In order to obtain accurate prediction model and compensate for the influence of model mismatch on the control performance of the system and avoid solving nonlinear programming problem,an adaptive fuzzy predictive fun...In order to obtain accurate prediction model and compensate for the influence of model mismatch on the control performance of the system and avoid solving nonlinear programming problem,an adaptive fuzzy predictive functional control(AFPFC) scheme for multivariable nonlinear systems was proposed.Firstly,multivariable nonlinear systems were described based on Takagi-Sugeno(T-S) fuzzy models;assuming that the antecedent parameters of T-S models were kept,the consequent parameters were identified on-line by using the weighted recursive least square(WRLS) method.Secondly,the identified T-S models were linearized to be time-varying state space model at each sampling instant.Finally,by using linear predictive control technique the analysis solution of the optimal control law of AFPFC was established.The application results for pH neutralization process show that the absolute error between the identified T-S model output and the process output is smaller than 0.015;the tracking ability of the proposed AFPFC is superior to that of non-AFPFC(NAFPFC) for pH process without disturbances,the overshoot of the effluent pH value of AFPFC with disturbances is decreased by 50% compared with that of NAFPFC;when the process parameters of AFPFC vary with time the integrated absolute error(IAE) performance index still retains to be less than 200 compared with that of NAFPFC.展开更多
This paper addresses the state estimation problem for linear systems with additive uncertainties in both the state and output equations using a moving horizon approach. Based on the full information estimation setting...This paper addresses the state estimation problem for linear systems with additive uncertainties in both the state and output equations using a moving horizon approach. Based on the full information estimation setting and the game-theoretic approach to the H∞filtering, a new optimization-based estimation scheme for uncertain linear systems is proposed, namely the H∞-full information estimator, H∞-FIE in short. In this formulation, the set of processed data grows with time as more measurements are received preventing recursive formulations as in Kalman filtering. To overcome the latter problem, a moving horizon approximation to the H∞-FIE is also presented, the H∞-MHE in short. This moving horizon approximation is achieved since the arrival cost is suitably defined for the proposed scheme. Sufficient conditions for the stability of the H∞-MHE are derived. Simulation results show the benefits of the proposed scheme when compared with two H∞filters and the well-known Kalman filter.展开更多
The performance of a strapdown inertial navigation system(SINS)largely depends on the accuracy and rapidness of the initial alignment.A novel anti-interference self-alignment algorithm by attitude optimization estimat...The performance of a strapdown inertial navigation system(SINS)largely depends on the accuracy and rapidness of the initial alignment.A novel anti-interference self-alignment algorithm by attitude optimization estimation for SINS on a rocking base is presented in this paper.The algorithm transforms the initial alignment into the initial attitude determination problem by using infinite vector observations to remove the angular motions,the SINS alignment is heuristically established as an optimiza-tion problem of finding the minimum eigenvector.In order to further improve the alignment precision,an adaptive recursive weighted least squares(ARWLS)curve fitting algorithm is used to fit the translational motion interference-contaminated reference vectors according to their time domain characteristics.Simulation studies and experimental results favorably demonstrate its rapidness,accuracy and robustness.展开更多
基金Project(2007AA04Z162) supported by the National High-Tech Research and Development Program of ChinaProjects(2006T089, 2009T062) supported by the University Innovation Team in the Educational Department of Liaoning Province, China
文摘In order to obtain accurate prediction model and compensate for the influence of model mismatch on the control performance of the system and avoid solving nonlinear programming problem,an adaptive fuzzy predictive functional control(AFPFC) scheme for multivariable nonlinear systems was proposed.Firstly,multivariable nonlinear systems were described based on Takagi-Sugeno(T-S) fuzzy models;assuming that the antecedent parameters of T-S models were kept,the consequent parameters were identified on-line by using the weighted recursive least square(WRLS) method.Secondly,the identified T-S models were linearized to be time-varying state space model at each sampling instant.Finally,by using linear predictive control technique the analysis solution of the optimal control law of AFPFC was established.The application results for pH neutralization process show that the absolute error between the identified T-S model output and the process output is smaller than 0.015;the tracking ability of the proposed AFPFC is superior to that of non-AFPFC(NAFPFC) for pH process without disturbances,the overshoot of the effluent pH value of AFPFC with disturbances is decreased by 50% compared with that of NAFPFC;when the process parameters of AFPFC vary with time the integrated absolute error(IAE) performance index still retains to be less than 200 compared with that of NAFPFC.
基金supported by the European Community s Seventh Framework Programme FP7/2007-2013(No.223854)COLCIENCIAS-Departamento Administrativo de Ciencia,Tecnologíae Innovacin de Colombia
文摘This paper addresses the state estimation problem for linear systems with additive uncertainties in both the state and output equations using a moving horizon approach. Based on the full information estimation setting and the game-theoretic approach to the H∞filtering, a new optimization-based estimation scheme for uncertain linear systems is proposed, namely the H∞-full information estimator, H∞-FIE in short. In this formulation, the set of processed data grows with time as more measurements are received preventing recursive formulations as in Kalman filtering. To overcome the latter problem, a moving horizon approximation to the H∞-FIE is also presented, the H∞-MHE in short. This moving horizon approximation is achieved since the arrival cost is suitably defined for the proposed scheme. Sufficient conditions for the stability of the H∞-MHE are derived. Simulation results show the benefits of the proposed scheme when compared with two H∞filters and the well-known Kalman filter.
基金supported by the National Natural Science Foundation of China(41174162).
文摘The performance of a strapdown inertial navigation system(SINS)largely depends on the accuracy and rapidness of the initial alignment.A novel anti-interference self-alignment algorithm by attitude optimization estimation for SINS on a rocking base is presented in this paper.The algorithm transforms the initial alignment into the initial attitude determination problem by using infinite vector observations to remove the angular motions,the SINS alignment is heuristically established as an optimiza-tion problem of finding the minimum eigenvector.In order to further improve the alignment precision,an adaptive recursive weighted least squares(ARWLS)curve fitting algorithm is used to fit the translational motion interference-contaminated reference vectors according to their time domain characteristics.Simulation studies and experimental results favorably demonstrate its rapidness,accuracy and robustness.