Wurtzite aluminum nitride(AlN) films were deposited on Si(100) wafers under various sputtering pressures by radio-frequency(RF) reactive magnetron sputtering. The film properties were investigated by XRD, SEM, A...Wurtzite aluminum nitride(AlN) films were deposited on Si(100) wafers under various sputtering pressures by radio-frequency(RF) reactive magnetron sputtering. The film properties were investigated by XRD, SEM, AFM, XPS and nanoindenter techniques. It is suggested from the XRD patterns that highly c-axis oriented films grow preferentially at low pressures and the growth of(100) planes are preferred at higher pressures. The SEM and AFM images both reveal that the deposition rate and the surface roughness decrease while the average grain size increases with increasing the sputtering pressure. XPS results show that lowering the sputtering pressure is a useful way to minimize the incorporation of oxygen atoms into the AlN films and hence a film with closer stoichiometric composition is obtained. From the measurement of nanomechanical properties of AlN thin films, the largest hardness and elastic modulus are obtained at 0.30 Pa.展开更多
Memristive crossbar arrays(MCAs)offer parallel data storage and processing for energy-efficient neuromorphic computing.However,most wafer-scale MCAs that are compatible with complementary metal-oxide-semiconductor(CMO...Memristive crossbar arrays(MCAs)offer parallel data storage and processing for energy-efficient neuromorphic computing.However,most wafer-scale MCAs that are compatible with complementary metal-oxide-semiconductor(CMOS)technology still suffer from substantially larger energy consumption than biological synapses,due to the slow kinetics of forming conductive paths inside the memristive units.Here we report wafer-scale Ag_(2)S-based MCAs realized using CMOS-compatible processes at temperatures below 160℃.Ag_(2)S electrolytes supply highly mobile Ag+ions,and provide the Ag/Ag_(2)S interface with low silver nucleation barrier to form silver filaments at low energy costs.By further enhancing Ag+migration in Ag_(2)S electrolytes via microstructure modulation,the integrated memristors exhibit a record low threshold of approximately−0.1 V,and demonstrate ultra-low switching-energies reaching femtojoule values as observed in biological synapses.The low-temperature process also enables MCA integration on polyimide substrates for applications in flexible electronics.Moreover,the intrinsic nonidealities of the memristive units for deep learning can be compensated by employing an advanced training algorithm.An impressive accuracy of 92.6%in image recognition simulations is demonstrated with the MCAs after the compensation.The demonstrated MCAs provide a promising device option for neuromorphic computing with ultra-high energy-efficiency.展开更多
Reactive sputtered boron-doped zinc oxide(BZO) film was deposited from argon,hydrogen and boron gas mixture.The reactive sputtering technique provides us the flexibility of changing the boron concentration in the prod...Reactive sputtered boron-doped zinc oxide(BZO) film was deposited from argon,hydrogen and boron gas mixture.The reactive sputtering technique provides us the flexibility of changing the boron concentration in the produced films by using the same intrinsic zinc oxide target.Textured surface was obtained in the as-deposited films.The surface morphology and the opto-electronic properties of the films can be controlled by simply varying the gas concentration ratio.By varying the gas concentration ratio,the best obtained resistivity ~6.51×10^-4Ω-cm,mobility ~19.05 cm^2 V^-1 s^-1 and sheet resistance ~7.23Ω/□ were obtained.At lower wavelength of light,the response of the deposited films improves with the increase of boron in the gas mixture and the overall transmission in the wavelength region 350-1100 nm of all the films are>85 %.We also fabricated amorphous silicon(a-Si) thin film solar cell on the best obtained BZO layers.The overall efficiency of the a-Si solar cell is 8.14 %,found on optimized BZO layer.展开更多
In the present study,WB 2(N) films are fabricated on silicon and YG8 substrates at different N 2 pressures by reactive magnetron sputtering.The influence of N 2 partial pressure(P (N2)) on the film microstructur...In the present study,WB 2(N) films are fabricated on silicon and YG8 substrates at different N 2 pressures by reactive magnetron sputtering.The influence of N 2 partial pressure(P (N2)) on the film microstructure and characteristics is studied systematically,including the chemical composition,crystalline structure,residual stress,surface roughness as well as the surface and the cross-section morphology.Meanwhile,nano-indentation and ball-on-disk tribometer are performed to analyze the mechanical and tribological properties of the films.The results show that the addition of nitrogen apparently leads to the change of the structure from(1 0 1) to(0 0 1) orientation then to the amorphous structure with the formation of BN phase.And the addition of nitrogen can greatly refine the grain size and microstructure of the films.Furthermore,the residual stress of the film is also found to change from tensile to compressive stress as a function of P (N2),and the compressive stress increases with P (N2),The WB 2(N) films with small nitrogen content,which are deposited at P (N2) of 0.004 and 0.006 Pa,exhibit better mechanical,tribological and corrosion properties than those of other films.Further increase of nitrogen content accelerates the formation of BN phase and fast decreases the film hardness.In addition,the large N 2 partial pressure gives rise to the target poisoning accompanied by the increase of the target voltage and the decrease of the deposition rate.展开更多
TiO2 thin film has attracted considerable attention in recent years, due to its different refractive index and transparency with amorphous and different crysta ls in the visible and near-infrared wavelength region, hi...TiO2 thin film has attracted considerable attention in recent years, due to its different refractive index and transparency with amorphous and different crysta ls in the visible and near-infrared wavelength region, high dielectric constant, wide band gap, high wear resistance and stability, etc, for which make it being used in many fields. This paper aims to investigate the optical characterizatio n of thin film TiO2 on silicon wafer. The TiO2 thin films were prepared by DC re active magnetron sputtering process from Ti target. The reflectivity of the film s was measured by UV-3101PC, and the index of refraction (n) and extinction coef ficient (k) were measured by n & k Analyzer 1200.展开更多
Single(200)-oriented TiN thin films were deposited on quartz substrate by direct current(DC) magnetron reactive sputtering process at a wide range of substrate temperature from 200 to 600 ℃.The effects of sputtering ...Single(200)-oriented TiN thin films were deposited on quartz substrate by direct current(DC) magnetron reactive sputtering process at a wide range of substrate temperature from 200 to 600 ℃.The effects of sputtering pressure and substrate temperature on the crystalline nature,morphology,electrical and optical properties of the deposited thin films were analyzed by X-ray diffraction(XRD),atomic force microscopy(AFM),four-point resistivity test system and ultraviolet visible near-infrared(UV-Vis-NIR) spectroscopy,respectively.The results show that single(200)-oriented TiN thin films can be obtained at a wide range of substrate temperature from 200 to 600 ℃ with the grain size increasing from 35.9 to 64.5 nm.The resistivity of the product is as low as95 μΩ·cm,and the value of the optical reflectance is above68 % in the near-infrared(NIR) range of 760-1500 nm.展开更多
Quaternary Ti–B–C–N coatings with various carbon contents were deposited on high-speed steel (HSS) substrates by reactive magnetron sputtering (RMS) system. The elevated-temperature tribological behavior of Ti–B–...Quaternary Ti–B–C–N coatings with various carbon contents were deposited on high-speed steel (HSS) substrates by reactive magnetron sputtering (RMS) system. The elevated-temperature tribological behavior of Ti–B–C–N coatings was explored using pin-on-disk tribometer, scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). The present results show that the steady-state friction coefficient value and the instantaneous friction coefficient fluctuation range of Ti–B–C–N coatings decrease as carbon content increases at 100 and 300°C, while the steady-state friction coefficient value of all Ti–B–C–N coatings becomes higher than 0.4 at 500°C. As ambient temperature increases, the running-in periods of all Ti–B–C–N coatings become shorter. Wear damage to Ti–B–C–N coatings during sliding at elevated temperature is mainly caused by adhesive wear, and adhesive-wear damage to Ti–B–C–N coatings increases as ambient temperature increases; however, higher carbon content is beneficial for decreasing the adhesive-wear damage to Ti–B–C–N coatings during sliding at elevated temperature.展开更多
Cuprous oxide(Cu_2O) thin films have been deposited on glass substrate by reactive magnetron sputtering method using Cu target and argon oxygen gas atmosphere.Effect of oxygen flow rate on structural and optical prope...Cuprous oxide(Cu_2O) thin films have been deposited on glass substrate by reactive magnetron sputtering method using Cu target and argon oxygen gas atmosphere.Effect of oxygen flow rate on structural and optical properties of thin films has been discussed.The results of X-ray diffraction,ultraviolet-visible spectrophotometry and atomic force micrograph indicated that the condition window for single Cu_2O phase was about 3.8 to 4.4 cm^3/min,and the optimum oxygen flow rate was 4.2 cm^3/min.The optical band gap E_g of Cu_2O film was determined by using the data of transmittance versus wavelength,and slightly decreased from 2.46 to 2.40 eV with the increase of oxygen flow rate from 3.8 to 4.4 cm^3/min.The Cu_2O film formed at the oxygen flow rate of 4.2 cm^3/min had an optical band gap of 2.43 eV.展开更多
Using a radio-frequency reactive magnetron sputtering technique, a series of the single-phased Ag20 films are deposited in a mixture of oxygen and argon gas with a flow ratio of 2:3 by changing substrate temperature ...Using a radio-frequency reactive magnetron sputtering technique, a series of the single-phased Ag20 films are deposited in a mixture of oxygen and argon gas with a flow ratio of 2:3 by changing substrate temperature (Ts). Effects of the Ts on the microstructure and optical properties of the films are investigated by using X-ray diffractometry, scanning electron microscopy and spectrophotometry. The single-phased Ag20 films deposited at values of Ts below 200℃ are (111) preferentially oriented, which may be due to the smallest free energy of the (111) crystalline face. The film crystallization becomes poor as the value of Ts increases from 100℃ to 225℃. In particular, the Ag20 film deposited at Ts=225℃ loses the (111) preferential orientation. Correspondingly, the film surface morphology obviously evolves from a uniform and compact surface structure to a loose and gullied surface structure. With the increase of Ts value, the transmissivity and the reflectivity of the films in the transparent region are gradually reduced, while the absorptivity gradually increases, which may be attributed to an evolution of the crystalline structure and the surface morphology of the films.展开更多
Carbon nitride CN. thin films have been deposited on polycrystalline β-Si3N4 substrates by un-balanced magnetron sputtering in a nitrogen discharge. Both the film deposition rate and the nitrogen concentration decrea...Carbon nitride CN. thin films have been deposited on polycrystalline β-Si3N4 substrates by un-balanced magnetron sputtering in a nitrogen discharge. Both the film deposition rate and the nitrogen concentration decrease with substrate temperature increase in the range of 100~400℃The maximum of nitrogen content is 40 at. pct. Raman spectroscopy and atomic force mi-croscopy were used to characterize the bonding, microstructure and surface roughness of the films. Nanoindentation experiments exhibit a higher hardness of 70 GPa and an extremely elas-tic recovery of 85% at higher substrate temperature.展开更多
Half metallic polycrystalline, epitaxial Fe3O4 films and Fe3O4 -based heterostructures for spintronics were fabricated by DC reactive magnetron sputtering. Large tunneling magnetoresistance was found in the polycrysta...Half metallic polycrystalline, epitaxial Fe3O4 films and Fe3O4 -based heterostructures for spintronics were fabricated by DC reactive magnetron sputtering. Large tunneling magnetoresistance was found in the polycrystalline Fe3O4 films and attributed to the insulating grain boundaries. The pinning effect of the moments at the grain boundaries leads to a significant exchange bias. Frozen interfacial/surface moments induce weak saturation of the high-field magnetoresistance. The films show a moment rotation related butterfly-shaped magnetoresistance. It was found that in the films, natural growth defects, antiphase boundaries, and magnetocrystalline anisotropy play important roles in high-order anisotropic magnetoresistance. Spin injection from Fe3O4 films to semiconductive Si and ZnO was measured to be 45% and 28.5%, respectively. The positive magnetoresistance in the Fe3O4 -based heterostructures is considered to be caused by a shift of the Fe3O4 e g ↑ band near the interface. Enhanced magnetization was observed in Fe3O4 /BiFeO 3 heterostructures experimentally and further proved by first principle calculations. The enhanced magnetization can be explained by spin moments of the thin BiFeO 3 layer substantially reversing into a ferromagnetic arrangement under a strong coupling that is principally induced by electronic orbital reconstruction at the interface.展开更多
The buffer layer CeO2 films were grown on cube textured metallic Ni substrates by using reactive magnetrun sputtering. Ar/H2 mixed atmosphere, which effectively inhibited the formation of NiO, was used as pre-depositi...The buffer layer CeO2 films were grown on cube textured metallic Ni substrates by using reactive magnetrun sputtering. Ar/H2 mixed atmosphere, which effectively inhibited the formation of NiO, was used as pre-depositing gas before CeO2 films were grown in Ar and 02. At 700 ℃ under the total pressure of 26 Pa,the pure c-axis orientation tilm was obtained. X-ray θ-2θscan, pole figure and φ-scan were used to observe the microstructure of the buffer layer. The resuits show that CeO2 film has strong cube texture and the FWHM is 9°. In addition, the CeO2 film is dense and crack-free.展开更多
1.IntroductionOxidation resistance of superalloys re-lies on the protectiveness of oxide scalesformed on their surfaces during service.Theformation and growth of oxide scales are de-termined by an extensive range ofpa...1.IntroductionOxidation resistance of superalloys re-lies on the protectiveness of oxide scalesformed on their surfaces during service.Theformation and growth of oxide scales are de-termined by an extensive range ofparameters which cover the alloy composi-展开更多
In this article, we present a time-dependent model that enables us to describe the dynamic behavior of pulsed DC reactive sputtering and predict the film compositions of VOx prepared by this process. In this modeling,...In this article, we present a time-dependent model that enables us to describe the dynamic behavior of pulsed DC reactive sputtering and predict the film compositions of VOx prepared by this process. In this modeling, the average current J is replaced by a new parameter of Jeff. Meanwhile, the four species states of V, V2O3, VO2, and V2O5 in the vanadium oxide films are taken into consideration. Based on this work, the influences of the oxygen gas supply and the pulsed power parameters including the duty cycle and frequency on film compositions are discussed. The model suggests that the time to reach process equilibrium may vary substantially depending on these parameters. It is also indicated that the compositions of VOx films are quite sensitive to both the reactive gas supply and the duty cycle when the power supply works in pulse mode. The 'steady-state' balance values obtained by these simulations show excellent agreement with the experimental data, which indicates that the experimentally obtained dynamic behavior of the film composition can be explained by this time-dependent modeling for pulsed DC reactive sputtering process. Moreover, the computer simulation results indicate that the curves will essentially yield oscillations around the average value of the film compositions with lower pulse frequency.展开更多
The relationship of "preparation parameters-microstructures-wettability" of TiO2 films was reported. In this work, TiO2 films were deposited onto glass and silicon substrates by using mid-frequency dual magnetron sp...The relationship of "preparation parameters-microstructures-wettability" of TiO2 films was reported. In this work, TiO2 films were deposited onto glass and silicon substrates by using mid-frequency dual magnetron sputtering technique at ambient temperature with various power densities and deposition time. After deposition, the films were heat treated at different annealing temperatures. X-ray diffraction (XRD), Raman spectroscopy, and field-emission scanning electron microscopy (FE-SEM) were utilized to characterize TiO2 films. The wettability of the films was evaluated by water contact angle measurement. The phase transition temperature of TiO2 films depended on the power density. It was demonstrated that wettability was strongly structure dependent and the film with the thickness of 610 nm (the power density was 2.22 W/cm^2) showed the lowest contact angle (8°). It can be concluded that smaller crystallite size, the rutile phase with (110) face being parallel to the surface, and tensile stress favored the hydrophilicity of the TiO2 films.展开更多
Nitrogen doping of silver oxide (AgxO) film is necessary for its application in transparent conductive film and diodes because intrinsic AgxO film is a p-type semiconductor with poor conductivity. In this work, a se...Nitrogen doping of silver oxide (AgxO) film is necessary for its application in transparent conductive film and diodes because intrinsic AgxO film is a p-type semiconductor with poor conductivity. In this work, a series of AgxO films is deposited on glass substrates by direct-current magnetron reactive sputtering at different flow ratios (FRs) of nitrogen to 02. Evolutions of the structure, the refiectivity, and the transmissivity of the film are studied by X-ray diffractometry and sphectrophotometry, respectively. The specular transmissivity and the specular refiectivity of the film decreasing with FR increasing can be attributed to the evolution of the phase structure of the film. The nitrogen does not play the role of an acceptor dopant in the film deposition.展开更多
Pulsed reactive sputtering is a novel process used to deposit some compound films, which are not deposited by traditional D.C. reactive sputtering easily. In this paper some experimental results about the deposition o...Pulsed reactive sputtering is a novel process used to deposit some compound films, which are not deposited by traditional D.C. reactive sputtering easily. In this paper some experimental results about the deposition of Al oxide films by pulsed reactive sputtering are presented. The hysteresis phenomenon of the sputtering voltage and deposition rate with the change of oxygen flow during sputtering process are discussed.展开更多
In recent years, diamond-like carbon films (DLC) have been given more attention in research in the biomedical industry due to their potential application as surface coating on biomedical materials such as metals and...In recent years, diamond-like carbon films (DLC) have been given more attention in research in the biomedical industry due to their potential application as surface coating on biomedical materials such as metals and polymer substrates. There are many ways to prepare metal containing DLC films deposited on polymeric film substrates, such as coatings from car- bonaceous precursors and some means that incorporate other elements. In this study, we in- vestigated both the surface and biocompatible properties of titanium containing DLC (Ti-DLC) films. The Ti-DLC films were prepared on the surface of poly (ethylene terephthalate) (PET) film as a function of the deposition power level using reactive sputtering technique. The films' hydrophilicity was studied by contact angle and surface energy tests. Their surface morphology was studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Their elemental chemical composition was analyzed using energy dispersive X-spectra (EDX) and X-ray photoelectron spectroscopy (XPS). Their blood and cell compatibility was studied by in vitro tests, including tests on platelet adhesion, thrombus formation, whole blood clotting time and osteoblast cell compatibility. Significant changes in the morphological and chemical composition of the Ti-DLC films were observed and found to be a function of the deposition level. These morphological and chemical changes reduced the interfacial tension between Ti-DLC and blood proteins as well as resisted the adhesion and activation of platelets on the surface of the Ti-DLC films. The cell compatibility results exhibited significant growth of osteoblast cells on the surface of Ti incorporated DLC film compared with that of DLC film surface.展开更多
The microstructure, mechanical, and tribological properties of the carbon nitride (CNx) thin films with different nitrogen contents deposited on high-speed steel substrates by reactive magnetron sputtering were stud...The microstructure, mechanical, and tribological properties of the carbon nitride (CNx) thin films with different nitrogen contents deposited on high-speed steel substrates by reactive magnetron sputtering were studied. CNx films with nitrogen contents from 10.7 to 28.2 at.% had an amorphous structure composing of the carbon bonds of sp2C-C, sp2C-N, and sp3C-N. The TiN inter-layer cause the adhesion of CNx films enhancement. The more nitrogen concentration led to larger film hardness and friction coefficient against GCrl5 steel balls, but the wear rates decreased.展开更多
Aluminum nitride (AlN) thin films with high c-axis orientation have been prepared on a glass substrate with an Al bottom electrode by radio frequency (RF) reactive magnetron sputtering. Based on the analysis of B...Aluminum nitride (AlN) thin films with high c-axis orientation have been prepared on a glass substrate with an Al bottom electrode by radio frequency (RF) reactive magnetron sputtering. Based on the analysis of Berg's hysteresis model, the improved sputtering system is realized without a hysteresis effect. A new control method for rapidly depositing highly c-axis oriented AlN thin films is proposed. The N2 concentration could be controlled by observing the changes in cathode voltage, to realize the optimum processing condition where the target could be fixed stably in the transition region, and both stoichiometric film composition and a high deposition rate could be obtained. Under a 500 W RF power of a target with a 6 cm diameter, a substrate temperature of 450 ℃, a target-substrate distance of 60 mm and a N2 concentration of 25%, AlN thin film with preferential (002) orientation was deposited at 2.3 μm/h which is a much higher rate than previously achieved. Through X-ray diffraction (XRD) analysis, the full width at half maximum (FWHM) of AlN (002) was shown to be about 0.28°, which shows the good crystallinity and crystal orientation of AlN thin film. With other parameters held constant, any increase or decrease in N2 concentration results in an increase in the FWHM of AlN.展开更多
基金Project(21271188)supported by the National Natural Science Foundation of ChinaProject(2012M521541)supported by the China Postdoctoral Science Foundation+2 种基金Project(2012QNZT002)supported by the Fundamental Research Funds for the Central South Universities,ChinaProject(20110933K)supported by the State Key Laboratory of Powder Metallurgy,ChinaProject(CSU2012024)supported by the Open-End Fund for Valuable and Precision Instruments of Central South University,China
文摘Wurtzite aluminum nitride(AlN) films were deposited on Si(100) wafers under various sputtering pressures by radio-frequency(RF) reactive magnetron sputtering. The film properties were investigated by XRD, SEM, AFM, XPS and nanoindenter techniques. It is suggested from the XRD patterns that highly c-axis oriented films grow preferentially at low pressures and the growth of(100) planes are preferred at higher pressures. The SEM and AFM images both reveal that the deposition rate and the surface roughness decrease while the average grain size increases with increasing the sputtering pressure. XPS results show that lowering the sputtering pressure is a useful way to minimize the incorporation of oxygen atoms into the AlN films and hence a film with closer stoichiometric composition is obtained. From the measurement of nanomechanical properties of AlN thin films, the largest hardness and elastic modulus are obtained at 0.30 Pa.
基金supported by the Swedish Strategic Research Foundation(SSF FFL15-0174 to Zhen Zhang)the Swedish Research Council(VR 2018-06030 and 2019-04690 to Zhen Zhang)+1 种基金the Wallenberg Academy Fellow Extension Program(KAW 2020-0190 to Zhen Zhang)the Olle Engkvist Foundation(Postdoc grant 214-0322 to Zhen Zhang).
文摘Memristive crossbar arrays(MCAs)offer parallel data storage and processing for energy-efficient neuromorphic computing.However,most wafer-scale MCAs that are compatible with complementary metal-oxide-semiconductor(CMOS)technology still suffer from substantially larger energy consumption than biological synapses,due to the slow kinetics of forming conductive paths inside the memristive units.Here we report wafer-scale Ag_(2)S-based MCAs realized using CMOS-compatible processes at temperatures below 160℃.Ag_(2)S electrolytes supply highly mobile Ag+ions,and provide the Ag/Ag_(2)S interface with low silver nucleation barrier to form silver filaments at low energy costs.By further enhancing Ag+migration in Ag_(2)S electrolytes via microstructure modulation,the integrated memristors exhibit a record low threshold of approximately−0.1 V,and demonstrate ultra-low switching-energies reaching femtojoule values as observed in biological synapses.The low-temperature process also enables MCA integration on polyimide substrates for applications in flexible electronics.Moreover,the intrinsic nonidealities of the memristive units for deep learning can be compensated by employing an advanced training algorithm.An impressive accuracy of 92.6%in image recognition simulations is demonstrated with the MCAs after the compensation.The demonstrated MCAs provide a promising device option for neuromorphic computing with ultra-high energy-efficiency.
基金The work has been supported by the Science and Engineering Research Board(SERB),Department of Science and Technology(SR/FTP/PS-175/2012)。
文摘Reactive sputtered boron-doped zinc oxide(BZO) film was deposited from argon,hydrogen and boron gas mixture.The reactive sputtering technique provides us the flexibility of changing the boron concentration in the produced films by using the same intrinsic zinc oxide target.Textured surface was obtained in the as-deposited films.The surface morphology and the opto-electronic properties of the films can be controlled by simply varying the gas concentration ratio.By varying the gas concentration ratio,the best obtained resistivity ~6.51×10^-4Ω-cm,mobility ~19.05 cm^2 V^-1 s^-1 and sheet resistance ~7.23Ω/□ were obtained.At lower wavelength of light,the response of the deposited films improves with the increase of boron in the gas mixture and the overall transmission in the wavelength region 350-1100 nm of all the films are>85 %.We also fabricated amorphous silicon(a-Si) thin film solar cell on the best obtained BZO layers.The overall efficiency of the a-Si solar cell is 8.14 %,found on optimized BZO layer.
基金supported by the National Key Basic Research Program of China (973 Program,No.2012CB625100)the Natural Science Foundation of Liaoning Province of China (No.2013020093)
文摘In the present study,WB 2(N) films are fabricated on silicon and YG8 substrates at different N 2 pressures by reactive magnetron sputtering.The influence of N 2 partial pressure(P (N2)) on the film microstructure and characteristics is studied systematically,including the chemical composition,crystalline structure,residual stress,surface roughness as well as the surface and the cross-section morphology.Meanwhile,nano-indentation and ball-on-disk tribometer are performed to analyze the mechanical and tribological properties of the films.The results show that the addition of nitrogen apparently leads to the change of the structure from(1 0 1) to(0 0 1) orientation then to the amorphous structure with the formation of BN phase.And the addition of nitrogen can greatly refine the grain size and microstructure of the films.Furthermore,the residual stress of the film is also found to change from tensile to compressive stress as a function of P (N2),and the compressive stress increases with P (N2),The WB 2(N) films with small nitrogen content,which are deposited at P (N2) of 0.004 and 0.006 Pa,exhibit better mechanical,tribological and corrosion properties than those of other films.Further increase of nitrogen content accelerates the formation of BN phase and fast decreases the film hardness.In addition,the large N 2 partial pressure gives rise to the target poisoning accompanied by the increase of the target voltage and the decrease of the deposition rate.
基金This work was supported by the National Natural Science Foundation of China(No,50376067)the Plan for Science&Technology Development of Guangzhou(2001-Z-117-01).
文摘TiO2 thin film has attracted considerable attention in recent years, due to its different refractive index and transparency with amorphous and different crysta ls in the visible and near-infrared wavelength region, high dielectric constant, wide band gap, high wear resistance and stability, etc, for which make it being used in many fields. This paper aims to investigate the optical characterizatio n of thin film TiO2 on silicon wafer. The TiO2 thin films were prepared by DC re active magnetron sputtering process from Ti target. The reflectivity of the film s was measured by UV-3101PC, and the index of refraction (n) and extinction coef ficient (k) were measured by n & k Analyzer 1200.
基金the National Natural Science Foundation of China and External science and technology cooperation program of Jiangxi Province(Nos.11364032 and 20151BDH80030)。
文摘Single(200)-oriented TiN thin films were deposited on quartz substrate by direct current(DC) magnetron reactive sputtering process at a wide range of substrate temperature from 200 to 600 ℃.The effects of sputtering pressure and substrate temperature on the crystalline nature,morphology,electrical and optical properties of the deposited thin films were analyzed by X-ray diffraction(XRD),atomic force microscopy(AFM),four-point resistivity test system and ultraviolet visible near-infrared(UV-Vis-NIR) spectroscopy,respectively.The results show that single(200)-oriented TiN thin films can be obtained at a wide range of substrate temperature from 200 to 600 ℃ with the grain size increasing from 35.9 to 64.5 nm.The resistivity of the product is as low as95 μΩ·cm,and the value of the optical reflectance is above68 % in the near-infrared(NIR) range of 760-1500 nm.
基金financially supported by the Natural Science Foundation of China(No.81501598)the International Science and Technology Cooperation Program of China(No.2008DFA51470)+1 种基金the State Key Laboratory for Mechanical Behavior of MaterialsXi’an Jiaotong University(No.20141604)
文摘Quaternary Ti–B–C–N coatings with various carbon contents were deposited on high-speed steel (HSS) substrates by reactive magnetron sputtering (RMS) system. The elevated-temperature tribological behavior of Ti–B–C–N coatings was explored using pin-on-disk tribometer, scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). The present results show that the steady-state friction coefficient value and the instantaneous friction coefficient fluctuation range of Ti–B–C–N coatings decrease as carbon content increases at 100 and 300°C, while the steady-state friction coefficient value of all Ti–B–C–N coatings becomes higher than 0.4 at 500°C. As ambient temperature increases, the running-in periods of all Ti–B–C–N coatings become shorter. Wear damage to Ti–B–C–N coatings during sliding at elevated temperature is mainly caused by adhesive wear, and adhesive-wear damage to Ti–B–C–N coatings increases as ambient temperature increases; however, higher carbon content is beneficial for decreasing the adhesive-wear damage to Ti–B–C–N coatings during sliding at elevated temperature.
基金the National Natural Science Foundation of China(No.61176062)the Fundamental Research Funds for the Central Universities (No.NZ2012309)
文摘Cuprous oxide(Cu_2O) thin films have been deposited on glass substrate by reactive magnetron sputtering method using Cu target and argon oxygen gas atmosphere.Effect of oxygen flow rate on structural and optical properties of thin films has been discussed.The results of X-ray diffraction,ultraviolet-visible spectrophotometry and atomic force micrograph indicated that the condition window for single Cu_2O phase was about 3.8 to 4.4 cm^3/min,and the optimum oxygen flow rate was 4.2 cm^3/min.The optical band gap E_g of Cu_2O film was determined by using the data of transmittance versus wavelength,and slightly decreased from 2.46 to 2.40 eV with the increase of oxygen flow rate from 3.8 to 4.4 cm^3/min.The Cu_2O film formed at the oxygen flow rate of 4.2 cm^3/min had an optical band gap of 2.43 eV.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60807001)the Foundation of Henan Educational Committee,China (Grant No. 2010A140017)the National Basic Research Program of China (Grant No. 2011CB201605)
文摘Using a radio-frequency reactive magnetron sputtering technique, a series of the single-phased Ag20 films are deposited in a mixture of oxygen and argon gas with a flow ratio of 2:3 by changing substrate temperature (Ts). Effects of the Ts on the microstructure and optical properties of the films are investigated by using X-ray diffractometry, scanning electron microscopy and spectrophotometry. The single-phased Ag20 films deposited at values of Ts below 200℃ are (111) preferentially oriented, which may be due to the smallest free energy of the (111) crystalline face. The film crystallization becomes poor as the value of Ts increases from 100℃ to 225℃. In particular, the Ag20 film deposited at Ts=225℃ loses the (111) preferential orientation. Correspondingly, the film surface morphology obviously evolves from a uniform and compact surface structure to a loose and gullied surface structure. With the increase of Ts value, the transmissivity and the reflectivity of the films in the transparent region are gradually reduced, while the absorptivity gradually increases, which may be attributed to an evolution of the crystalline structure and the surface morphology of the films.
文摘Carbon nitride CN. thin films have been deposited on polycrystalline β-Si3N4 substrates by un-balanced magnetron sputtering in a nitrogen discharge. Both the film deposition rate and the nitrogen concentration decrease with substrate temperature increase in the range of 100~400℃The maximum of nitrogen content is 40 at. pct. Raman spectroscopy and atomic force mi-croscopy were used to characterize the bonding, microstructure and surface roughness of the films. Nanoindentation experiments exhibit a higher hardness of 70 GPa and an extremely elas-tic recovery of 85% at higher substrate temperature.
基金Project supported by the National Natural Science Foundation of China (Grant No. 51272174)the Natural Science Foundation of Tianjin City (Grant No. 12JCYBJC11100)
文摘Half metallic polycrystalline, epitaxial Fe3O4 films and Fe3O4 -based heterostructures for spintronics were fabricated by DC reactive magnetron sputtering. Large tunneling magnetoresistance was found in the polycrystalline Fe3O4 films and attributed to the insulating grain boundaries. The pinning effect of the moments at the grain boundaries leads to a significant exchange bias. Frozen interfacial/surface moments induce weak saturation of the high-field magnetoresistance. The films show a moment rotation related butterfly-shaped magnetoresistance. It was found that in the films, natural growth defects, antiphase boundaries, and magnetocrystalline anisotropy play important roles in high-order anisotropic magnetoresistance. Spin injection from Fe3O4 films to semiconductive Si and ZnO was measured to be 45% and 28.5%, respectively. The positive magnetoresistance in the Fe3O4 -based heterostructures is considered to be caused by a shift of the Fe3O4 e g ↑ band near the interface. Enhanced magnetization was observed in Fe3O4 /BiFeO 3 heterostructures experimentally and further proved by first principle calculations. The enhanced magnetization can be explained by spin moments of the thin BiFeO 3 layer substantially reversing into a ferromagnetic arrangement under a strong coupling that is principally induced by electronic orbital reconstruction at the interface.
文摘The buffer layer CeO2 films were grown on cube textured metallic Ni substrates by using reactive magnetrun sputtering. Ar/H2 mixed atmosphere, which effectively inhibited the formation of NiO, was used as pre-depositing gas before CeO2 films were grown in Ar and 02. At 700 ℃ under the total pressure of 26 Pa,the pure c-axis orientation tilm was obtained. X-ray θ-2θscan, pole figure and φ-scan were used to observe the microstructure of the buffer layer. The resuits show that CeO2 film has strong cube texture and the FWHM is 9°. In addition, the CeO2 film is dense and crack-free.
文摘1.IntroductionOxidation resistance of superalloys re-lies on the protectiveness of oxide scalesformed on their surfaces during service.Theformation and growth of oxide scales are de-termined by an extensive range ofparameters which cover the alloy composi-
基金Project partially supported by the National Natural Science Foundation of China(Grant Nos.61071032,61377063,and 61235006)
文摘In this article, we present a time-dependent model that enables us to describe the dynamic behavior of pulsed DC reactive sputtering and predict the film compositions of VOx prepared by this process. In this modeling, the average current J is replaced by a new parameter of Jeff. Meanwhile, the four species states of V, V2O3, VO2, and V2O5 in the vanadium oxide films are taken into consideration. Based on this work, the influences of the oxygen gas supply and the pulsed power parameters including the duty cycle and frequency on film compositions are discussed. The model suggests that the time to reach process equilibrium may vary substantially depending on these parameters. It is also indicated that the compositions of VOx films are quite sensitive to both the reactive gas supply and the duty cycle when the power supply works in pulse mode. The 'steady-state' balance values obtained by these simulations show excellent agreement with the experimental data, which indicates that the experimentally obtained dynamic behavior of the film composition can be explained by this time-dependent modeling for pulsed DC reactive sputtering process. Moreover, the computer simulation results indicate that the curves will essentially yield oscillations around the average value of the film compositions with lower pulse frequency.
文摘The relationship of "preparation parameters-microstructures-wettability" of TiO2 films was reported. In this work, TiO2 films were deposited onto glass and silicon substrates by using mid-frequency dual magnetron sputtering technique at ambient temperature with various power densities and deposition time. After deposition, the films were heat treated at different annealing temperatures. X-ray diffraction (XRD), Raman spectroscopy, and field-emission scanning electron microscopy (FE-SEM) were utilized to characterize TiO2 films. The wettability of the films was evaluated by water contact angle measurement. The phase transition temperature of TiO2 films depended on the power density. It was demonstrated that wettability was strongly structure dependent and the film with the thickness of 610 nm (the power density was 2.22 W/cm^2) showed the lowest contact angle (8°). It can be concluded that smaller crystallite size, the rutile phase with (110) face being parallel to the surface, and tensile stress favored the hydrophilicity of the TiO2 films.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60807001)the Foundation of Henan Educational Committee,China (Grant No. 2010A140017)the College Young Teachers Program of Henan Province and the Graduate Innovation Fund of Zhengzhou University (Grant No. 11L10102)
文摘Nitrogen doping of silver oxide (AgxO) film is necessary for its application in transparent conductive film and diodes because intrinsic AgxO film is a p-type semiconductor with poor conductivity. In this work, a series of AgxO films is deposited on glass substrates by direct-current magnetron reactive sputtering at different flow ratios (FRs) of nitrogen to 02. Evolutions of the structure, the refiectivity, and the transmissivity of the film are studied by X-ray diffractometry and sphectrophotometry, respectively. The specular transmissivity and the specular refiectivity of the film decreasing with FR increasing can be attributed to the evolution of the phase structure of the film. The nitrogen does not play the role of an acceptor dopant in the film deposition.
文摘Pulsed reactive sputtering is a novel process used to deposit some compound films, which are not deposited by traditional D.C. reactive sputtering easily. In this paper some experimental results about the deposition of Al oxide films by pulsed reactive sputtering are presented. The hysteresis phenomenon of the sputtering voltage and deposition rate with the change of oxygen flow during sputtering process are discussed.
文摘In recent years, diamond-like carbon films (DLC) have been given more attention in research in the biomedical industry due to their potential application as surface coating on biomedical materials such as metals and polymer substrates. There are many ways to prepare metal containing DLC films deposited on polymeric film substrates, such as coatings from car- bonaceous precursors and some means that incorporate other elements. In this study, we in- vestigated both the surface and biocompatible properties of titanium containing DLC (Ti-DLC) films. The Ti-DLC films were prepared on the surface of poly (ethylene terephthalate) (PET) film as a function of the deposition power level using reactive sputtering technique. The films' hydrophilicity was studied by contact angle and surface energy tests. Their surface morphology was studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Their elemental chemical composition was analyzed using energy dispersive X-spectra (EDX) and X-ray photoelectron spectroscopy (XPS). Their blood and cell compatibility was studied by in vitro tests, including tests on platelet adhesion, thrombus formation, whole blood clotting time and osteoblast cell compatibility. Significant changes in the morphological and chemical composition of the Ti-DLC films were observed and found to be a function of the deposition level. These morphological and chemical changes reduced the interfacial tension between Ti-DLC and blood proteins as well as resisted the adhesion and activation of platelets on the surface of the Ti-DLC films. The cell compatibility results exhibited significant growth of osteoblast cells on the surface of Ti incorporated DLC film compared with that of DLC film surface.
基金supported by the International Science and Technology Cooperation Program of China(No. 2008DFA51470)
文摘The microstructure, mechanical, and tribological properties of the carbon nitride (CNx) thin films with different nitrogen contents deposited on high-speed steel substrates by reactive magnetron sputtering were studied. CNx films with nitrogen contents from 10.7 to 28.2 at.% had an amorphous structure composing of the carbon bonds of sp2C-C, sp2C-N, and sp3C-N. The TiN inter-layer cause the adhesion of CNx films enhancement. The more nitrogen concentration led to larger film hardness and friction coefficient against GCrl5 steel balls, but the wear rates decreased.
文摘Aluminum nitride (AlN) thin films with high c-axis orientation have been prepared on a glass substrate with an Al bottom electrode by radio frequency (RF) reactive magnetron sputtering. Based on the analysis of Berg's hysteresis model, the improved sputtering system is realized without a hysteresis effect. A new control method for rapidly depositing highly c-axis oriented AlN thin films is proposed. The N2 concentration could be controlled by observing the changes in cathode voltage, to realize the optimum processing condition where the target could be fixed stably in the transition region, and both stoichiometric film composition and a high deposition rate could be obtained. Under a 500 W RF power of a target with a 6 cm diameter, a substrate temperature of 450 ℃, a target-substrate distance of 60 mm and a N2 concentration of 25%, AlN thin film with preferential (002) orientation was deposited at 2.3 μm/h which is a much higher rate than previously achieved. Through X-ray diffraction (XRD) analysis, the full width at half maximum (FWHM) of AlN (002) was shown to be about 0.28°, which shows the good crystallinity and crystal orientation of AlN thin film. With other parameters held constant, any increase or decrease in N2 concentration results in an increase in the FWHM of AlN.