期刊文献+
共找到26,163篇文章
< 1 2 250 >
每页显示 20 50 100
Generalized uncertainty principle from the regularized self-energy
1
作者 Kimet Jusufi Ahmed Farag Ali 《Communications in Theoretical Physics》 2025年第1期92-100,共9页
We use the Schrödinger–Newton equation to calculate the regularized self-energy of a particle using a regular self-gravitational and electrostatic potential derived in string T-duality.The particle mass M is no ... We use the Schrödinger–Newton equation to calculate the regularized self-energy of a particle using a regular self-gravitational and electrostatic potential derived in string T-duality.The particle mass M is no longer concentrated into a point but is diluted and described by a quantum-corrected smeared energy density resulting in corrections to the energy of the particle,which is interpreted as a regularized self-energy.We extend our results and find corrections to the relativistic particles using the Klein–Gordon,Proca and Dirac equations.An important finding is that we extract a form of the generalized uncertainty principle(GUP)from the corrected energy.This form of the GUP is shown to depend on the nature of particles;namely,for bosons(spin 0 and spin 1)we obtain a quadratic form of the GUP,while for fermions(spin 1/2)we obtain a linear form.The correlation we find between spin and GUP may offer insights for investigating quantum gravity. 展开更多
关键词 generalized uncertainty principle T-DUALITY regularized self-energy
原文传递
Enhancing Adversarial Example Transferability via Regularized Constrained Feature Layer
2
作者 Xiaoyin Yi Long Chen +2 位作者 Jiacheng Huang Ning Yu Qian Huang 《Computers, Materials & Continua》 2025年第4期157-175,共19页
Transfer-based Adversarial Attacks(TAAs)can deceive a victim model even without prior knowledge.This is achieved by leveraging the property of adversarial examples.That is,when generated from a surrogate model,they re... Transfer-based Adversarial Attacks(TAAs)can deceive a victim model even without prior knowledge.This is achieved by leveraging the property of adversarial examples.That is,when generated from a surrogate model,they retain their features if applied to other models due to their good transferability.However,adversarial examples often exhibit overfitting,as they are tailored to exploit the particular architecture and feature representation of source models.Consequently,when attempting black-box transfer attacks on different target models,their effectiveness is decreased.To solve this problem,this study proposes an approach based on a Regularized Constrained Feature Layer(RCFL).The proposed method first uses regularization constraints to attenuate the initial examples of low-frequency components.Perturbations are then added to a pre-specified layer of the source model using the back-propagation technique,in order to modify the original adversarial examples.Afterward,a regularized loss function is used to enhance the black-box transferability between different target models.The proposed method is finally tested on the ImageNet,CIFAR-100,and Stanford Car datasets with various target models,The obtained results demonstrate that it achieves a significantly higher transfer-based adversarial attack success rate compared with baseline techniques. 展开更多
关键词 Adversarial examples black-box transferability regularized constrained transfer-based adversarial attacks
在线阅读 下载PDF
Sobolev space norm regularized full waveform inversion for ultrasound computed tomography
3
作者 Panpan Li Yubing Li +2 位作者 Chang Su Zeyuan Dong Weijun Lin 《Chinese Physics B》 2025年第5期444-456,共13页
Full waveform inversion(FWI)is a complex data fitting process based on full wavefield modeling,aiming to quantitatively reconstruct unknown model parameters from partial waveform data with high-resolution.However,this... Full waveform inversion(FWI)is a complex data fitting process based on full wavefield modeling,aiming to quantitatively reconstruct unknown model parameters from partial waveform data with high-resolution.However,this process is highly nonlinear and ill-posed,therefore achieving high-resolution imaging of complex biological tissues within a limited number of iterations remains challenging.We propose a multiscale frequency–domain full waveform inversion(FDFWI)framework for ultrasound computed tomography(USCT)imaging of biological tissues,which innovatively incorporates Sobolev space norm regularization for enhancement of prior information.Specifically,we investigate the effect of different types of hyperparameter on the imaging quality,during which the regularization weight is dynamically adapted based on the ratio of the regularization term to the data fidelity term.This strategy reduces reliance on predefined hyperparameters,ensuring robust inversion performance.The inversion results from both numerical and experimental tests(i.e.,numerical breast,thigh,and ex vivo pork-belly tissue)demonstrate the effectiveness of our regularized FWI strategy.These findings will contribute to the application of the FWI technique in quantitative imaging based on USCT and make USCT possible to be another high-resolution imaging method after x-ray computed tomography and magnetic resonance imaging. 展开更多
关键词 full waveform inversion Sobolev space norm regularization ultrasound computed tomography
原文传递
Federated Multi-Label Feature Selection via Dual-Layer Hybrid Breeding Cooperative Particle Swarm Optimization with Manifold and Sparsity Regularization
4
作者 Songsong Zhang Huazhong Jin +5 位作者 Zhiwei Ye Jia Yang Jixin Zhang Dongfang Wu Xiao Zheng Dingfeng Song 《Computers, Materials & Continua》 2026年第1期1141-1159,共19页
Multi-label feature selection(MFS)is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels.However,traditional centralized methods face significant chal... Multi-label feature selection(MFS)is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels.However,traditional centralized methods face significant challenges in privacy-sensitive and distributed settings,often neglecting label dependencies and suffering from low computational efficiency.To address these issues,we introduce a novel framework,Fed-MFSDHBCPSO—federated MFS via dual-layer hybrid breeding cooperative particle swarm optimization algorithm with manifold and sparsity regularization(DHBCPSO-MSR).Leveraging the federated learning paradigm,Fed-MFSDHBCPSO allows clients to perform local feature selection(FS)using DHBCPSO-MSR.Locally selected feature subsets are encrypted with differential privacy(DP)and transmitted to a central server,where they are securely aggregated and refined through secure multi-party computation(SMPC)until global convergence is achieved.Within each client,DHBCPSO-MSR employs a dual-layer FS strategy.The inner layer constructs sample and label similarity graphs,generates Laplacian matrices to capture the manifold structure between samples and labels,and applies L2,1-norm regularization to sparsify the feature subset,yielding an optimized feature weight matrix.The outer layer uses a hybrid breeding cooperative particle swarm optimization algorithm to further refine the feature weight matrix and identify the optimal feature subset.The updated weight matrix is then fed back to the inner layer for further optimization.Comprehensive experiments on multiple real-world multi-label datasets demonstrate that Fed-MFSDHBCPSO consistently outperforms both centralized and federated baseline methods across several key evaluation metrics. 展开更多
关键词 Multi-label feature selection federated learning manifold regularization sparse constraints hybrid breeding optimization algorithm particle swarm optimizatio algorithm privacy protection
在线阅读 下载PDF
Two-level Bregmanized method for image interpolation with graph regularized sparse coding 被引量:1
5
作者 刘且根 张明辉 梁栋 《Journal of Southeast University(English Edition)》 EI CAS 2013年第4期384-388,共5页
A two-level Bregmanized method with graph regularized sparse coding (TBGSC) is presented for image interpolation. The outer-level Bregman iterative procedure enforces the observation data constraints, while the inne... A two-level Bregmanized method with graph regularized sparse coding (TBGSC) is presented for image interpolation. The outer-level Bregman iterative procedure enforces the observation data constraints, while the inner-level Bregmanized method devotes to dictionary updating and sparse represention of small overlapping image patches. The introduced constraint of graph regularized sparse coding can capture local image features effectively, and consequently enables accurate reconstruction from highly undersampled partial data. Furthermore, modified sparse coding and simple dictionary updating applied in the inner minimization make the proposed algorithm converge within a relatively small number of iterations. Experimental results demonstrate that the proposed algorithm can effectively reconstruct images and it outperforms the current state-of-the-art approaches in terms of visual comparisons and quantitative measures. 展开更多
关键词 image interpolation Bregman iterative method graph regularized sparse coding alternating direction method
在线阅读 下载PDF
Three-dimensional magnetotelluric regularized inversion based on smoothness-constrained model
6
作者 童孝忠 柳建新 +2 位作者 郭荣文 刘海飞 龚露 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第2期509-513,共5页
How to get the rapid and stable inversion results and reconstruct the clear subsurface resistivity structures is a focus problem in current magnetotelluric inversion. A stable solution of an ill-posed inverse problem ... How to get the rapid and stable inversion results and reconstruct the clear subsurface resistivity structures is a focus problem in current magnetotelluric inversion. A stable solution of an ill-posed inverse problem was obtained by the regularization methods in which some desired structures were imposed to stabilize the inverse problem. By the smoothness-constrained model and approximate sensitivity method, the stable subsurface resistivity structures were reconstructed. The synthetic examples show that the smoothness-constrained regularized inversion method is effective and can be reasonable to reconstruct three-dimensional subsurface resistivity structures. 展开更多
关键词 MAGNETOTELLURIC regularized inversion approximate sensitivity smoothness-constrained model
在线阅读 下载PDF
首次积分法求Modified Regularized Long Wave方程的解
7
作者 刁群 王书敏 《平顶山学院学报》 2013年第2期6-9,共4页
非线性偏微分方程的精确解在力学、工程学以及其他科学应用方面都有很重要的意义.利用首次积分法研究了一个非线性偏微分方程:the Modified Regularized Long Wave(MRLW)方程的精确解.
关键词 MODIFIED regularizeD LONG Wave方程 除法定理 首次积分法 精确解
在线阅读 下载PDF
Regularized least-squares migration of simultaneous-source seismic data with adaptive singular spectrum analysis 被引量:12
8
作者 Chuang Li Jian-Ping Huang +1 位作者 Zhen-Chun Li Rong-Rong Wang 《Petroleum Science》 SCIE CAS CSCD 2017年第1期61-74,共14页
Simultaneous-source acquisition has been recog- nized as an economic and efficient acquisition method, but the direct imaging of the simultaneous-source data produces migration artifacts because of the interference of... Simultaneous-source acquisition has been recog- nized as an economic and efficient acquisition method, but the direct imaging of the simultaneous-source data produces migration artifacts because of the interference of adjacent sources. To overcome this problem, we propose the regularized least-squares reverse time migration method (RLSRTM) using the singular spectrum analysis technique that imposes sparseness constraints on the inverted model. Additionally, the difference spectrum theory of singular values is presented so that RLSRTM can be implemented adaptively to eliminate the migration artifacts. With numerical tests on a fiat layer model and a Marmousi model, we validate the superior imaging quality, efficiency and convergence of RLSRTM compared with LSRTM when dealing with simultaneoussource data, incomplete data and noisy data. 展开更多
关键词 Least-squares migration Adaptive singularspectrum analysis regularization Blended data
原文传递
REGULARIZATION METHOD FOR IMPROVING OPTIMAL CONVERGENCE RATE OF THE REGULARIZED SOLUTION OF ILL-POSED PROBLEMS 被引量:4
9
作者 侯宗义 杨宏奇 《Acta Mathematica Scientia》 SCIE CSCD 1998年第2期177-185,共9页
This paper presents anew regularization method for solving operator equations of the first kind; the convergence rate of the regularized solution is improved, as compared with the ordinary Tikhonov regularization.
关键词 operator equation of the first kind regularization method CONVERGENCE convergence rate of the regularized solution
在线阅读 下载PDF
Fast cross validation for regularized extreme learning machine 被引量:9
10
作者 Yongping Zhao Kangkang Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第5期895-900,共6页
A method for fast 1-fold cross validation is proposed for the regularized extreme learning machine (RELM). The computational time of fast l-fold cross validation increases as the fold number decreases, which is oppo... A method for fast 1-fold cross validation is proposed for the regularized extreme learning machine (RELM). The computational time of fast l-fold cross validation increases as the fold number decreases, which is opposite to that of naive 1-fold cross validation. As opposed to naive l-fold cross validation, fast l-fold cross validation takes the advantage in terms of computational time, especially for the large fold number such as l 〉 20. To corroborate the efficacy and feasibility of fast l-fold cross validation, experiments on five benchmark regression data sets are evaluated. 展开更多
关键词 extreme learning machine (ELM) regularization theory cross validation neural networks.
在线阅读 下载PDF
Regularized Robust Filter for Spacecraft Attitude Determination 被引量:4
11
作者 XIONG Kai LIU Liangdong LIU Yiwu 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2011年第4期467-475,共9页
A modified regularized robust filter is proposed for spacecraft attitude determination in the presence of relative misalignment of attitude sensors. The filter is designed to minimize the worst-possible residual norm ... A modified regularized robust filter is proposed for spacecraft attitude determination in the presence of relative misalignment of attitude sensors. The filter is designed to minimize the worst-possible residual norm on condition that there is parametric uncertainty in the measurement model. The weighting matrix of the residual norm is designed to minimize the upper bound of the estimation error variance. The performance of the proposed attitude determination robust filter is illustrated with the use of real test data from a real three-floated gyroscope. Simulation results demonstrate that the attitude estimation accuracy is improved by using the proposed algorithm. 展开更多
关键词 Kalman filter regularized robust filter spacecraft attitude estimation MISALIGNMENT nonlinear system
原文传递
Graph Regularized L_p Smooth Non-negative Matrix Factorization for Data Representation 被引量:10
12
作者 Chengcai Leng Hai Zhang +2 位作者 Guorong Cai Irene Cheng Anup Basu 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2019年第2期584-595,共12页
This paper proposes a Graph regularized Lpsmooth non-negative matrix factorization(GSNMF) method by incorporating graph regularization and L_p smoothing constraint, which considers the intrinsic geometric information ... This paper proposes a Graph regularized Lpsmooth non-negative matrix factorization(GSNMF) method by incorporating graph regularization and L_p smoothing constraint, which considers the intrinsic geometric information of a data set and produces smooth and stable solutions. The main contributions are as follows: first, graph regularization is added into NMF to discover the hidden semantics and simultaneously respect the intrinsic geometric structure information of a data set. Second,the Lpsmoothing constraint is incorporated into NMF to combine the merits of isotropic(L_2-norm) and anisotropic(L_1-norm)diffusion smoothing, and produces a smooth and more accurate solution to the optimization problem. Finally, the update rules and proof of convergence of GSNMF are given. Experiments on several data sets show that the proposed method outperforms related state-of-the-art methods. 展开更多
关键词 Data clustering dimensionality reduction GRAPH regularIZATION LP SMOOTH non-negative matrix factorization(SNMF)
在线阅读 下载PDF
Application of Bayesian regularized BP neural network model for analysis of aquatic ecological data—A case study of chlorophyll-a prediction in Nanzui water area of Dongting Lake 被引量:5
13
作者 XU Min ZENG Guang-ming +3 位作者 XU Xin-yi HUANG Guo-he SUN Wei JIANG Xiao-yun 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2005年第6期946-952,共7页
Bayesian regularized BP neural network(BRBPNN) technique was applied in the chlorophyll-α prediction of Nanzui water area in Dongting Lake. Through BP network interpolation method, the input and output samples of t... Bayesian regularized BP neural network(BRBPNN) technique was applied in the chlorophyll-α prediction of Nanzui water area in Dongting Lake. Through BP network interpolation method, the input and output samples of the network were obtained. After the selection of input variables using stepwise/multiple linear regression method in SPSS i1.0 software, the BRBPNN model was established between chlorophyll-α and environmental parameters, biological parameters. The achieved optimal network structure was 3-11-1 with the correlation coefficients and the mean square errors for the training set and the test set as 0.999 and 0.000?8426, 0.981 and 0.0216 respectively. The sum of square weights between each input neuron and the hidden layer of optimal BRBPNN models of different structures indicated that the effect of individual input parameter on chlorophyll- α declined in the order of alga amount 〉 secchi disc depth(SD) 〉 electrical conductivity (EC). Additionally, it also demonstrated that the contributions of these three factors were the maximal for the change of chlorophyll-α concentration, total phosphorus(TP) and total nitrogen(TN) were the minimal. All the results showed that BRBPNN model was capable of automated regularization parameter selection and thus it may ensure the excellent generation ability and robustness. Thus, this study laid the foundation for the application of BRBPNN model in the analysis of aquatic ecological data(chlorophyll-α prediction) and the explanation about the effective eutrophication treatment measures for Nanzui water area in Dongting Lake. 展开更多
关键词 Dongting Lake CHLOROPHYLL-A Bayesian regularized BP neural network model sum of square weights
在线阅读 下载PDF
AN IMPROVED SPARSITY ADAPTIVE MATCHING PURSUIT ALGORITHM FOR COMPRESSIVE SENSING BASED ON REGULARIZED BACKTRACKING 被引量:3
14
作者 Zhao Ruizhen Ren Xiaoxin +1 位作者 Han Xuelian Hu Shaohai 《Journal of Electronics(China)》 2012年第6期580-584,共5页
Sparsity Adaptive Matching Pursuit (SAMP) algorithm is a widely used reconstruction algorithm for compressive sensing in the case that the sparsity is unknown. In order to match the sparsity more accurately, we presen... Sparsity Adaptive Matching Pursuit (SAMP) algorithm is a widely used reconstruction algorithm for compressive sensing in the case that the sparsity is unknown. In order to match the sparsity more accurately, we presented an improved SAMP algorithm based on Regularized Backtracking (SAMP-RB). By adapting a regularized backtracking step to SAMP algorithm in each iteration stage, the proposed algorithm can flexibly remove the inappropriate atoms. The experimental results show that SAMP-RB reconstruction algorithm greatly improves SAMP algorithm both in reconstruction quality and computational time. It has better reconstruction efficiency than most of the available matching pursuit algorithms. 展开更多
关键词 Compressive sensing Reconstruction algorithm Sparsity adaptive regularized back-tracking
在线阅读 下载PDF
Numerical solutions to regularized long wave equation based on mixed covolume method 被引量:3
15
作者 方志朝 李宏 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第7期907-920,共14页
The mixed covolume method for the regularized long wave equation is devel- oped and studied. By introducing a transfer operator γh, which maps the trial function space into the test function space, and combining the ... The mixed covolume method for the regularized long wave equation is devel- oped and studied. By introducing a transfer operator γh, which maps the trial function space into the test function space, and combining the mixed finite element with the finite volume method, the nonlinear and linear Euler fully discrete mixed covolume schemes are constructed, and the existence and uniqueness of the solutions are proved. The optimal error estimates for these schemes are obtained. Finally, a numerical example is provided to examine the efficiency of the proposed schemes. 展开更多
关键词 regularized long wave equation mixed covolume method fully discrete optimal error estimate
在线阅读 下载PDF
Kernel matrix learning with a general regularized risk functional criterion 被引量:3
16
作者 Chengqun Wang Jiming Chen +1 位作者 Chonghai Hu Youxian Sun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第1期72-80,共9页
Kernel-based methods work by embedding the data into a feature space and then searching linear hypothesis among the embedding data points. The performance is mostly affected by which kernel is used. A promising way is... Kernel-based methods work by embedding the data into a feature space and then searching linear hypothesis among the embedding data points. The performance is mostly affected by which kernel is used. A promising way is to learn the kernel from the data automatically. A general regularized risk functional (RRF) criterion for kernel matrix learning is proposed. Compared with the RRF criterion, general RRF criterion takes into account the geometric distributions of the embedding data points. It is proven that the distance between different geometric distdbutions can be estimated by their centroid distance in the reproducing kernel Hilbert space. Using this criterion for kernel matrix learning leads to a convex quadratically constrained quadratic programming (QCQP) problem. For several commonly used loss functions, their mathematical formulations are given. Experiment results on a collection of benchmark data sets demonstrate the effectiveness of the proposed method. 展开更多
关键词 kernel method support vector machine kernel matrix learning HKRS geometric distribution regularized risk functional criterion.
在线阅读 下载PDF
Two-dimensional regularized inversion of AMT data based on rotation invariant of Central impedance tensor 被引量:4
17
作者 XiaoZhong Tong JianXin Liu AiYong Li 《Earth and Planetary Physics》 2018年第5期430-437,共8页
Considering the uncertainty of the electrical axis for two-dimensional audo-magnetotelluric(AMT) data processing, an AMT inversion method with the Central impedance tensor was presented. First, we present a calculatio... Considering the uncertainty of the electrical axis for two-dimensional audo-magnetotelluric(AMT) data processing, an AMT inversion method with the Central impedance tensor was presented. First, we present a calculation expression of the Central impedance tensor in AMT, which can be considered as the arithmetic mean of TE-polarization mode and TM-polarization mode in the twodimensional geo-electrical model. Second, a least-squares iterative inversion algorithm is established, based on a smoothnessconstrained model, and an improved L-curve method is adopted to determine the best regularization parameters. We then test the above inversion method with synthetic data and field data. The test results show that this two-dimensional AMT inversion scheme for the responses of Central impedance is effective and can reconstruct reasonable two-dimensional subsurface resistivity structures. We conclude that the Central impedance tensor is a useful tool for two-dimensional inversion of AMT data. 展开更多
关键词 audio-magnetotelluric/AMT impedance tensor rotation invariants two-dimensional geo-electrical model regularized inversion
在线阅读 下载PDF
Distributed Optimal Formation Control for Unmanned Surface Vessels by a Regularized Game-Based Approach 被引量:2
18
作者 Jun Shi Maojiao Ye 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期276-278,共3页
Dear Editor,This letter explores optimal formation control for a network of unmanned surface vessels(USVs).By designing an individual objective function for each USV,the optimal formation problem is transformed into a... Dear Editor,This letter explores optimal formation control for a network of unmanned surface vessels(USVs).By designing an individual objective function for each USV,the optimal formation problem is transformed into a noncooperative game.Under this game theoretic framework,the optimal formation is achieved by seeking the Nash equilibrium of the regularized game.A modular structure consisting of a distributed Nash equilibrium seeker and a regulator is proposed. 展开更多
关键词 regular SEEKING OPTIMAL
在线阅读 下载PDF
The Convergence Rate of Ergodic Limits for Regularized Resolvent Families 被引量:1
19
作者 张寄洲 裔永刚 《Journal of Donghua University(English Edition)》 EI CAS 2004年第6期109-114,共6页
This paper is concerned with the convergence rates of ergodic limits and approximation for regularized resolvent families for a linear Volterra integral equation. The results contain C 0-semigroups, cosine operator fu... This paper is concerned with the convergence rates of ergodic limits and approximation for regularized resolvent families for a linear Volterra integral equation. The results contain C 0-semigroups, cosine operator functions and α-times integrated resolvent family as special cases. 展开更多
关键词 regularizeD RESOLVENT families convergence ERGODIC limit K-functional
在线阅读 下载PDF
Application of regularized logistic regression for movement-related potentials-based EEG classification
20
作者 胡晨晨 王海贤 《Journal of Southeast University(English Edition)》 EI CAS 2013年第1期38-42,共5页
In order to improve classification accuracy, the regularized logistic regression is used to classify single-trial electroencephalogram (EEG). A novel approach, named local sparse logistic regression (LSLR), is pro... In order to improve classification accuracy, the regularized logistic regression is used to classify single-trial electroencephalogram (EEG). A novel approach, named local sparse logistic regression (LSLR), is proposed. The LSLR integrates the locality preserving projection regularization term into the framework of sparse logistic regression. It tries to maintain the neighborhood information of original feature space, and, meanwhile, keeps sparsity. The bound optimization algorithm and component-wise update are used to compute the weight vector in the training data, thus overcoming the disadvantage of the Newton-Raphson method and iterative re-weighted least squares (IRLS). The classification accuracy of 80% is achieved using ten-fold cross-validation in the self-paced finger tapping data set. The results of LSLR are compared with SLR, showing the effectiveness of the proposed method. 展开更多
关键词 logistic regression locality preserving projection regularization ELECTROENCEPHALOGRAM
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部