In this paper a recursive state-space model identification method is proposed for non-uniformly sampled systems in industrial applications. Two cases for measuring all states and only output(s) of such a system are co...In this paper a recursive state-space model identification method is proposed for non-uniformly sampled systems in industrial applications. Two cases for measuring all states and only output(s) of such a system are considered for identification. In the case of state measurement, an identification algorithm based on the singular value decomposition(SVD) is developed to estimate the model parameter matrices by using the least-squares fitting. In the case of output measurement only, another identification algorithm is given by combining the SVD approach with a hierarchical identification strategy. An example is used to demonstrate the effectiveness of the proposed identification method.展开更多
Based on Recursive Radial Basis Function(RRBF)neural network,the Reduced Order Model(ROM)of compressor cascade was established to meet the urgent demand of highly efficient prediction of unsteady aerodynamics performa...Based on Recursive Radial Basis Function(RRBF)neural network,the Reduced Order Model(ROM)of compressor cascade was established to meet the urgent demand of highly efficient prediction of unsteady aerodynamics performance of turbomachinery.One novel ROM called ASA-RRBF model based on Adaptive Simulated Annealing(ASA)algorithm was developed to enhance the generalization ability of the unsteady ROM.The ROM was verified by predicting the unsteady aerodynamics performance of a highly-loaded compressor cascade.The results show that the RRBF model has higher accuracy in identification of the dimensionless total pressure and dimensionless static pressure of compressor cascade under nonlinear and unsteady conditions,and the model behaves higher stability and computational efficiency.However,for the strong nonlinear characteristics of aerodynamic parameters,the RRBF model presents lower accuracy.Additionally,the RRBF model predicts with a large error in the identification of aerodynamic parameters under linear and unsteady conditions.For ASA-RRBF,by introducing a small-amplitude and highfrequency sinusoidal signal as validation sample,the width of the basis function of the RRBF model is optimized to improve the generalization ability of the ROM under linear unsteady conditions.Besides,this model improves the predicting accuracy of dimensionless static pressure which has strong nonlinear characteristics.The ASA-RRBF model has higher prediction accuracy than RRBF model without significantly increasing the total time consumption.This novel model can predict the linear hysteresis of dimensionless static pressure happened in the harmonic condition,but it cannot accurately predict the beat frequency of dimensionless total pressure.展开更多
The strap-down inertial navigation system (SINS) error of ballistic missile is generated by the mutual influence of gyroscope and accelerometer, and the recursive model is completely different from that of gimbaled IN...The strap-down inertial navigation system (SINS) error of ballistic missile is generated by the mutual influence of gyroscope and accelerometer, and the recursive model is completely different from that of gimbaled INS. In the paper, a discrete error recursive model was obtained by studying the applied SINS error model of ballistic missile, and the discrete Kalman filtering simulation based on the model was carried out. The simulated results show that the model can depict the SINS error exactly and provide the advantages for research on integrated guidance and improved hit accuracy.展开更多
Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matri...Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matrix and filter parameters are difficult to be determined,which may result in filtering divergence.As to the problem that the accuracy of state estimation for nonlinear ballistic model strongly depends on its mathematical model,we improve the weighted least squares method(WLSM)with minimum model error principle.Invariant embedding method is adopted to solve the cost function including the model error.With the knowledge of measurement data and measurement error covariance matrix,we use gradient descent algorithm to determine the weighting matrix of model error.The uncertainty and linearization error of model are recursively estimated by the proposed method,thus achieving an online filtering estimation of the observations.Simulation results indicate that the proposed recursive estimation algorithm is insensitive to initial conditions and of good robustness.展开更多
A new recursive algorithm of multi variable time varying AR model is proposed. By changing the form of AR model, the parameter estimation can be regarded as state estimation of state equations. Then the Kalman filte...A new recursive algorithm of multi variable time varying AR model is proposed. By changing the form of AR model, the parameter estimation can be regarded as state estimation of state equations. Then the Kalman filter is used to estimate the variation of展开更多
In this article, the problem on the estimation of the convolution model parameters is considered. The recursive algorithm for estimating model parameters is introduced from the orthogonal procedure of the data, the co...In this article, the problem on the estimation of the convolution model parameters is considered. The recursive algorithm for estimating model parameters is introduced from the orthogonal procedure of the data, the convergence of this algorithm is theoretically discussed, and a sufficient condition for the convergence criterion of the orthogonal procedure is given. According to this condition, the recursive algorithm is convergent to model wavelet A- = (1, α1,..., αq).展开更多
Theoretical results related to properties of a regularized recursive algorithm for estimation of a high dimensional vector of parameters are presented and proved. The recursive character of the procedure is proposed t...Theoretical results related to properties of a regularized recursive algorithm for estimation of a high dimensional vector of parameters are presented and proved. The recursive character of the procedure is proposed to overcome the difficulties with high dimension of the observation vector in computation of a statistical regularized estimator. As to deal with high dimension of the vector of unknown parameters, the regularization is introduced by specifying a priori non-negative covariance structure for the vector of estimated parameters. Numerical example with Monte-Carlo simulation for a low-dimensional system as well as the state/parameter estimation in a very high dimensional oceanic model is presented to demonstrate the efficiency of the proposed approach.展开更多
The present work is much motivated by finding an explicit way in the construction of the Jack symmetric function,which is the spectrum generating function for the Calogero-Sutherland (CS) model.To accomplish this work...The present work is much motivated by finding an explicit way in the construction of the Jack symmetric function,which is the spectrum generating function for the Calogero-Sutherland (CS) model.To accomplish this work,the hidden Virasoro structure in the CS model is much explored.In particular,we found that the Virasoro singular vectors form a skew hierarchy in the CS model.Literally,skew is analogous to coset,but here specifically refer to the operation on the Young tableaux.In fact,based on the construction of the Virasoro singular vectors,this hierarchical structure can be used to give a complete construction of the CS states,i.e.the Jack symmetric functions,recursively.The construction is given both in operator formalism as well as in integral representation.This new integral representation for the Jack symmetric functions may shed some insights on the spectrum constructions for the other integrable systems.展开更多
Recursive formulations have significantly helped in achieving real-time computations and model-based control laws. The recursive dynamics simulator (ReDySim) is a MATLAB-based recur- sive solver for dynamic analysis...Recursive formulations have significantly helped in achieving real-time computations and model-based control laws. The recursive dynamics simulator (ReDySim) is a MATLAB-based recur- sive solver for dynamic analysis of multibody systems. ReDySim delves upon the decoupled natural orthogonal complement approach originally developed for serial-chain manipulators. In comparison to the commercially available software, dynamic analyses in ReDySim can be performed without creating solid model. The input parameters are specified in MATLAB environment. ReDySim has capability to incorporate any control algorithm with utmost ease. In this work, the capabilities of ReDySim for solving open-loop and closed-loop systems are shown by examples of robotic gripper, KUKA KR5 industrial manipulator and four-bar mechanism. ReDySim can be downloaded for free from http://www.redysim.co.nr and can be used almost instantly.展开更多
This paper presents a novel observer model that integrates quantum mechanics, relativity, idealism, and the simulation hypothesis to explain the quantum nature of the universe. The model posits a central server transm...This paper presents a novel observer model that integrates quantum mechanics, relativity, idealism, and the simulation hypothesis to explain the quantum nature of the universe. The model posits a central server transmitting multi-media frames to create observer-dependent realities. Key aspects include deriving frame rates, defining quantum reality, and establishing hierarchical observer structures. The model’s impact on quantum information theory and philosophical interpretations of reality are examined, with detailed discussions on information loss and recursive frame transmission in the appendices.展开更多
为进一步提高温度业务预报水平,本文采用美国国家环境预报中心环境模式中心(National Centers for Environmental Prediction-Environmental Modeling Center,NCEP-EMC)研发的基于递归贝叶斯模型过程(recursive Bayesian model process,...为进一步提高温度业务预报水平,本文采用美国国家环境预报中心环境模式中心(National Centers for Environmental Prediction-Environmental Modeling Center,NCEP-EMC)研发的基于递归贝叶斯模型过程(recursive Bayesian model process,RBMP)的多模式集合技术,开展了华东2 m温度预报试验。利用2016—2017年欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts,ECMWF)、NCEP和加拿大气象中心(Canadian Meteorological Centre,CMC)3个具有代表性的全球集合预报系统产品,在对各模式进行偏差订正的基础上,开展了RBMP算法应用试验和评估,建立了华东地区应用方案,再利用2019年9月—2020年5月ECMWF、NCEP集合预报资料开展试运行,初步讨论了RBMP方法在冬春季节预报失败案例中的适用性。结果表明:RBMP方法能够提供更加可靠的概率预报分布并有效提高短期时效的预报技巧。其中,冬季改进最明显,集合平均的均方根误差比ECMWF订正预报和等权重多模式集合分别降低3.0%~10.5%和2.0%~5.0%,且对高温和低温事件均具有更优的分辨能力。此外,RBMP方法还能够提高大部分预报失败案例的预报准确率,为难报案例提供了有价值的不确定信息。总体而言,RBMP技术不仅保留了BMA(Bayesian model averaging)方法的优势,且能满足业务应用对资料存储和计算效率的需求,通过二阶矩调整可以有效校正集合离散度,为进一步提高短期温度预报技巧提供了一种思路。展开更多
基金Supported in part by the National Thousand Talents Program of Chinathe National Natural Science Foundation of China(61473054)the Fundamental Research Funds for the Central Universities of China
文摘In this paper a recursive state-space model identification method is proposed for non-uniformly sampled systems in industrial applications. Two cases for measuring all states and only output(s) of such a system are considered for identification. In the case of state measurement, an identification algorithm based on the singular value decomposition(SVD) is developed to estimate the model parameter matrices by using the least-squares fitting. In the case of output measurement only, another identification algorithm is given by combining the SVD approach with a hierarchical identification strategy. An example is used to demonstrate the effectiveness of the proposed identification method.
基金co-National Science and Technology Major Project(No.2017-II-0009-0023)Innovation Guidance Support Project for Taicang Top Research Institutes(No.TC2019DYDS09)。
文摘Based on Recursive Radial Basis Function(RRBF)neural network,the Reduced Order Model(ROM)of compressor cascade was established to meet the urgent demand of highly efficient prediction of unsteady aerodynamics performance of turbomachinery.One novel ROM called ASA-RRBF model based on Adaptive Simulated Annealing(ASA)algorithm was developed to enhance the generalization ability of the unsteady ROM.The ROM was verified by predicting the unsteady aerodynamics performance of a highly-loaded compressor cascade.The results show that the RRBF model has higher accuracy in identification of the dimensionless total pressure and dimensionless static pressure of compressor cascade under nonlinear and unsteady conditions,and the model behaves higher stability and computational efficiency.However,for the strong nonlinear characteristics of aerodynamic parameters,the RRBF model presents lower accuracy.Additionally,the RRBF model predicts with a large error in the identification of aerodynamic parameters under linear and unsteady conditions.For ASA-RRBF,by introducing a small-amplitude and highfrequency sinusoidal signal as validation sample,the width of the basis function of the RRBF model is optimized to improve the generalization ability of the ROM under linear unsteady conditions.Besides,this model improves the predicting accuracy of dimensionless static pressure which has strong nonlinear characteristics.The ASA-RRBF model has higher prediction accuracy than RRBF model without significantly increasing the total time consumption.This novel model can predict the linear hysteresis of dimensionless static pressure happened in the harmonic condition,but it cannot accurately predict the beat frequency of dimensionless total pressure.
文摘The strap-down inertial navigation system (SINS) error of ballistic missile is generated by the mutual influence of gyroscope and accelerometer, and the recursive model is completely different from that of gimbaled INS. In the paper, a discrete error recursive model was obtained by studying the applied SINS error model of ballistic missile, and the discrete Kalman filtering simulation based on the model was carried out. The simulated results show that the model can depict the SINS error exactly and provide the advantages for research on integrated guidance and improved hit accuracy.
基金This work is supported by Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX18_0467)Jiangsu Province,China.During the revision of this paper,the author is supported by China Scholarship Council(No.201906840021)China to continue some research related to data processing.
文摘Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matrix and filter parameters are difficult to be determined,which may result in filtering divergence.As to the problem that the accuracy of state estimation for nonlinear ballistic model strongly depends on its mathematical model,we improve the weighted least squares method(WLSM)with minimum model error principle.Invariant embedding method is adopted to solve the cost function including the model error.With the knowledge of measurement data and measurement error covariance matrix,we use gradient descent algorithm to determine the weighting matrix of model error.The uncertainty and linearization error of model are recursively estimated by the proposed method,thus achieving an online filtering estimation of the observations.Simulation results indicate that the proposed recursive estimation algorithm is insensitive to initial conditions and of good robustness.
文摘A new recursive algorithm of multi variable time varying AR model is proposed. By changing the form of AR model, the parameter estimation can be regarded as state estimation of state equations. Then the Kalman filter is used to estimate the variation of
基金Project supported by Scientific Research Fund of Chongqing Municipal Education Commission (kj0604-16)
文摘In this article, the problem on the estimation of the convolution model parameters is considered. The recursive algorithm for estimating model parameters is introduced from the orthogonal procedure of the data, the convergence of this algorithm is theoretically discussed, and a sufficient condition for the convergence criterion of the orthogonal procedure is given. According to this condition, the recursive algorithm is convergent to model wavelet A- = (1, α1,..., αq).
文摘Theoretical results related to properties of a regularized recursive algorithm for estimation of a high dimensional vector of parameters are presented and proved. The recursive character of the procedure is proposed to overcome the difficulties with high dimension of the observation vector in computation of a statistical regularized estimator. As to deal with high dimension of the vector of unknown parameters, the regularization is introduced by specifying a priori non-negative covariance structure for the vector of estimated parameters. Numerical example with Monte-Carlo simulation for a low-dimensional system as well as the state/parameter estimation in a very high dimensional oceanic model is presented to demonstrate the efficiency of the proposed approach.
基金Supported by the Chinese Academy of Sciences Program "Frontier Topics in Mathematical Physics" (KJCX3-SYW-S03)Supported Partially by the National Natural Science Foundation of China under Grant No.11035008
文摘The present work is much motivated by finding an explicit way in the construction of the Jack symmetric function,which is the spectrum generating function for the Calogero-Sutherland (CS) model.To accomplish this work,the hidden Virasoro structure in the CS model is much explored.In particular,we found that the Virasoro singular vectors form a skew hierarchy in the CS model.Literally,skew is analogous to coset,but here specifically refer to the operation on the Young tableaux.In fact,based on the construction of the Virasoro singular vectors,this hierarchical structure can be used to give a complete construction of the CS states,i.e.the Jack symmetric functions,recursively.The construction is given both in operator formalism as well as in integral representation.This new integral representation for the Jack symmetric functions may shed some insights on the spectrum constructions for the other integrable systems.
文摘Recursive formulations have significantly helped in achieving real-time computations and model-based control laws. The recursive dynamics simulator (ReDySim) is a MATLAB-based recur- sive solver for dynamic analysis of multibody systems. ReDySim delves upon the decoupled natural orthogonal complement approach originally developed for serial-chain manipulators. In comparison to the commercially available software, dynamic analyses in ReDySim can be performed without creating solid model. The input parameters are specified in MATLAB environment. ReDySim has capability to incorporate any control algorithm with utmost ease. In this work, the capabilities of ReDySim for solving open-loop and closed-loop systems are shown by examples of robotic gripper, KUKA KR5 industrial manipulator and four-bar mechanism. ReDySim can be downloaded for free from http://www.redysim.co.nr and can be used almost instantly.
文摘This paper presents a novel observer model that integrates quantum mechanics, relativity, idealism, and the simulation hypothesis to explain the quantum nature of the universe. The model posits a central server transmitting multi-media frames to create observer-dependent realities. Key aspects include deriving frame rates, defining quantum reality, and establishing hierarchical observer structures. The model’s impact on quantum information theory and philosophical interpretations of reality are examined, with detailed discussions on information loss and recursive frame transmission in the appendices.
文摘为进一步提高温度业务预报水平,本文采用美国国家环境预报中心环境模式中心(National Centers for Environmental Prediction-Environmental Modeling Center,NCEP-EMC)研发的基于递归贝叶斯模型过程(recursive Bayesian model process,RBMP)的多模式集合技术,开展了华东2 m温度预报试验。利用2016—2017年欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts,ECMWF)、NCEP和加拿大气象中心(Canadian Meteorological Centre,CMC)3个具有代表性的全球集合预报系统产品,在对各模式进行偏差订正的基础上,开展了RBMP算法应用试验和评估,建立了华东地区应用方案,再利用2019年9月—2020年5月ECMWF、NCEP集合预报资料开展试运行,初步讨论了RBMP方法在冬春季节预报失败案例中的适用性。结果表明:RBMP方法能够提供更加可靠的概率预报分布并有效提高短期时效的预报技巧。其中,冬季改进最明显,集合平均的均方根误差比ECMWF订正预报和等权重多模式集合分别降低3.0%~10.5%和2.0%~5.0%,且对高温和低温事件均具有更优的分辨能力。此外,RBMP方法还能够提高大部分预报失败案例的预报准确率,为难报案例提供了有价值的不确定信息。总体而言,RBMP技术不仅保留了BMA(Bayesian model averaging)方法的优势,且能满足业务应用对资料存储和计算效率的需求,通过二阶矩调整可以有效校正集合离散度,为进一步提高短期温度预报技巧提供了一种思路。