For the Hardy space H_E^2(R) over a ?at unitary vector bundle E on a ?nitely connected domain R, let TE be the bundle shift as [3]. If B is a reductive algebra containing every operator ψ(TE) for any rational functi...For the Hardy space H_E^2(R) over a ?at unitary vector bundle E on a ?nitely connected domain R, let TE be the bundle shift as [3]. If B is a reductive algebra containing every operator ψ(TE) for any rational function ψ with poles outside of R, then B is self adjoint.展开更多
Experts and officials shared their insights on poverty reduction cooperation and sustainable development during the 2025 International Seminar on Global Poverty Reduction Partnerships.
MXene derivatives are notable two-dimensional nanomaterials with numerous prospective applications in the domains of energy development.MXene derivative,MBene,diversifies its focus on energy storage and harvesting due...MXene derivatives are notable two-dimensional nanomaterials with numerous prospective applications in the domains of energy development.MXene derivative,MBene,diversifies its focus on energy storage and harvesting due to its exceptional electrical conductivity,structural flexibility,and mechanical properties.This comprehensive review describes the sandwich-like structure of the synthesized MBene,derived from its multilayered parent material and its distinct chemical framework to date.The fields of focus encompass the investigation of novel MBenes,the study of phase-changing mechanisms,and the examination of hex-MBenes,ortho-MBenes,tetra-MBenes,tri-MBenes,and MXenes with identical transition metal components.A critical analysis is also provided on the electrochemical mechanism and performance of MBene in energy storage(Li/Na/Mg/Ca/Li–S batteries and supercapacitors),as well as conversion and harvesting(CO_(2) reduction,and nitrogen reduction reactions).The persistent difficulties associated with conducting experimental synthesis and establishing artificial intelligence-based forecasts are extensively deliberated alongside the potential and forthcoming prospects of MBenes.This review provides a single platform for an overview of the MBene’s potential in energy storage and harvesting.展开更多
A series of leaching and electrochemical experiments were conducted to elucidate the critical role of hydrogen sulfide(H_(2)S)in copper-driven reduction of chalcopyrite.Results demonstrate that in the absence of H_(2)...A series of leaching and electrochemical experiments were conducted to elucidate the critical role of hydrogen sulfide(H_(2)S)in copper-driven reduction of chalcopyrite.Results demonstrate that in the absence of H_(2)S,metallic copper converts chalcopyrite into bornite(Cu_(5)FeS_(4)).However,the introduction of H_(2)S promotes the formation of chalcocite(Cu_(2)S)by altering the oxidation pathway of copper.Electrochemical analysis demonstrates that the presence of H₂S significantly reduces the corrosion potential of copper from 0.251 to−0.223 V(vs SHE),reaching the threshold necessary for the formation of Cu_(2)S.Nevertheless,excessive H_(2)S triggers sulfate reduction via the reaction of 8Cu+H_(2)SO_(4)+3H_(2)S=4Cu_(2)S+4H_(2)O(ΔG=−519.429 kJ/mol at 50℃),leading to inefficient copper utilization.展开更多
Controllable synthesis of ultrathin metallene nanosheets and rational design of their spatial arrangement in favor of electrochemical catalysis are critical for their renewable energy applications.Here,a biomimetic de...Controllable synthesis of ultrathin metallene nanosheets and rational design of their spatial arrangement in favor of electrochemical catalysis are critical for their renewable energy applications.Here,a biomimetic design of“Trunk-Branch-Leaf”strategy is proposed to prepare the ultrathin edge-riched Zn-ene“leaves”with a thickness of~2.5 nm,adjacent Zn-ene cross-linked with each other,which are supported by copper nanoneedle“branches”on copper mesh“trunks,”named as Zn-ene/Cu-CM.The resulting superstructure enables the formation of an interconnected network and multiple channels,which can be used as an electrocatalytic CO_(2) reduction reaction(CO_(2)RR)electrode to allow a fast charge and mass transfer as well as a large electrolyte reservoir.By virtue of the distinctive structure,the obtained Zn-ene/Cu-CM electrode exhibits excellent selectivity and activity toward CO production with a maximum Faradaic efficiency of 91.3%and incredible partial current density up to 40 mA cm^(−2),outperforming most of the state-of-the-art Zn-based electrodes for CO_(2) reduction.The phenolphthalein color probe combined with in situ attenuated total reflection-infrared spectroscopy uncovered the formation of the localized pseudo-alkaline microenvironment at the interface of the Zn-ene/Cu-CM electrode.Theoretical calculations confirmed that the localized pH as the origin is responsible for the adsorption of CO_(2) at the interface and the generation of *COOH and *CO intermediates.This study offers valuable insights into developing efficient electrodes through synergistic regulation of reaction microenvironments and active sites,thereby facilitating the electrolysis of practical CO_(2) conversion.展开更多
The development of Pt-free catalysts for the oxygen reduction reaction(ORR)is a great issue for meeting the cost challenges of proton exchange membrane fuel cells(PEMFCs)in commercial applications.In this work,a serie...The development of Pt-free catalysts for the oxygen reduction reaction(ORR)is a great issue for meeting the cost challenges of proton exchange membrane fuel cells(PEMFCs)in commercial applications.In this work,a series of RuCo/C catalysts were synthesized by NaBH4 reduction method under the premise that the total metal mass percentage was 20%.X-ray diffraction(XRD)patterns and scanning electron microscopy(SEM)confirmed the formation of single-phase nanoparticles with an average size of 33 nm.Cyclic voltammograms(CV)and linear sweep voltammograms(LSV)tests indicated that RuCo(2:1)/C catalyst had the optimal ORR properties.Additionally,the RuCo(2:1)/C catalyst remarkably sustained 98.1% of its activity even after 3000 cycles,surpassing the performance of Pt/C(84.8%).Analysis of the elemental state of the catalyst surface after cycling using X-ray photoelectron spectroscopy(XPS)revealed that the Ru^(0) percentage of RuCo(2:1)/C decreased by 2.2%(from 66.3% to 64.1%),while the Pt^(0) percentage of Pt/C decreased by 7.1%(from 53.3% to 46.2%).It is suggested that the synergy between Ru and Co holds the potential to pave the way for future low-cost and highly stable ORR catalysts,offering significant promise in the context of PEMFCs.展开更多
Environmental pollution,energy consumption,and greenhouse gas emissions are critical global issues.To address these challenges,optimizing skimmer coatings is a major step in commercializing cleaning oil stains.This re...Environmental pollution,energy consumption,and greenhouse gas emissions are critical global issues.To address these challenges,optimizing skimmer coatings is a major step in commercializing cleaning oil stains.This research presents a novel approach to creating and refining oil absorbent coatings,introducing a unique oil spill removal skimmer enhanced with a super hydrophobic polyaniline(PANI)nanofiber coating.The goal of this study was to improve oil absorption performance,increase the contact angle,lower drag,reduce energy consumption,achieve high desirability,and lower production costs.PANI treated with hydrochloric acid was a key focus as it resulted in higher porosity and smaller pore diameters,providing a larger surface area,which are crucial factors for boosting oil absorption and minimizing drag.To optimize optimal nanofiber morphology,PANI synthesized with methanesulfonic acid was first dedoped and then redoped with hydrochloric acid.After optimization,the most effective skimmer coating was achieved using a formulation consisting of 0.1%PANI,an ammonium persulfate/aniline ratio of 0.4,and an acid/aniline ratio of 9.689,along with redoped PANI nanofibers.The optimized skimmer exhibited a remarkable contact angle of 177.477°.The coating achieved drag reduction of 32%,oil absorption of 88.725%,a cost of$1.710,and a desirability rating of 78.5%.In this study,an optimized skimmer coat containing super hydrophobic coat-PANI nanofibers was fabricated.By enhancing contact angle and reducing drag,these coatings increased the skimmer performance by improving oil absorption and reducing fuel consumption.展开更多
Heteroatom-doped carbon is considered a promising alternative to commercial Pt/C as an efficient catalyst for the oxygen reduction reaction(ORR).This study presents the synthesis of iron-loaded,sulfur and nitrogen co-...Heteroatom-doped carbon is considered a promising alternative to commercial Pt/C as an efficient catalyst for the oxygen reduction reaction(ORR).This study presents the synthesis of iron-loaded,sulfur and nitrogen co-doped carbon(Fe/SNC)via in situ incorporation of 2-aminothiazole molecules into zeolitic imidazolate framework-8(ZIF-8)through coordination between metal ions and organic ligands.Sulfur and nitrogen doping in carbon supports effectively modulates the electronic structure of the catalyst,increases the Brunauer-Emmett-Teller surface area,and exposes more Fe-N_(x)active centers.Fe-loaded,S and N co-doped carbon with Fe/S molar ratio of 1:10(Fe/SNC-10)exhibits a half-wave potential of 0.902 V vs.RHE.After 5000 cycles of cyclic voltammetry,its half-wave potential decreases by only 20 mV vs.RHE,indicating excellent stability.Due to sulfur s lower electronegativity,the electronic structure of the Fe-N_(x)active center is modulated.Additionally,the larger atomic radius of sulfur introduces defects into the carbon support.As a result,Fe/SNC-10 demonstrates superior ORR activity and stability in alkaline solution compared with Fe-loaded N-doped carbon(Fe/NC).Furthermore,the zinc-air battery assembled with the Fe/SNC-10 catalyst shows enhanced performance relative to those assembled with Fe/NC and Pt/C catalysts.This work offers a novel design strategy for advanced energy storage and conversion applications.展开更多
Titanium exhibits outstanding properties,particularly,high specific strength and resistance to both high and low temperatures,earning it a reputation as the metal of the future.However,because of the highly reactive n...Titanium exhibits outstanding properties,particularly,high specific strength and resistance to both high and low temperatures,earning it a reputation as the metal of the future.However,because of the highly reactive nature of titanium,metallic titanium production involves extensive procedures and high costs.Considering its advantages and limitations,the European Union has classified titanium metal as a critical raw material(CRM)of low category.The Kroll process is predominantly used to produce titanium;however,molten salt electrolysis(MSE)is currently being explored for producing metallic titanium at a low cost.Since 2000,electrolytic titanium production has undergone a wave of technological advancements.However,because of the intermediate and disproportionation reactions in the electrolytic titanium production process,the process efficiency and titanium purity according to industrial standards could not be achieved.Consequently,metallic titanium production has gradually diversified into employing technologies such as thermal reduction,MSE,and titanium alloy preparation.This study provides a comprehensive review of research advances in titanium metal preparation technologies over the past two decades,highlighting the challenges faced by the existing methods and proposing potential solutions.It offers useful insights into the development of low-cost titanium preparation technologies.展开更多
Seawater zinc-air batteries are promising energy storage devices due to their high energy density and utilization of seawater electrolytes.However,their efficiency is hindered by the sluggish oxygen reduction reaction...Seawater zinc-air batteries are promising energy storage devices due to their high energy density and utilization of seawater electrolytes.However,their efficiency is hindered by the sluggish oxygen reduction reaction(ORR)and chlorideinduced degradation over conventional catalysts.In this study,we proposed a universal synthetic strategy to construct heteroatom axially coordinated Fe–N_(4) single-atom seawater catalyst materials(Cl–Fe–N_(4) and S–Fe–N_(4)).X-ray absorption spectroscopy confirmed their five-coordinated square pyramidal structure.Systematic evaluation of catalytic activities revealed that compared with S–Fe–N_(4),Cl–Fe–N_(4) exhibits smaller electrochemical active surface area and specific surface area,yet demonstrates higher limiting current density(5.8 mA cm^(−2)).The assembled zinc-air batteries using Cl–Fe–N_(4) showed superior power density(187.7 mW cm^(−2) at 245.1 mA cm^(−2)),indicating that Cl axial coordination more effectively enhances the intrinsic ORR activity.Moreover,Cl–Fe–N_(4) demonstrates stronger Cl−poisoning resistance in seawater environments.Chronoamperometry tests and zinc-air battery cycling performance evaluations confirmed its enhanced stability.Density functional theory calculations revealed that the introduction of heteroatoms in the axial direction regulates the electron center of Fe single atom,leading to more active reaction intermediates and increased electron density of Fe single sites,thereby enhancing the reduction in adsorbed intermediates and hence the overall ORR catalytic activity.展开更多
Electrocatalytic nitrate-to-ammonia conversion offers dual environmental and sustainable synthesis benefits,but achieving high efficiency with low-cost catalysts remains a major challenge.This review focuses on cobalt...Electrocatalytic nitrate-to-ammonia conversion offers dual environmental and sustainable synthesis benefits,but achieving high efficiency with low-cost catalysts remains a major challenge.This review focuses on cobalt-based electrocatalysts,emphasizing their structural engineering for enhanced the performance of electrocatalytic nitrate reduction reaction(NO3RR)through dimensional control,compositional tuning,and coordination microenvironment modulation.Notably,by critically analyzing metallic cobalt,cobalt alloys,cobalt compounds,cobalt single atom and molecular catalyst configurations,we firstly establish correlations between atomic-scale structural features and catalytic performance in a coordination environment perspective for NO3RR,including the dynamic reconstruction during operation and its impact on active site.Synergizing experimental breakthroughs with computational modeling,we decode mechanisms underlying competitive hydrogen evolution suppression,intermediate adsorption-energy optimization,and durability enhancement in complex aqueous environments.The development of cobalt-based catalysts was summarized and prospected,and the emerging opportunities of machine learning in accelerating the research and development of high-performance catalysts and the configuration of series reactors for scalable nitrate-to-ammonia systems were also introduced.Bridging surface science and applications,it outlines a framework for designing multifunctional electrocatalysts to restore nitrogen cycle balance sustainably.展开更多
Using photoelectrocatalytic CO_(2) reduction reaction(CO_(2)RR)to produce valuable fuels is a fascinating way to alleviate environmental issues and energy crises.Bismuth-based(Bi-based)catalysts have attracted widespr...Using photoelectrocatalytic CO_(2) reduction reaction(CO_(2)RR)to produce valuable fuels is a fascinating way to alleviate environmental issues and energy crises.Bismuth-based(Bi-based)catalysts have attracted widespread attention for CO_(2)RR due to their high catalytic activity,selectivity,excellent stability,and low cost.However,they still need to be further improved to meet the needs of industrial applications.This review article comprehensively summarizes the recent advances in regulation strategies of Bi-based catalysts and can be divided into six categories:(1)defect engineering,(2)atomic doping engineering,(3)organic framework engineering,(4)inorganic heterojunction engineering,(5)crystal face engineering,and(6)alloying and polarization engineering.Meanwhile,the corresponding catalytic mechanisms of each regulation strategy will also be discussed in detail,aiming to enable researchers to understand the structure-property relationship of the improved Bibased catalysts fundamentally.Finally,the challenges and future opportunities of the Bi-based catalysts in the photoelectrocatalytic CO_(2)RR application field will also be featured from the perspectives of the(1)combination or synergy of multiple regulatory strategies,(2)revealing formation mechanism and realizing controllable synthesis,and(3)in situ multiscale investigation of activation pathways and uncovering the catalytic mechanisms.On the one hand,through the comparative analysis and mechanism explanation of the six major regulatory strategies,a multidimensional knowledge framework of the structure-activity relationship of Bi-based catalysts can be constructed for researchers,which not only deepens the atomic-level understanding of catalytic active sites,charge transport paths,and the adsorption behavior of intermediate products,but also provides theoretical guiding principles for the controllable design of new catalysts;on the other hand,the promising collaborative regulation strategies,controllable synthetic paths,and the in situ multiscale characterization techniques presented in this work provides a paradigm reference for shortening the research and development cycle of high-performance catalysts,conducive to facilitating the transition of photoelectrocatalytic CO_(2)RR technology from the laboratory routes to industrial application.展开更多
Accelerated industrialization combined with over-applied nitrogen fertilizers results in serious nitrate pollution insurface and ground water,disrupting the balance of the global nitrogen cycle.Electrochemical nitrate...Accelerated industrialization combined with over-applied nitrogen fertilizers results in serious nitrate pollution insurface and ground water,disrupting the balance of the global nitrogen cycle.Electrochemical nitrate reduction(eNO_(3)RR)emerges as an attractive strategy to simultaneously enable nitrate removal and decentralized ammo-nia fabrication,restoring the globally perturbed nitrogen cycle.However,complex deoxygenation-hydrogenationprocesses and sluggish proton-electron transfer kinetics significantly hinder practical application of eNO_(3)RR.In this study,we developed carbon-coated Cu-Ni bimetallic catalysts derived from metal-organic frameworks(MOFs)to facilitate eNO_(3)RR.The unique structural features of catalyst promote enhanced synergy between Cuand Ni,effectively addressing critical challenges in nitrate reduction.Comprehensive structural and electrochem-ical analysis demonstrate that electrochemical nitrate-to-nitrite conversion mainly takes place on active Cu sites,the introduction of Ni could efficiently accelerate the generation of aquatic active hydrogen,promoting the hy-drogenation of oxynitrides during eNO_(3)RR.In addition,Ni introduction could push up the d-band center of thecatalyst,thus enhancing the adsorption and activation of nitrate and the corresponding intermediates.Detailedreaction pathways for nitrate-to-ammonia conversion are illuminated by rotating disk electrode(RDE),in-situFourier-transform infrared spectroscopy,in-situ Raman spectrum and electrochemical impedance spectroscopy(EIS).Benefiting from the synergistic effect of Cu and Ni,optimum catalyst exhibited excellent nitrate reductionperformance.This work provides a new idea for elucidating the underlying eNO_(3)RR reaction mechanisms andcontributes a promising strategy for designing efficient bimetallic electrocatalysts.展开更多
Owing to their global search capabilities and gradient-free operation,metaheuristic algorithms are widely applied to a wide range of optimization problems.However,their computational demands become prohibitive when ta...Owing to their global search capabilities and gradient-free operation,metaheuristic algorithms are widely applied to a wide range of optimization problems.However,their computational demands become prohibitive when tackling high-dimensional optimization challenges.To effectively address these challenges,this study introduces cooperative metaheuristics integrating dynamic dimension reduction(DR).Building upon particle swarm optimization(PSO)and differential evolution(DE),the proposed cooperative methods C-PSO and C-DE are developed.In the proposed methods,the modified principal components analysis(PCA)is utilized to reduce the dimension of design variables,thereby decreasing computational costs.The dynamic DR strategy implements periodic execution of modified PCA after a fixed number of iterations,resulting in the important dimensions being dynamically identified.Compared with the static one,the dynamic DR strategy can achieve precise identification of important dimensions,thereby enabling accelerated convergence toward optimal solutions.Furthermore,the influence of cumulative contribution rate thresholds on optimization problems with different dimensions is investigated.Metaheuristic algorithms(PSO,DE)and cooperative metaheuristics(C-PSO,C-DE)are examined by 15 benchmark functions and two engineering design problems(speed reducer and composite pressure vessel).Comparative results demonstrate that the cooperative methods achieve significantly superior performance compared to standard methods in both solution accuracy and computational efficiency.Compared to standard metaheuristic algorithms,cooperative metaheuristics achieve a reduction in computational cost of at least 40%.The cooperative metaheuristics can be effectively used to tackle both high-dimensional unconstrained and constrained optimization problems.展开更多
This study focused on improving the cathode performance of Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.15)O_(3-δ)(BSCN)-based perovskite materials through molybdenum(Mo)doping.Pure BSCN and Mo-modified-BSCN—Ea_(0.6)Sr_(0.4)Co_(0...This study focused on improving the cathode performance of Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.15)O_(3-δ)(BSCN)-based perovskite materials through molybdenum(Mo)doping.Pure BSCN and Mo-modified-BSCN—Ea_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.1)Mo_(0.05)O_(3-δ)(B S CNM_(0.05)),Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.05)Mo_(0.1)O_(3-δ)(BSCNM_(0.1)),and Ba_(0.6)Sr_(0.4)Co_(0.85)Mo_(0.15)O_(3-δ)(BSCM)—with Mo doping contents of 5mol%,10mol%,and15mol%,respectively,were successfully prepared using the sol-gel method.The effects of Mo doping on the crystal structure,conductivity,thermal expansion coefficient,oxygen reduction reaction(ORR)activity,and electrochemical performance were systematically evaluated using X-ray diffraction analysis,thermally induced characterization,electrochemical impedance spectroscopy,and single-cell performance tests.The results revealed that Mo doping could improve the conductivity of the materials,suppress their thermal expansion effects,and significantly improve the electrochemical performance.Surface chemical state analysis using X-ray photoelectron spectroscopy revealed that 5mol%Mo doping could facilitate a high adsorbed oxygen concentration leading to enhanced ORR activity in the materials.Density functional theory calculations confirmed that Mo doping promoted the ORR activity in the materials.At an operating temperature of 600℃,the BSCNM_(0.05)cathode material exhibited significantly enhanced electrochemical impedance characteristics,with a reduced area specific resistance of 0.048Ω·cm~2,which was lower than that of the undoped BSCN matrix material by 32.39%.At the same operating temperature,an anode-supported single cell using a BSCNM_(0.05)cathode achieved a peak power density of 1477 mW·cm^(-2),which was 30.71%,56.30%,and 171.50%higher than those of BSCN,BSCNM_(0.1),and B SCM,respectively.The improved ORR activity and electrochemical performance of BSCNM_(0.05)indicate that it can be used as a cathode material in low-temperature solid oxide fuel cells.展开更多
This letter introduces the novel concept of Painlevé solitons—waves arising from the interaction between Painlevé waves and solitons in integrable systems.Painlevé solitons can also be viewed as solito...This letter introduces the novel concept of Painlevé solitons—waves arising from the interaction between Painlevé waves and solitons in integrable systems.Painlevé solitons can also be viewed as solitons propagating against a Painlevé wave background,in analogy to the established notion of elliptic solitons,which refers to solitons on an elliptic wave background.By employing a novel symmetry decomposition method aided by nonlocal residual symmetries,we explicitly construct (extended) Painlevé Ⅱ solitons for the Korteweg-de Vries equation and (extended) Painlevé Ⅳ solitons for the Boussinesq equation.展开更多
Nerve trauma commonly results in chronic neuropathic pain. This is by triggering the release of proinflammatory mediators from local and invading cells that induce inflammation and nociceptive neuron hyperexcitability...Nerve trauma commonly results in chronic neuropathic pain. This is by triggering the release of proinflammatory mediators from local and invading cells that induce inflammation and nociceptive neuron hyperexcitability. Even without apparent inflammation, injury sites are associated with increased inflammatory markers. This review focuses on how it might be possible to reduce neuropathic pain by reducing inflammation. Physiologically, pain is resolved by a combination of the out-migration of pro-inflammatory cells from the injury site, the down-regulation of the genes underlying the inflammation, up-regulating genes for anti-inflammatory mediators, and reducing nociceptive neuron hyperexcitability. While various techniques reduce chronic neuropathic pain, the best are effective on < 50% of patients, no technique reliably or permanently eliminates neuropathic pain. This is because most techniques are predominantly aimed at reducing pain, not inflammation. In addition, while single factors reduce pain, increasing evidence indicates significant and longer-lasting pain relief requires multiple factors acting simultaneously. Therefore, it is not surprising that extensive data indicate that the application of platelet-rich plasma provides more significant and longer-lasting pain suppression than other techniques, although its analgesia is neither complete nor permanent. However, several case reports indicate that platelet-rich plasma can induce permanent neuropathic pain elimination when the platelet concentration is significantly increased and is applied to longer nerve lengths. This review examines the primary triggers of the development and maintenance of neuropathic pain and techniques that reduce chronic neuropathic pain. The application of plateletrich plasma holds great promise for providing complete and permanent chronic neuropathic pain elimination.展开更多
Electrocatalytic nitric oxide(NO)reduction reaction(NORR)is a promising and sustainable process that can simultaneously realize green ammonia(NH3)synthesis and hazardous NO removal.However,current NORR performances ar...Electrocatalytic nitric oxide(NO)reduction reaction(NORR)is a promising and sustainable process that can simultaneously realize green ammonia(NH3)synthesis and hazardous NO removal.However,current NORR performances are far from practical needs due to the lack of efficient electrocatalysts.Engineering the lattice of metal-based nanomaterials via phase control has emerged as an effective strategy to modulate their intrinsic electrocatalytic properties.Herein,we realize boron(B)-insertion-induced phase regulation of rhodium(Rh)nanocrystals to obtain amorphous Rh_(4)B nanoparticles(NPs)and hexagonal close-packed(hcp)RhB NPs through a facile wet-chemical method.A high Faradaic efficiency(92.1±1.2%)and NH_(3) yield rate(629.5±11.0μmol h^(−1) cm^(−2))are achieved over hcp RhB NPs,far superior to those of most reported NORR nanocatalysts.In situ spectro-electrochemical analysis and density functional theory simulations reveal that the excellent electrocatalytic performances of hcp RhB NPs are attributed to the upshift of d-band center,enhanced NO adsorption/activation profile,and greatly reduced energy barrier of the rate-determining step.A demonstrative Zn-NO battery is assembled using hcp RhB NPs as the cathode and delivers a peak power density of 4.33 mW cm−2,realizing simultaneous NO removal,NH3 synthesis,and electricity output.展开更多
Fe reducing bacteria(FRB),through extracellular electron transfer(EET)pathway,can reduce Fe(III)nanoparticles,thereby affecting the migration,transformation,and degradation of pollutants.However,the interaction of Fe(...Fe reducing bacteria(FRB),through extracellular electron transfer(EET)pathway,can reduce Fe(III)nanoparticles,thereby affecting the migration,transformation,and degradation of pollutants.However,the interaction of Fe(III)nanoparticles with the most commonly identified FRB,Geobacter sulfurreducens PCA,remains poorly understood.Herein,we demonstrated that the synergistic role of outer membrane proteins and periplasmic proteins in the EET process for-Fe_(2)O_(3),Fe3O4,and𝛽α-FeOOH nanoparticles by construction of multiple gene knockout strain.oxpG(involved in the type II secretion system)and omcST(outer membrane c-type cytochrome)medi-ated pathways accounted for approximately 67%of the total reduction of𝛼α-Fe_(2)O_(3) nanoparticles.The residual reduction of𝛼α-Fe_(2)O_(3) nanoparticles in∆oxpG-omcST strain was likely caused by redox-active substances in cell supernatant.Conversely,the reduction of dissolved Fe(III)was almost unaffected in∆oxpG-omcST strain at the same concentration.However,at high dissolved Fe(III)concentration,the reduction significantly decreased due to the formation of Fe(III)nanoparticles,suggesting that this EET process is specific to Fe(III)nanoparticles.Overall,our study provided a more comprehensive understanding for the EET pathways between G.sulfurreducens PCA and different Fe(III)species,enriching our knowledge on the role of microorganisms in iron biogeochemical cycles and remediation strategies of pollutants.展开更多
Developing a cost-effective and environmentally friendly process for the production of valuable chemicals from abundant herbal biomass receives great attentions in recent years.Herein,taking advantage of the“lignin f...Developing a cost-effective and environmentally friendly process for the production of valuable chemicals from abundant herbal biomass receives great attentions in recent years.Herein,taking advantage of the“lignin first”strategy,corn straw is converted to valuable chemicals including lignin monomers,furfural and 5-methoxymethylfurfural via a two steps process.The key of this research lies in the development of a green and low-cost catalytic process utilizing magnetic Raney Ni catalyst and high boiling point ethylene glycol.The utilization of neat ethylene glycol as the sole slovent under atmospheric conditions obviates the need for additional additives,thereby facilitating the entire process to be conducted in glass flasks and rendering it highly convenient for scaling up.In the initial step,depolymerization of corn straw lignin resulted in a monomer yield of 18.1 wt%.Subsequently,in a dimethyl carbonate system,the carbohydrate component underwent complete conversion in a one-pot process,yielding furfural and 5-methoxymethylfurfural as the primary products with an impressive yield of 47.7%.展开更多
基金Project Supported by Scientific and Technological Research Program of Chongqing Municipal Education Commission(KJQN201801110)Chongqing Science and Technology Commission(CSTC2015jcyjA00045,cstc2018jcyjA2248)and NSFC(11871127)
文摘For the Hardy space H_E^2(R) over a ?at unitary vector bundle E on a ?nitely connected domain R, let TE be the bundle shift as [3]. If B is a reductive algebra containing every operator ψ(TE) for any rational function ψ with poles outside of R, then B is self adjoint.
文摘Experts and officials shared their insights on poverty reduction cooperation and sustainable development during the 2025 International Seminar on Global Poverty Reduction Partnerships.
基金supported by the National Natural Science Foundation of China(No.52302241 and 22225801)the Major Science and Technology Programs of Henan Province(241100240200)the China Postdoctoral Science Foundation(No.2023M730940).
文摘MXene derivatives are notable two-dimensional nanomaterials with numerous prospective applications in the domains of energy development.MXene derivative,MBene,diversifies its focus on energy storage and harvesting due to its exceptional electrical conductivity,structural flexibility,and mechanical properties.This comprehensive review describes the sandwich-like structure of the synthesized MBene,derived from its multilayered parent material and its distinct chemical framework to date.The fields of focus encompass the investigation of novel MBenes,the study of phase-changing mechanisms,and the examination of hex-MBenes,ortho-MBenes,tetra-MBenes,tri-MBenes,and MXenes with identical transition metal components.A critical analysis is also provided on the electrochemical mechanism and performance of MBene in energy storage(Li/Na/Mg/Ca/Li–S batteries and supercapacitors),as well as conversion and harvesting(CO_(2) reduction,and nitrogen reduction reactions).The persistent difficulties associated with conducting experimental synthesis and establishing artificial intelligence-based forecasts are extensively deliberated alongside the potential and forthcoming prospects of MBenes.This review provides a single platform for an overview of the MBene’s potential in energy storage and harvesting.
基金financially supported by the National Key Research and Development Program of China (No. 2022YFC2105300)。
文摘A series of leaching and electrochemical experiments were conducted to elucidate the critical role of hydrogen sulfide(H_(2)S)in copper-driven reduction of chalcopyrite.Results demonstrate that in the absence of H_(2)S,metallic copper converts chalcopyrite into bornite(Cu_(5)FeS_(4)).However,the introduction of H_(2)S promotes the formation of chalcocite(Cu_(2)S)by altering the oxidation pathway of copper.Electrochemical analysis demonstrates that the presence of H₂S significantly reduces the corrosion potential of copper from 0.251 to−0.223 V(vs SHE),reaching the threshold necessary for the formation of Cu_(2)S.Nevertheless,excessive H_(2)S triggers sulfate reduction via the reaction of 8Cu+H_(2)SO_(4)+3H_(2)S=4Cu_(2)S+4H_(2)O(ΔG=−519.429 kJ/mol at 50℃),leading to inefficient copper utilization.
基金supports of the National Natural Science Foundation of China(NSFC)(52021004,52394202)key project of the Joint Fund for Innovation and Development of Chongqing Natural Science Foundation(CSTB2022NSCQ-LZX0013)+1 种基金the National Natural Science Foundation of China(NSFC)(52301232,and 52476056)the Natural Science Foundation of Chongqing Province(2024NSCQ-MSX1109).
文摘Controllable synthesis of ultrathin metallene nanosheets and rational design of their spatial arrangement in favor of electrochemical catalysis are critical for their renewable energy applications.Here,a biomimetic design of“Trunk-Branch-Leaf”strategy is proposed to prepare the ultrathin edge-riched Zn-ene“leaves”with a thickness of~2.5 nm,adjacent Zn-ene cross-linked with each other,which are supported by copper nanoneedle“branches”on copper mesh“trunks,”named as Zn-ene/Cu-CM.The resulting superstructure enables the formation of an interconnected network and multiple channels,which can be used as an electrocatalytic CO_(2) reduction reaction(CO_(2)RR)electrode to allow a fast charge and mass transfer as well as a large electrolyte reservoir.By virtue of the distinctive structure,the obtained Zn-ene/Cu-CM electrode exhibits excellent selectivity and activity toward CO production with a maximum Faradaic efficiency of 91.3%and incredible partial current density up to 40 mA cm^(−2),outperforming most of the state-of-the-art Zn-based electrodes for CO_(2) reduction.The phenolphthalein color probe combined with in situ attenuated total reflection-infrared spectroscopy uncovered the formation of the localized pseudo-alkaline microenvironment at the interface of the Zn-ene/Cu-CM electrode.Theoretical calculations confirmed that the localized pH as the origin is responsible for the adsorption of CO_(2) at the interface and the generation of *COOH and *CO intermediates.This study offers valuable insights into developing efficient electrodes through synergistic regulation of reaction microenvironments and active sites,thereby facilitating the electrolysis of practical CO_(2) conversion.
基金Funded by the 111 Project(No.B17034)Open Project of Hubei Key Laboratory of Power System Design and Test for Electrical Vehicle(No.ZDSYS202212)+1 种基金Innovative Research Team Development Program of Ministry of Education of China(No.IRT_17R83)the Science and Technology Project of China Southern Power Grid Co.,Ltd.(No.GDKJXM20222546)。
文摘The development of Pt-free catalysts for the oxygen reduction reaction(ORR)is a great issue for meeting the cost challenges of proton exchange membrane fuel cells(PEMFCs)in commercial applications.In this work,a series of RuCo/C catalysts were synthesized by NaBH4 reduction method under the premise that the total metal mass percentage was 20%.X-ray diffraction(XRD)patterns and scanning electron microscopy(SEM)confirmed the formation of single-phase nanoparticles with an average size of 33 nm.Cyclic voltammograms(CV)and linear sweep voltammograms(LSV)tests indicated that RuCo(2:1)/C catalyst had the optimal ORR properties.Additionally,the RuCo(2:1)/C catalyst remarkably sustained 98.1% of its activity even after 3000 cycles,surpassing the performance of Pt/C(84.8%).Analysis of the elemental state of the catalyst surface after cycling using X-ray photoelectron spectroscopy(XPS)revealed that the Ru^(0) percentage of RuCo(2:1)/C decreased by 2.2%(from 66.3% to 64.1%),while the Pt^(0) percentage of Pt/C decreased by 7.1%(from 53.3% to 46.2%).It is suggested that the synergy between Ru and Co holds the potential to pave the way for future low-cost and highly stable ORR catalysts,offering significant promise in the context of PEMFCs.
文摘Environmental pollution,energy consumption,and greenhouse gas emissions are critical global issues.To address these challenges,optimizing skimmer coatings is a major step in commercializing cleaning oil stains.This research presents a novel approach to creating and refining oil absorbent coatings,introducing a unique oil spill removal skimmer enhanced with a super hydrophobic polyaniline(PANI)nanofiber coating.The goal of this study was to improve oil absorption performance,increase the contact angle,lower drag,reduce energy consumption,achieve high desirability,and lower production costs.PANI treated with hydrochloric acid was a key focus as it resulted in higher porosity and smaller pore diameters,providing a larger surface area,which are crucial factors for boosting oil absorption and minimizing drag.To optimize optimal nanofiber morphology,PANI synthesized with methanesulfonic acid was first dedoped and then redoped with hydrochloric acid.After optimization,the most effective skimmer coating was achieved using a formulation consisting of 0.1%PANI,an ammonium persulfate/aniline ratio of 0.4,and an acid/aniline ratio of 9.689,along with redoped PANI nanofibers.The optimized skimmer exhibited a remarkable contact angle of 177.477°.The coating achieved drag reduction of 32%,oil absorption of 88.725%,a cost of$1.710,and a desirability rating of 78.5%.In this study,an optimized skimmer coat containing super hydrophobic coat-PANI nanofibers was fabricated.By enhancing contact angle and reducing drag,these coatings increased the skimmer performance by improving oil absorption and reducing fuel consumption.
基金financial support of the National Natural Science Foundation of China(No.52472271)the National Key Research and Development Program of China(No.2023YFE0115800)。
文摘Heteroatom-doped carbon is considered a promising alternative to commercial Pt/C as an efficient catalyst for the oxygen reduction reaction(ORR).This study presents the synthesis of iron-loaded,sulfur and nitrogen co-doped carbon(Fe/SNC)via in situ incorporation of 2-aminothiazole molecules into zeolitic imidazolate framework-8(ZIF-8)through coordination between metal ions and organic ligands.Sulfur and nitrogen doping in carbon supports effectively modulates the electronic structure of the catalyst,increases the Brunauer-Emmett-Teller surface area,and exposes more Fe-N_(x)active centers.Fe-loaded,S and N co-doped carbon with Fe/S molar ratio of 1:10(Fe/SNC-10)exhibits a half-wave potential of 0.902 V vs.RHE.After 5000 cycles of cyclic voltammetry,its half-wave potential decreases by only 20 mV vs.RHE,indicating excellent stability.Due to sulfur s lower electronegativity,the electronic structure of the Fe-N_(x)active center is modulated.Additionally,the larger atomic radius of sulfur introduces defects into the carbon support.As a result,Fe/SNC-10 demonstrates superior ORR activity and stability in alkaline solution compared with Fe-loaded N-doped carbon(Fe/NC).Furthermore,the zinc-air battery assembled with the Fe/SNC-10 catalyst shows enhanced performance relative to those assembled with Fe/NC and Pt/C catalysts.This work offers a novel design strategy for advanced energy storage and conversion applications.
基金financial support from the Yunnan Province Key Industries Science and Technology Special Project for Colleges and UniversitiesChina(No.FWCY-QYCT2024006)+6 种基金National Natural Science Foundation of China(Nos.52104351 and 52364051)Science and Technology Major Project of Yunnan Province,China(No.202202AG050007)the Yunnan Fundamental Research ProjectsChina(No.202401AT070314)the Key Technology Research and Development Program of Shandong Province,China(No.2023CXGC010903)Central Guidance Local Scientific and Technological Development Funds,China(No.202407AB110022)Yunnan Province Xingdian Talent Support Plan Project,China。
文摘Titanium exhibits outstanding properties,particularly,high specific strength and resistance to both high and low temperatures,earning it a reputation as the metal of the future.However,because of the highly reactive nature of titanium,metallic titanium production involves extensive procedures and high costs.Considering its advantages and limitations,the European Union has classified titanium metal as a critical raw material(CRM)of low category.The Kroll process is predominantly used to produce titanium;however,molten salt electrolysis(MSE)is currently being explored for producing metallic titanium at a low cost.Since 2000,electrolytic titanium production has undergone a wave of technological advancements.However,because of the intermediate and disproportionation reactions in the electrolytic titanium production process,the process efficiency and titanium purity according to industrial standards could not be achieved.Consequently,metallic titanium production has gradually diversified into employing technologies such as thermal reduction,MSE,and titanium alloy preparation.This study provides a comprehensive review of research advances in titanium metal preparation technologies over the past two decades,highlighting the challenges faced by the existing methods and proposing potential solutions.It offers useful insights into the development of low-cost titanium preparation technologies.
基金funded by the Innovative Research Group Project of the National Natural Science Foundation of China(52121004)the Research Development Fund(No.RDF-21-02-060)by Xi’an Jiaotong-Liverpool University+1 种基金support received from the Suzhou Industrial Park High Quality Innovation Platform of Functional Molecular Materials and Devices(YZCXPT2023105)the XJTLU Advanced Materials Research Center(AMRC).
文摘Seawater zinc-air batteries are promising energy storage devices due to their high energy density and utilization of seawater electrolytes.However,their efficiency is hindered by the sluggish oxygen reduction reaction(ORR)and chlorideinduced degradation over conventional catalysts.In this study,we proposed a universal synthetic strategy to construct heteroatom axially coordinated Fe–N_(4) single-atom seawater catalyst materials(Cl–Fe–N_(4) and S–Fe–N_(4)).X-ray absorption spectroscopy confirmed their five-coordinated square pyramidal structure.Systematic evaluation of catalytic activities revealed that compared with S–Fe–N_(4),Cl–Fe–N_(4) exhibits smaller electrochemical active surface area and specific surface area,yet demonstrates higher limiting current density(5.8 mA cm^(−2)).The assembled zinc-air batteries using Cl–Fe–N_(4) showed superior power density(187.7 mW cm^(−2) at 245.1 mA cm^(−2)),indicating that Cl axial coordination more effectively enhances the intrinsic ORR activity.Moreover,Cl–Fe–N_(4) demonstrates stronger Cl−poisoning resistance in seawater environments.Chronoamperometry tests and zinc-air battery cycling performance evaluations confirmed its enhanced stability.Density functional theory calculations revealed that the introduction of heteroatoms in the axial direction regulates the electron center of Fe single atom,leading to more active reaction intermediates and increased electron density of Fe single sites,thereby enhancing the reduction in adsorbed intermediates and hence the overall ORR catalytic activity.
基金supported by the National Natural Science Foundation of China(Grant Nos.:21825201,52401244 and 52201227)Henan Province Key Research and Development and Promotion Program(Scientific and Technological Breakthrough Project:232102240088 and 252102230078)+3 种基金the Key Research&Development and Promotion of Special Project(Scientific Problem Tackling)of Henan Province(252102230078)Doctoral Research Startup Fund Project of Henan Open University(BSJH-2025-04)Zhejiang Provincial Natural Science Foundation of China(LQ24B020005,LQ23B030001)China Postdoctoral Science Foundation(2024M762442).
文摘Electrocatalytic nitrate-to-ammonia conversion offers dual environmental and sustainable synthesis benefits,but achieving high efficiency with low-cost catalysts remains a major challenge.This review focuses on cobalt-based electrocatalysts,emphasizing their structural engineering for enhanced the performance of electrocatalytic nitrate reduction reaction(NO3RR)through dimensional control,compositional tuning,and coordination microenvironment modulation.Notably,by critically analyzing metallic cobalt,cobalt alloys,cobalt compounds,cobalt single atom and molecular catalyst configurations,we firstly establish correlations between atomic-scale structural features and catalytic performance in a coordination environment perspective for NO3RR,including the dynamic reconstruction during operation and its impact on active site.Synergizing experimental breakthroughs with computational modeling,we decode mechanisms underlying competitive hydrogen evolution suppression,intermediate adsorption-energy optimization,and durability enhancement in complex aqueous environments.The development of cobalt-based catalysts was summarized and prospected,and the emerging opportunities of machine learning in accelerating the research and development of high-performance catalysts and the configuration of series reactors for scalable nitrate-to-ammonia systems were also introduced.Bridging surface science and applications,it outlines a framework for designing multifunctional electrocatalysts to restore nitrogen cycle balance sustainably.
基金supports from the National Natural Science Foundation of China(Grant Nos.12305372 and 22376217)the National Key Research&Development Program of China(Grant Nos.2022YFA1603802 and 2022YFB3504100)+1 种基金the projects of the key laboratory of advanced energy materials chemistry,ministry of education(Nankai University)key laboratory of Jiangxi Province for persistent pollutants prevention control and resource reuse(2023SSY02061)are gratefully acknowledged.
文摘Using photoelectrocatalytic CO_(2) reduction reaction(CO_(2)RR)to produce valuable fuels is a fascinating way to alleviate environmental issues and energy crises.Bismuth-based(Bi-based)catalysts have attracted widespread attention for CO_(2)RR due to their high catalytic activity,selectivity,excellent stability,and low cost.However,they still need to be further improved to meet the needs of industrial applications.This review article comprehensively summarizes the recent advances in regulation strategies of Bi-based catalysts and can be divided into six categories:(1)defect engineering,(2)atomic doping engineering,(3)organic framework engineering,(4)inorganic heterojunction engineering,(5)crystal face engineering,and(6)alloying and polarization engineering.Meanwhile,the corresponding catalytic mechanisms of each regulation strategy will also be discussed in detail,aiming to enable researchers to understand the structure-property relationship of the improved Bibased catalysts fundamentally.Finally,the challenges and future opportunities of the Bi-based catalysts in the photoelectrocatalytic CO_(2)RR application field will also be featured from the perspectives of the(1)combination or synergy of multiple regulatory strategies,(2)revealing formation mechanism and realizing controllable synthesis,and(3)in situ multiscale investigation of activation pathways and uncovering the catalytic mechanisms.On the one hand,through the comparative analysis and mechanism explanation of the six major regulatory strategies,a multidimensional knowledge framework of the structure-activity relationship of Bi-based catalysts can be constructed for researchers,which not only deepens the atomic-level understanding of catalytic active sites,charge transport paths,and the adsorption behavior of intermediate products,but also provides theoretical guiding principles for the controllable design of new catalysts;on the other hand,the promising collaborative regulation strategies,controllable synthetic paths,and the in situ multiscale characterization techniques presented in this work provides a paradigm reference for shortening the research and development cycle of high-performance catalysts,conducive to facilitating the transition of photoelectrocatalytic CO_(2)RR technology from the laboratory routes to industrial application.
基金supported by the Natural Science Foundation of China(No.52101279)the Key Scientific Research Foundation of Education department of Hunan Province(No.24A0003)the Scientific Research Project of Education Department of Hunan Province(No.21B000)and the Fundamental Research Funds for the Central Universities of Central South University.
文摘Accelerated industrialization combined with over-applied nitrogen fertilizers results in serious nitrate pollution insurface and ground water,disrupting the balance of the global nitrogen cycle.Electrochemical nitrate reduction(eNO_(3)RR)emerges as an attractive strategy to simultaneously enable nitrate removal and decentralized ammo-nia fabrication,restoring the globally perturbed nitrogen cycle.However,complex deoxygenation-hydrogenationprocesses and sluggish proton-electron transfer kinetics significantly hinder practical application of eNO_(3)RR.In this study,we developed carbon-coated Cu-Ni bimetallic catalysts derived from metal-organic frameworks(MOFs)to facilitate eNO_(3)RR.The unique structural features of catalyst promote enhanced synergy between Cuand Ni,effectively addressing critical challenges in nitrate reduction.Comprehensive structural and electrochem-ical analysis demonstrate that electrochemical nitrate-to-nitrite conversion mainly takes place on active Cu sites,the introduction of Ni could efficiently accelerate the generation of aquatic active hydrogen,promoting the hy-drogenation of oxynitrides during eNO_(3)RR.In addition,Ni introduction could push up the d-band center of thecatalyst,thus enhancing the adsorption and activation of nitrate and the corresponding intermediates.Detailedreaction pathways for nitrate-to-ammonia conversion are illuminated by rotating disk electrode(RDE),in-situFourier-transform infrared spectroscopy,in-situ Raman spectrum and electrochemical impedance spectroscopy(EIS).Benefiting from the synergistic effect of Cu and Ni,optimum catalyst exhibited excellent nitrate reductionperformance.This work provides a new idea for elucidating the underlying eNO_(3)RR reaction mechanisms andcontributes a promising strategy for designing efficient bimetallic electrocatalysts.
基金funded by National Natural Science Foundation of China(Nos.12402142,11832013 and 11572134)Natural Science Foundation of Hubei Province(No.2024AFB235)+1 种基金Hubei Provincial Department of Education Science and Technology Research Project(No.Q20221714)the Opening Foundation of Hubei Key Laboratory of Digital Textile Equipment(Nos.DTL2023019 and DTL2022012).
文摘Owing to their global search capabilities and gradient-free operation,metaheuristic algorithms are widely applied to a wide range of optimization problems.However,their computational demands become prohibitive when tackling high-dimensional optimization challenges.To effectively address these challenges,this study introduces cooperative metaheuristics integrating dynamic dimension reduction(DR).Building upon particle swarm optimization(PSO)and differential evolution(DE),the proposed cooperative methods C-PSO and C-DE are developed.In the proposed methods,the modified principal components analysis(PCA)is utilized to reduce the dimension of design variables,thereby decreasing computational costs.The dynamic DR strategy implements periodic execution of modified PCA after a fixed number of iterations,resulting in the important dimensions being dynamically identified.Compared with the static one,the dynamic DR strategy can achieve precise identification of important dimensions,thereby enabling accelerated convergence toward optimal solutions.Furthermore,the influence of cumulative contribution rate thresholds on optimization problems with different dimensions is investigated.Metaheuristic algorithms(PSO,DE)and cooperative metaheuristics(C-PSO,C-DE)are examined by 15 benchmark functions and two engineering design problems(speed reducer and composite pressure vessel).Comparative results demonstrate that the cooperative methods achieve significantly superior performance compared to standard methods in both solution accuracy and computational efficiency.Compared to standard metaheuristic algorithms,cooperative metaheuristics achieve a reduction in computational cost of at least 40%.The cooperative metaheuristics can be effectively used to tackle both high-dimensional unconstrained and constrained optimization problems.
基金financially supported by the National Natural Science Foundation of China(No.22309067)the Open Project Program of the State Key Laboratory of Materials-Oriented Chemical Engineering,China(No.KL21-05)the Marine Equipment and Technology Institute,Jiangsu University of Science and Technology,China(No.XTCX202404)。
文摘This study focused on improving the cathode performance of Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.15)O_(3-δ)(BSCN)-based perovskite materials through molybdenum(Mo)doping.Pure BSCN and Mo-modified-BSCN—Ea_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.1)Mo_(0.05)O_(3-δ)(B S CNM_(0.05)),Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.05)Mo_(0.1)O_(3-δ)(BSCNM_(0.1)),and Ba_(0.6)Sr_(0.4)Co_(0.85)Mo_(0.15)O_(3-δ)(BSCM)—with Mo doping contents of 5mol%,10mol%,and15mol%,respectively,were successfully prepared using the sol-gel method.The effects of Mo doping on the crystal structure,conductivity,thermal expansion coefficient,oxygen reduction reaction(ORR)activity,and electrochemical performance were systematically evaluated using X-ray diffraction analysis,thermally induced characterization,electrochemical impedance spectroscopy,and single-cell performance tests.The results revealed that Mo doping could improve the conductivity of the materials,suppress their thermal expansion effects,and significantly improve the electrochemical performance.Surface chemical state analysis using X-ray photoelectron spectroscopy revealed that 5mol%Mo doping could facilitate a high adsorbed oxygen concentration leading to enhanced ORR activity in the materials.Density functional theory calculations confirmed that Mo doping promoted the ORR activity in the materials.At an operating temperature of 600℃,the BSCNM_(0.05)cathode material exhibited significantly enhanced electrochemical impedance characteristics,with a reduced area specific resistance of 0.048Ω·cm~2,which was lower than that of the undoped BSCN matrix material by 32.39%.At the same operating temperature,an anode-supported single cell using a BSCNM_(0.05)cathode achieved a peak power density of 1477 mW·cm^(-2),which was 30.71%,56.30%,and 171.50%higher than those of BSCN,BSCNM_(0.1),and B SCM,respectively.The improved ORR activity and electrochemical performance of BSCNM_(0.05)indicate that it can be used as a cathode material in low-temperature solid oxide fuel cells.
基金supported by the National Natural Science Foundations of China (Grant Nos.12235007,12001424,12271324,and 12501333)the Natural Science Basic research program of Shaanxi Province (Grant Nos.2021JZ-21 and 2024JC-YBQN-0069)+3 种基金the China Postdoctoral Science Foundation (Grant Nos.2020M673332 and 2024M751921)the Fundamental Research Funds for the Central Universities (Grant No.GK202304028)the 2023 Shaanxi Province Postdoctoral Research Project (Grant No.2023BSHEDZZ186)Xi’an University,Xi’an Science and Technology Plan Wutongshu Technology Transfer Action Innovation Team(Grant No.25WTZD07)。
文摘This letter introduces the novel concept of Painlevé solitons—waves arising from the interaction between Painlevé waves and solitons in integrable systems.Painlevé solitons can also be viewed as solitons propagating against a Painlevé wave background,in analogy to the established notion of elliptic solitons,which refers to solitons on an elliptic wave background.By employing a novel symmetry decomposition method aided by nonlocal residual symmetries,we explicitly construct (extended) Painlevé Ⅱ solitons for the Korteweg-de Vries equation and (extended) Painlevé Ⅳ solitons for the Boussinesq equation.
文摘Nerve trauma commonly results in chronic neuropathic pain. This is by triggering the release of proinflammatory mediators from local and invading cells that induce inflammation and nociceptive neuron hyperexcitability. Even without apparent inflammation, injury sites are associated with increased inflammatory markers. This review focuses on how it might be possible to reduce neuropathic pain by reducing inflammation. Physiologically, pain is resolved by a combination of the out-migration of pro-inflammatory cells from the injury site, the down-regulation of the genes underlying the inflammation, up-regulating genes for anti-inflammatory mediators, and reducing nociceptive neuron hyperexcitability. While various techniques reduce chronic neuropathic pain, the best are effective on < 50% of patients, no technique reliably or permanently eliminates neuropathic pain. This is because most techniques are predominantly aimed at reducing pain, not inflammation. In addition, while single factors reduce pain, increasing evidence indicates significant and longer-lasting pain relief requires multiple factors acting simultaneously. Therefore, it is not surprising that extensive data indicate that the application of platelet-rich plasma provides more significant and longer-lasting pain suppression than other techniques, although its analgesia is neither complete nor permanent. However, several case reports indicate that platelet-rich plasma can induce permanent neuropathic pain elimination when the platelet concentration is significantly increased and is applied to longer nerve lengths. This review examines the primary triggers of the development and maintenance of neuropathic pain and techniques that reduce chronic neuropathic pain. The application of plateletrich plasma holds great promise for providing complete and permanent chronic neuropathic pain elimination.
基金funding support from General Research Fund[Project No.14300525]from the Research Grants Council(RGC)of Hong Kong SAR,Chinafunding support from Natural Science Foundation of China(NSFC)Young Scientists Fund(Project No.22305203)+2 种基金NSFC Projects Nos.22309123,22422303,22303011,22033002,92261112 and U21A20328support from the Hong Kong Branch of National Precious Metals Material Engineering Research Center(NPMM)at City University of Hong Kongsupport from Young Collaborative Research Grant[Project No.C1003-23Y]support from RGC of Hong Kong SAR,China.
文摘Electrocatalytic nitric oxide(NO)reduction reaction(NORR)is a promising and sustainable process that can simultaneously realize green ammonia(NH3)synthesis and hazardous NO removal.However,current NORR performances are far from practical needs due to the lack of efficient electrocatalysts.Engineering the lattice of metal-based nanomaterials via phase control has emerged as an effective strategy to modulate their intrinsic electrocatalytic properties.Herein,we realize boron(B)-insertion-induced phase regulation of rhodium(Rh)nanocrystals to obtain amorphous Rh_(4)B nanoparticles(NPs)and hexagonal close-packed(hcp)RhB NPs through a facile wet-chemical method.A high Faradaic efficiency(92.1±1.2%)and NH_(3) yield rate(629.5±11.0μmol h^(−1) cm^(−2))are achieved over hcp RhB NPs,far superior to those of most reported NORR nanocatalysts.In situ spectro-electrochemical analysis and density functional theory simulations reveal that the excellent electrocatalytic performances of hcp RhB NPs are attributed to the upshift of d-band center,enhanced NO adsorption/activation profile,and greatly reduced energy barrier of the rate-determining step.A demonstrative Zn-NO battery is assembled using hcp RhB NPs as the cathode and delivers a peak power density of 4.33 mW cm−2,realizing simultaneous NO removal,NH3 synthesis,and electricity output.
基金supported by the National Key Research and Development Project(No.2020YFA0907500)the National Natural Science Foundation of China(No.22476206)+1 种基金the supports from the National Young Top-Notch Talents(No.W03070030)Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.Y202011).
文摘Fe reducing bacteria(FRB),through extracellular electron transfer(EET)pathway,can reduce Fe(III)nanoparticles,thereby affecting the migration,transformation,and degradation of pollutants.However,the interaction of Fe(III)nanoparticles with the most commonly identified FRB,Geobacter sulfurreducens PCA,remains poorly understood.Herein,we demonstrated that the synergistic role of outer membrane proteins and periplasmic proteins in the EET process for-Fe_(2)O_(3),Fe3O4,and𝛽α-FeOOH nanoparticles by construction of multiple gene knockout strain.oxpG(involved in the type II secretion system)and omcST(outer membrane c-type cytochrome)medi-ated pathways accounted for approximately 67%of the total reduction of𝛼α-Fe_(2)O_(3) nanoparticles.The residual reduction of𝛼α-Fe_(2)O_(3) nanoparticles in∆oxpG-omcST strain was likely caused by redox-active substances in cell supernatant.Conversely,the reduction of dissolved Fe(III)was almost unaffected in∆oxpG-omcST strain at the same concentration.However,at high dissolved Fe(III)concentration,the reduction significantly decreased due to the formation of Fe(III)nanoparticles,suggesting that this EET process is specific to Fe(III)nanoparticles.Overall,our study provided a more comprehensive understanding for the EET pathways between G.sulfurreducens PCA and different Fe(III)species,enriching our knowledge on the role of microorganisms in iron biogeochemical cycles and remediation strategies of pollutants.
基金supported by the Fundamental Research Funds for the Central Universities(QNTD202302)National Natural Science Foundation of China(22378024)the Foreign expert program(G2022109001L).
文摘Developing a cost-effective and environmentally friendly process for the production of valuable chemicals from abundant herbal biomass receives great attentions in recent years.Herein,taking advantage of the“lignin first”strategy,corn straw is converted to valuable chemicals including lignin monomers,furfural and 5-methoxymethylfurfural via a two steps process.The key of this research lies in the development of a green and low-cost catalytic process utilizing magnetic Raney Ni catalyst and high boiling point ethylene glycol.The utilization of neat ethylene glycol as the sole slovent under atmospheric conditions obviates the need for additional additives,thereby facilitating the entire process to be conducted in glass flasks and rendering it highly convenient for scaling up.In the initial step,depolymerization of corn straw lignin resulted in a monomer yield of 18.1 wt%.Subsequently,in a dimethyl carbonate system,the carbohydrate component underwent complete conversion in a one-pot process,yielding furfural and 5-methoxymethylfurfural as the primary products with an impressive yield of 47.7%.