under the a priori and the a posteriori regularization parameter choice rule,the error estimates between the regularization solutions and the exact solution are obtained.Finally,some numerical examples are presented to verify that our method is effective.
基金supported by the National Scientific and Technological Plan(Nos.2009BAB43B00 and 2009BAB43B01)
文摘Tikhonov regularization(TR) method has played a very important role in the gravity data and magnetic data process. In this paper, the Tikhonov regularization method with respect to the inversion of gravity data is discussed. and the extrapolated TR method(EXTR) is introduced to improve the fitting error. Furthermore, the effect of the parameters in the EXTR method on the fitting error, number of iterations, and inversion results are discussed in details. The computation results using a synthetic model with the same and different densities indicated that. compared with the TR method, the EXTR method not only achieves the a priori fitting error level set by the interpreter but also increases the fitting precision, although it increases the computation time and number of iterations. And the EXTR inversion results are more compact than the TR inversion results, which are more divergent. The range of the inversion data is closer to the default range of the model parameters, and the model features and default model density distribution agree well.
基金The National Nature Science Foundation of China under Grant No.90411006 supported this work simultaneously.
文摘In this paper, the adjoint method is applied to the statistical-dynamic model (SD-90) for the prediction of typhoon tracks along with the regularization thinking and optimal control techniques. The adjoint model and the gradient of objective function are deduced with the continual model respectively. For 4 typical typhoons, the forces and the initial velocity can be retrieved well, and the tracks of these typhoons are accurately fitted for an appropriate regularization parameter and optimal control parameter.
基金supported by the National Natural Science Foundation of China(Grant Nos.42474121 and 42192535)the Basic Frontier Science Research Program of the Chinese Academy of Sciences(Grant No.ZDBS-LY-DQC028).
文摘The Mohorovicic discontinuity(Moho)boundary separating the Earth’s crust and mantle reflects the evolutionary trajectory of the Earth’s crust,yielding crucial insights into crustal formation,tectonic evolution,and profound dynamic processes.However,the prevailing Moho models for China and its adjacent areas suffer from limited accuracy,owing to the irregular and sparse distribution of seismic data collection.In this study,we employ gravimetric data to derive Moho depth,and employ Bott’s regularization method,integrating gravity and seismic data to reconstruct the Moho structure with high precision in a three-dimensional framework across China and its adjacent areas.By optimizing gravity potential field separation and interface inversion techniques,we present a detailed and accurate zoning scheme for classifying China and its adjacent areas into 35 gradient belts,6 primary tectonic units,and 35 secondary tectonic units,based on the spatial distribution characteristics of the Moho discontinuity.Notably,our tectonic pattern division results surpass previous studies in terms of resolution,providing a wealth of tectonic information.Leveraging the Moho depth model of China and its adjacent areas,we discuss orogenic belts,sedimentary basins,fault systems,plate boundaries,and land-sea coupled tectonic patterns.We meticulously summarize the Moho depth distribution characteristics of each tectonic unit,while exploring the macrostructural framework and geological significance of the study area.Our findings highlight the close relationship between China and its adjacent areas Moho depth model and deep geodynamics,elucidating the tectonic evolution both between and within tectonic plates,as well as the tectonic effects induced by mantle dynamics.These insights have crucial implications for the study of deep geodynamics in China and its adjacent areas.
基金Project(51875583)supported by the National Natural Science Foundation of ChinaProject(zzyjkt2018-03)supported by the State Key Laboratory of High Performance Complex Manufacturing,China。
文摘Measuring the internal stress of Al alloy forgings accurately is critical for controlling the deformation during the subsequent machine process.In this work,the crack compliance method was used to calculate the internal residual stress of Al-Cu high strength alloys,and the effect of various model parameters of crack compliance method on the calculated precision was studied by combining the numerical simulation and experimental method.The results show that the precision first increased and then decreased with increasing the crack range.The decreased precision when using a high crack range was due to the strain fluctuation during the machining process,and the optimized crack range was 71%of the thickness of forgings.Low orders of Legendre polynomial can result in residual stress curve more smooth,while high orders led to the occurrence of distortion.The Tikhonov regularization method effectively suppressed the distortion of residual stress caused by the fluctuation of strain data,which significantly improved the precision.In addition,The crack compliance method with optimized parameters was used to measure the residual stress of Al-Cu alloy with different quenching methods.The calculated results demonstrated that the distribution of residual stress was obtained accurately.
文摘The inverse heat conduction method is one of methods to identify the casting simulation parameters. A new inverse method was presented according to the Tikhonov regularization theory. One appropriate regularized functional was established, and the functional was solved by the sensitivity coefficient and Newtonaphson iteration method. Moreover, the orthogonal experimental design was used to estimate the appropriate initial value and variation domain of each variable to decrease the number of iteration and improve the identification accuracy and efficiency. It illustrated a detailed case of AlSiTMg sand mold casting and the temperature measurement experiment was done. The physical properties of sand mold and the interracial heat transfer coefficient were identified at the meantime. The results indicated that the new regularization method was efficient in overcoming the ill-posedness of the inverse heat conduction problem and improving the stability and accuracy of the solutions.
基金Project supported by the National Natural Science Foundation of China(Grant No.41175025)
文摘The simplified linear model of Grad-Shafranov (GS) reconstruction can be reformulated into an inverse boundary value problem of Laplace's equation. Therefore, in this paper we focus on the method of solving the inverse boundary value problem of Laplace's equation. In the first place, the variational regularization method is used to deal with the ill- posedness of the Cauchy problem for Laplace's equation. Then, the 'L-Curve' principle is suggested to be adopted in choosing the optimal regularization parameter. Finally, a numerical experiment is implemented with a section of Neumann and Dirichlet boundary conditions with observation errors. The results well converge to the exact solution of the problem, which proves the efficiency and robustness of the proposed method. When the order of observation error δ is 10-1, the order of the approximate result error can reach 10-3.
基金supported by the National Natural Science Foundation of China (Nos.41374023,41131067,41474019)the National 973 Project of China (No.2013CB733302)+2 种基金the China Postdoctoral Science Foundation (No.2016M602301)the Key Laboratory of Geospace Envi-ronment and Geodesy,Ministry of Education,Wuhan University (No.15-02-08)the State Scholarship Fund from Chinese Scholarship Council (No.201306270014)
文摘The application of Tikhonov regularization method dealing with the ill-conditioned problems in the regional gravity field modeling by Poisson wavelets is studied. In particular, the choices of the regularization matrices as well as the approaches for estimating the regularization parameters are investigated in details. The numerical results show that the regularized solutions derived from the first-order regularization are better than the ones obtained from zero-order regularization. For cross validation, the optimal regularization parameters are estimated from L-curve, variance component estimation(VCE) and minimum standard deviation(MSTD) approach, respectively, and the results show that the derived regularization parameters from different methods are consistent with each other. Together with the firstorder Tikhonov regularization and VCE method, the optimal network of Poisson wavelets is derived, based on which the local gravimetric geoid is computed. The accuracy of the corresponding gravimetric geoid reaches 1.1 cm in Netherlands, which validates the reliability of using Tikhonov regularization method in tackling the ill-conditioned problem for regional gravity field modeling.
文摘In this paper, the Tikhonov regularization method was used to solve the nondegenerate compact hnear operator equation, which is a well-known ill-posed problem. Apart from the usual error level, the noise data were supposed to satisfy some additional monotonic condition. Moreover, with the assumption that the singular values of operator have power form, the improved convergence rates of the regularized solution were worked out.
基金This work was supported by the National Natural Science Foundation of China(60204001, 60133010)the Scientific Research Fundation of Hunan Provincial Education Department(02C640)the Youth Chengguang Project of Science and Technology of Wuhan City(
文摘This paper proposes a new image restoration technique, in which the resulting regularized image approximates the optimal solution steadily. The affect of the regular-ization operator and parameter on the lower band and upper band energy of the residue of the regularized image is theoretically analyzed by employing wavelet transform. This paper shows that regularization operator should generally be lowstop and highpass. So this paper chooses a lowstop and highpass operator as regularization operator, and construct an optimization model which minimizes the mean squares residue of regularized solution to determine regularization parameter. Although the model is random, on the condition of this paper, it can be solved and yields regularization parameter and regularized solution. Otherwise, the technique has a mechanism to predict noise energy. So, without noise information, it can also work and yield good restoration results.
基金Project supported by the National Natural Science Foundation of China(No.61603322)the Research Foundation of Education Bureau of Hunan Province of China(No.16C1542)
文摘Motivated by the study of regularization for sparse problems,we propose a new regularization method for sparse vector recovery.We derive sufficient conditions on the well-posedness of the new regularization,and design an iterative algorithm,namely the iteratively reweighted algorithm(IR-algorithm),for efficiently computing the sparse solutions to the proposed regularization model.The convergence of the IR-algorithm and the setting of the regularization parameters are analyzed at length.Finally,we present numerical examples to illustrate the features of the new regularization and algorithm.
基金supported by the National Natural Science Foundation of China(41304022,41174026,41104047)the National 973 Foundation(61322201,2013CB733303)+1 种基金the Key laboratory Foundation of Geo-space Environment and Geodesy of the Ministry of Education(13-01-08)the Youth Innovation Foundation of High Resolution Earth Observation(GFZX04060103-5-12)
文摘Downward continuation is a key step in processing airborne geomagnetic data. However,downward continuation is a typically ill-posed problem because its computation is unstable; thus, regularization methods are needed to realize effective continuation. According to the Poisson integral plane approximate relationship between observation and continuation data, the computation formulae combined with the fast Fourier transform(FFT)algorithm are transformed to a frequency domain for accelerating the computational speed. The iterative Tikhonov regularization method and the iterative Landweber regularization method are used in this paper to overcome instability and improve the precision of the results. The availability of these two iterative regularization methods in the frequency domain is validated by simulated geomagnetic data, and the continuation results show good precision.
基金supported by the National Natural Science Foundation of China (Grant No. 40775023)
文摘Scatterometer is an instrument which provides all-day and large-scale wind field information, and its application especially to wind retrieval always attracts meteorologists. Certain reasons cause large direction error, so it is important to find where the error mainly comes. Does it mainly result from the background field, the normalized radar cross-section (NRCS) or the method of wind retrieval? It is valuable to research. First, depending on SDP2.0, the simulated 'true' NRCS is calculated from the simulated 'true' wind through the geophysical mode] function NSCAT2. The simulated background field is configured by adding a noise to the simulated 'true' wind with the non-divergence constraint. Also, the simulated 'measured' NRCS is formed by adding a noise to the simulated 'true' NRCS. Then, the sensitivity experiments are taken, and the new method of regularization is used to improve the ambiguity removal with simulation experiments. The results show that the accuracy of wind retrieval is more sensitive to the noise in the background than in the measured NRCS; compared with the two-dimensional variational (2DVAR) ambiguity removal method, the accuracy of wind retrieval can be improved with the new method of Tikhonov regularization through choosing an appropriate regularization parameter, especially for the case of large error in the background. The work will provide important information and a new method for the wind retrieval with real data.
基金supported by the Natural Science Foundation of China (Nos. 11971230, 12071215)the Fundamental Research Funds for the Central Universities(No. NS2018047)the 2019 Graduate Innovation Base(Laboratory)Open Fund of Jiangsu Province(No. Kfjj20190804)
文摘Recently,inverse problems have attracted more and more attention in computational mathematics and become increasingly important in engineering applications.After the discretization,many of inverse problems are reduced to linear systems.Due to the typical ill-posedness of inverse problems,the reduced linear systems are often illposed,especially when their scales are large.This brings great computational difficulty.Particularly,a small perturbation in the right side of an ill-posed linear system may cause a dramatical change in the solution.Therefore,regularization methods should be adopted for stable solutions.In this paper,a new class of accelerated iterative regularization methods is applied to solve this kind of large-scale ill-posed linear systems.An iterative scheme becomes a regularization method only when the iteration is early terminated.And a Morozov’s discrepancy principle is applied for the stop criterion.Compared with the conventional Landweber iteration,the new methods have acceleration effect,and can be compared to the well-known acceleratedν-method and Nesterov method.From the numerical results,it is observed that using appropriate discretization schemes,the proposed methods even have better behavior when comparing withν-method and Nesterov method.
基金Supported by the National Natural Science Foundation of China(21676216)China Postdoctoral Science Foundation(2015M582667)+2 种基金Natural Science Basic Research Plan in Shaanxi Province of China(2016JQ5079)Key Research Project of Shaanxi Province(2015ZDXM-GY-115)the Fundamental Research Funds for the Central Universities(xjj2017124)
文摘Source term identification is very important for the contaminant gas emission event. Thus, it is necessary to study the source parameter estimation method with high computation efficiency, high estimation accuracy and reasonable confidence interval. Tikhonov regularization method is a potential good tool to identify the source parameters. However, it is invalid for nonlinear inverse problem like gas emission process. 2-step nonlinear and linear PSO (partial swarm optimization)-Tikhonov regularization method proposed previously have estimated the emission source parameters successfully. But there are still some problems in computation efficiency and confidence interval. Hence, a new 1-step nonlinear method combined Tikhonov regularizafion and PSO algorithm with nonlinear forward dispersion model was proposed. First, the method was tested with simulation and experiment cases. The test results showed that 1-step nonlinear hybrid method is able to estimate multiple source parameters with reasonable confidence interval. Then, the estimation performances of different methods were compared with different cases. The estimation values with 1-step nonlinear method were close to that with 2-step nonlinear and linear PSO-Tikhonov regularization method, 1-step nonlinear method even performs better than other two methods in some cases, especially for source strength and downwind distance estimation. Compared with 2-step nonlinear method, 1-step method has higher computation efficiency. On the other hand, the confidence intervals with the method proposed in this paper seem more reasonable than that with other two methods. Finally, single PSO algorithm was compared with 1-step nonlinear PSO-Tikhonov hybrid regularization method. The results showed that the skill scores of 1-step nonlinear hybrid method to estimate source parameters were close to that of single PSO method and even better in some cases. One more important property of 1-step nonlinear PSO-Tikhonov regularization method is its reasonable confidence interval, which is not obtained by single PSO algorithm. Therefore, 1-step nonlinear hybrid regularization method proposed in this paper is a potential good method to estimate contaminant gas emission source term.