Ultrafine full-vulcanized polybutadiene rubber(UFBR) with particle sizes of ca.50―100 nm were used for modifying mechanical and processing performances of polypropylene(PP) with PP-g-maleic anhydride(PP-g-MA) a...Ultrafine full-vulcanized polybutadiene rubber(UFBR) with particle sizes of ca.50―100 nm were used for modifying mechanical and processing performances of polypropylene(PP) with PP-g-maleic anhydride(PP-g-MA) as a compatibilizer for enhancing the interfacial adhesion between the two components.The morphology,dynamical rheology response and mechanical properties of the blends were characterized by means of SEM,rheometer and tensile test,respectively.The results show that the ternary PP/UFBR blends compatibilized with PP-g-MA possess rheological behaviors like highly branched PP,while no obvious strain hardening is observed in its control binary PP/UFBR blends,a low level of PP-g-MA in PP/UFBR blends can even endow the material with rheological characteristics of high melt strength materials like highly branched PP.The enhancement interfacial interaction between the UFBR particles and PP matrix accounting for the rheological behavior of compatibilized blends and effectiveness of PP-g-MA were proposed and proved.展开更多
Alternative brominated flame retardants(BFRs) have become prevalent as a consequence of restrictions on the use of polybrominated diphenyl ethers(PBDEs). For risk assessment of these alternatives, knowledge of the...Alternative brominated flame retardants(BFRs) have become prevalent as a consequence of restrictions on the use of polybrominated diphenyl ethers(PBDEs). For risk assessment of these alternatives, knowledge of their metabolism via cytochrome P450 enzymes is needed.We have previously proved that density functional theory(DFT) is able to predict the metabolism of PBDEs by revealing the molecular mechanisms. In the current study, the reactivity of 1,2-bis(2,4,6-tribromophenoxy)ethane and structurally similar chemicals with the Compound I model representing the active site of P450 enzymes was investigated. The DFT calculations delineated reaction pathways which lead to reasonable explanations for products that were detected by wet experiments, meanwhile intermediates which cannot be determined were also proposed. Results showed that alkyl hydrogen abstraction will lead to bis(2,4,6-tribromophenoxy)ethanol, which may undergo hydrolysis yielding2,4,6-tribromophenol, a neurotoxic compound. In addition, a general pattern of oxidation reactivity regarding the 2,4,6-tribromophenyl moiety was observed among several model compounds. Our study has provided insights for convenient evaluation of the metabolism of other structurally similar BFRs.展开更多
Gasoline evaporation is an important anthropogenic source of atmospheric volatile organic compounds(VOCs). Total OH reactivity for gasoline vapor was measured from 4 kinds of gasoline for the first time by comparati...Gasoline evaporation is an important anthropogenic source of atmospheric volatile organic compounds(VOCs). Total OH reactivity for gasoline vapor was measured from 4 kinds of gasoline for the first time by comparative reactivity method(CRM) using proton transfer reaction mass spectrometer(PTR-MS).Compositions of 56 PAMS(photochemical assessment monitoring station) nonmethane hydrocarbons(NMHCs) were measured for both liquid and headspace of gasoline. We found high abundance of alkenes and aromatics in gasoline. The calculated OH reactivity derived from quantified NMHCs speciation accounted for only 57 ? 4% of total reactivity obtained from CRM method. N-Alkenes, only 6 wt% in liquid gasoline, contributed to 70% of calculated reactivity. We assume that the undetected branched alkenes are the possible reason for the missing reactivity. We suggest that the priority of gasoline quality improvement is to reduce alkenes content in gasoline in term of reactivity-based control.展开更多
In Houston, a combination of urban emissions from a city of 4 million people, coupled with emissions from extensive petroleum refining and chemical manufacturing, leads to conditions for photochemistry that are unique...In Houston, a combination of urban emissions from a city of 4 million people, coupled with emissions from extensive petroleum refining and chemical manufacturing, leads to conditions for photochemistry that are unique in the United States, and historically, the city had experienced some of the highest ozone concentrations recorded in the United States. Large air quality field studies (the Texas Air Quality Studies or TexAQS I and II) were conducted to determine root causes of the high ozone concentrations. Hundreds of air quality investigators, from around the world, deployed instruments on aircraft, on ships, and at fixed ground sites to make extensive air quality measurements; detailed photochemical modeling was used to interpret and assess the implications of the measurements. The Texas Air Quality Studies revealed that both continuous and episodic emissions of light alkenes, which came to be called highly reactive volatile organic compounds, played a critical role in the formation of ozone and other photochemical oxidants in the region. Under- standing and quantifying the role of these emissions in regional air quality required innovations in characterizing emissions and in photochemical modeling. Reducing emissions required innovative policy approaches. These coupled scientific and policy innovations are described, and the result, substantially cleaner air for Houston, is documented. The lessons learned from the Houston air quality experience are relevant to cities with similar population and industrial profiles around the world.展开更多
基金Supported by the National High Technology Research and Development Program of China(No.2002AA333040)the Special Funds of Science and Technology Bureau of Harbin for Hi-Tech Research,China(No.2007AA4BG140)
文摘Ultrafine full-vulcanized polybutadiene rubber(UFBR) with particle sizes of ca.50―100 nm were used for modifying mechanical and processing performances of polypropylene(PP) with PP-g-maleic anhydride(PP-g-MA) as a compatibilizer for enhancing the interfacial adhesion between the two components.The morphology,dynamical rheology response and mechanical properties of the blends were characterized by means of SEM,rheometer and tensile test,respectively.The results show that the ternary PP/UFBR blends compatibilized with PP-g-MA possess rheological behaviors like highly branched PP,while no obvious strain hardening is observed in its control binary PP/UFBR blends,a low level of PP-g-MA in PP/UFBR blends can even endow the material with rheological characteristics of high melt strength materials like highly branched PP.The enhancement interfacial interaction between the UFBR particles and PP matrix accounting for the rheological behavior of compatibilized blends and effectiveness of PP-g-MA were proposed and proved.
基金supported by the National Basic Research Program(No.2013CB430403)the National Natural Science Foundation(Nos.21137001,21325729,and 21173211)of Chinasupported by Supercomputing Center of Dalian University of Technology
文摘Alternative brominated flame retardants(BFRs) have become prevalent as a consequence of restrictions on the use of polybrominated diphenyl ethers(PBDEs). For risk assessment of these alternatives, knowledge of their metabolism via cytochrome P450 enzymes is needed.We have previously proved that density functional theory(DFT) is able to predict the metabolism of PBDEs by revealing the molecular mechanisms. In the current study, the reactivity of 1,2-bis(2,4,6-tribromophenoxy)ethane and structurally similar chemicals with the Compound I model representing the active site of P450 enzymes was investigated. The DFT calculations delineated reaction pathways which lead to reasonable explanations for products that were detected by wet experiments, meanwhile intermediates which cannot be determined were also proposed. Results showed that alkyl hydrogen abstraction will lead to bis(2,4,6-tribromophenoxy)ethanol, which may undergo hydrolysis yielding2,4,6-tribromophenol, a neurotoxic compound. In addition, a general pattern of oxidation reactivity regarding the 2,4,6-tribromophenyl moiety was observed among several model compounds. Our study has provided insights for convenient evaluation of the metabolism of other structurally similar BFRs.
基金funded by the National Natural Science Foundation (Nos. 41125018, 41330635)
文摘Gasoline evaporation is an important anthropogenic source of atmospheric volatile organic compounds(VOCs). Total OH reactivity for gasoline vapor was measured from 4 kinds of gasoline for the first time by comparative reactivity method(CRM) using proton transfer reaction mass spectrometer(PTR-MS).Compositions of 56 PAMS(photochemical assessment monitoring station) nonmethane hydrocarbons(NMHCs) were measured for both liquid and headspace of gasoline. We found high abundance of alkenes and aromatics in gasoline. The calculated OH reactivity derived from quantified NMHCs speciation accounted for only 57 ? 4% of total reactivity obtained from CRM method. N-Alkenes, only 6 wt% in liquid gasoline, contributed to 70% of calculated reactivity. We assume that the undetected branched alkenes are the possible reason for the missing reactivity. We suggest that the priority of gasoline quality improvement is to reduce alkenes content in gasoline in term of reactivity-based control.
文摘In Houston, a combination of urban emissions from a city of 4 million people, coupled with emissions from extensive petroleum refining and chemical manufacturing, leads to conditions for photochemistry that are unique in the United States, and historically, the city had experienced some of the highest ozone concentrations recorded in the United States. Large air quality field studies (the Texas Air Quality Studies or TexAQS I and II) were conducted to determine root causes of the high ozone concentrations. Hundreds of air quality investigators, from around the world, deployed instruments on aircraft, on ships, and at fixed ground sites to make extensive air quality measurements; detailed photochemical modeling was used to interpret and assess the implications of the measurements. The Texas Air Quality Studies revealed that both continuous and episodic emissions of light alkenes, which came to be called highly reactive volatile organic compounds, played a critical role in the formation of ozone and other photochemical oxidants in the region. Under- standing and quantifying the role of these emissions in regional air quality required innovations in characterizing emissions and in photochemical modeling. Reducing emissions required innovative policy approaches. These coupled scientific and policy innovations are described, and the result, substantially cleaner air for Houston, is documented. The lessons learned from the Houston air quality experience are relevant to cities with similar population and industrial profiles around the world.