In this study,eight different varieties of maize seeds were used as the research objects.Conduct 81 types of combined preprocessing on the original spectra.Through comparison,Savitzky-Golay(SG)-multivariate scattering...In this study,eight different varieties of maize seeds were used as the research objects.Conduct 81 types of combined preprocessing on the original spectra.Through comparison,Savitzky-Golay(SG)-multivariate scattering correction(MSC)-maximum-minimum normalization(MN)was identified as the optimal preprocessing technique.The competitive adaptive reweighted sampling(CARS),successive projections algorithm(SPA),and their combined methods were employed to extract feature wavelengths.Classification models based on back propagation(BP),support vector machine(SVM),random forest(RF),and partial least squares(PLS)were established using full-band data and feature wavelengths.Among all models,the(CARS-SPA)-BP model achieved the highest accuracy rate of 98.44%.This study offers novel insights and methodologies for the rapid and accurate identification of corn seeds as well as other crop seeds.展开更多
Brain tumor segmentation from Magnetic Resonance Imaging(MRI)supports neurologists and radiologists in analyzing tumors and developing personalized treatment plans,making it a crucial yet challenging task.Supervised m...Brain tumor segmentation from Magnetic Resonance Imaging(MRI)supports neurologists and radiologists in analyzing tumors and developing personalized treatment plans,making it a crucial yet challenging task.Supervised models such as 3D U-Net perform well in this domain,but their accuracy significantly improves with appropriate preprocessing.This paper demonstrates the effectiveness of preprocessing in brain tumor segmentation by applying a pre-segmentation step based on the Generalized Gaussian Mixture Model(GGMM)to T1 contrastenhanced MRI scans from the BraTS 2020 dataset.The Expectation-Maximization(EM)algorithm is employed to estimate parameters for four tissue classes,generating a new pre-segmented channel that enhances the training and performance of the 3DU-Net model.The proposed GGMM+3D U-Net framework achieved a Dice coefficient of 0.88 for whole tumor segmentation,outperforming both the standard multiscale 3D U-Net(0.84)and MMU-Net(0.85).It also delivered higher Intersection over Union(IoU)scores compared to models trained without preprocessing or with simpler GMM-based segmentation.These results,supported by qualitative visualizations,suggest that GGMM-based preprocessing should be integrated into brain tumor segmentation pipelines to optimize performance.展开更多
Color Fourier single-pixel imaging(FSI)enables efficient spectral and spatial imaging.Here,we propose a Fourier single-pixel imaging scheme with a random color filter array(FSI-RCFA).The proposed method employs a rand...Color Fourier single-pixel imaging(FSI)enables efficient spectral and spatial imaging.Here,we propose a Fourier single-pixel imaging scheme with a random color filter array(FSI-RCFA).The proposed method employs a random color filter array(RCFA)to modulate Fourier patterns.A three-step phase-shifting technique reconstructs the Fourier spectrum,followed by an RCFA-based demosaicing algorithm to recover color images.Compared to traditional color FSI based on Bayer color filter array schemes(FSI-BCFA),our approach achieves superior separation between chrominance and luminance components in the frequency domain.Simulation results demonstrate that the FSI-RCFA method achieves a lower mean squared error(MSE),a higher peak signal-to-noise ratio(PSNR),and superior noise resistance compared to FSI-BCFA,while enabling direct single-channel pixel measurements for targeted applications such as agricultural defect detection.展开更多
Image enhancement utilizes intensity transformation functions to maximize the information content of enhanced images.This paper approaches the topic as an optimization problem and uses the bald eagle search(BES)algori...Image enhancement utilizes intensity transformation functions to maximize the information content of enhanced images.This paper approaches the topic as an optimization problem and uses the bald eagle search(BES)algorithm to achieve optimal results.In our proposed model,gamma correction and Retinex address color cast issues and enhance image edges and details.The final enhanced image is obtained through color balancing.The BES algorithm seeks the optimal solution through the selection,search,and swooping stages.However,it is prone to getting stuck in local optima and converges slowly.To overcome these limitations,we propose an improved BES algorithm(ABES)with enhanced population learning,position updates,and control parameters.ABES is employed to optimize the core parameters of gamma correction and Retinex to improve image quality,and the maximization of information entropy is utilized as the objective function.Real benchmark images are collected to validate its performance.Experimental results demonstrate that ABES outperforms the existing image enhancement methods,including the flower pollination algorithm,the chimp optimization algorithm,particle swarm optimization,and BES,in terms of information entropy,peak signal-to-noise ratio(PSNR),structural similarity index(SSIM),and patch-based contrast quality index(PCQI).ABES demonstrates superior performance both qualitatively and quantitatively,and it helps enhance prominent features and contrast in the images while maintaining the natural appearance of the original images.展开更多
Background:Quantum-enhanced medical imaging algorithms–quantum entanglement reconstruction,quantum noise suppression,and quantum beamforming–propose possible remedies for significant constraints in traditional diagn...Background:Quantum-enhanced medical imaging algorithms–quantum entanglement reconstruction,quantum noise suppression,and quantum beamforming–propose possible remedies for significant constraints in traditional diagnostic imaging,such as resolution,radiation efficiency,and real-time processing.Methods:This work used a mixed-methods strategy,including controlled phantom experiments,retrospective multi-center clinical data analysis,and quantum-classical hybrid processing to assess enhancements in resolution,dosage efficiency,and diagnostic confidence.Statistical validation included analysis of variance(ANOVA)and receiver-operating characteristic curve analysis,juxtaposing quantum-enhanced methodologies with conventional and deep learning approaches.Results:Quantum entanglement reconstruction enhanced magnetic resonance imaging spatial resolution by 33.2%(P<0.01),quantum noise suppression facilitated computed tomography scans with a 60%reduction in radiation,and quantum beamforming improved ultrasound contrast by 27%while preserving real-time processing(<2 ms delay).Inter-reader variability(12%in Diagnostic Confidence Scores)showed that systematic training is needed,even if the performance was better.The research presented(1)a reusable clinical quantum imaging framework,(2)enhanced hardware processes(field-programmable gate array/graphics processing unit acceleration),and(3)cost-benefit analyses demonstrating a 22-month return on investment breakeven point.Conclusion:Quantum-enhanced imaging has a lot of promise for use in medicine,especially in neurology and cancer.Future research should focus on multi-modal integration(e.g.,positron emission tomography–magnetic resonance imaging),cloud-based quantum simulations for enhanced accessibility,and extensive trials to confirm long-term diagnostic accuracy.This breakthrough gives healthcare systems a technology roadmap and a reason to spend money on quantum-enhanced diagnostics.展开更多
Aimed at the long and narrow geometric features and poor generalization ability of the damage detection in conveyor belts with steel rope cores using the X-ray image,a detection method of damage X-ray image is propose...Aimed at the long and narrow geometric features and poor generalization ability of the damage detection in conveyor belts with steel rope cores using the X-ray image,a detection method of damage X-ray image is proposed based on the improved fully convolutional one-stage object detection(FCOS)algorithm.The regression performance of bounding boxes was optimized by introducing the complete intersection over union loss function into the improved algorithm.The feature fusion network structure is modified by adding adaptive fusion paths to the feature fusion network structure,which makes full use of the features of accurate localization and semantics of multi-scale feature fusion networks.Finally,the network structure was trained and validated by using the X-ray image dataset of damages in conveyor belts with steel rope cores provided by a flaw detection equipment manufacturer.In addition,the data enhancement methods such as rotating,mirroring,and scaling,were employed to enrich the image dataset so that the model is adequately trained.Experimental results showed that the improved FCOS algorithm promoted the precision rate and the recall rate by 20.9%and 14.8%respectively,compared with the original algorithm.Meanwhile,compared with Fast R-CNN,Faster R-CNN,SSD,and YOLOv3,the improved FCOS algorithm has obvious advantages;detection precision rate and recall rate of the modified network reached 95.8%and 97.0%respectively.Furthermore,it demonstrated a higher detection accuracy without affecting the speed.The results of this work have some reference significance for the automatic identification and detection of steel core conveyor belt damage.展开更多
Snow cover plays a critical role in global climate regulation and hydrological processes.Accurate monitoring is essential for understanding snow distribution patterns,managing water resources,and assessing the impacts...Snow cover plays a critical role in global climate regulation and hydrological processes.Accurate monitoring is essential for understanding snow distribution patterns,managing water resources,and assessing the impacts of climate change.Remote sensing has become a vital tool for snow monitoring,with the widely used Moderate-resolution Imaging Spectroradiometer(MODIS)snow products from the Terra and Aqua satellites.However,cloud cover often interferes with snow detection,making cloud removal techniques crucial for reliable snow product generation.This study evaluated the accuracy of four MODIS snow cover datasets generated through different cloud removal algorithms.Using real-time field camera observations from four stations in the Tianshan Mountains,China,this study assessed the performance of these datasets during three distinct snow periods:the snow accumulation period(September-November),snowmelt period(March-June),and stable snow period(December-February in the following year).The findings showed that cloud-free snow products generated using the Hidden Markov Random Field(HMRF)algorithm consistently outperformed the others,particularly under cloud cover,while cloud-free snow products using near-day synthesis and the spatiotemporal adaptive fusion method with error correction(STAR)demonstrated varying performance depending on terrain complexity and cloud conditions.This study highlighted the importance of considering terrain features,land cover types,and snow dynamics when selecting cloud removal methods,particularly in areas with rapid snow accumulation and melting.The results suggested that future research should focus on improving cloud removal algorithms through the integration of machine learning,multi-source data fusion,and advanced remote sensing technologies.By expanding validation efforts and refining cloud removal strategies,more accurate and reliable snow products can be developed,contributing to enhanced snow monitoring and better management of water resources in alpine and arid areas.展开更多
The low-density imaging performance of a zone plate-based nano-resolution hard x-ray computed tomography(CT)system can be significantly improved by incorporating a grating-based Lau interferometer. Due to the diffract...The low-density imaging performance of a zone plate-based nano-resolution hard x-ray computed tomography(CT)system can be significantly improved by incorporating a grating-based Lau interferometer. Due to the diffraction, however,the acquired nano-resolution phase signal may suffer splitting problem, which impedes the direct reconstruction of phase contrast CT(nPCT) images. To overcome, a new model-driven nPCT image reconstruction algorithm is developed in this study. In it, the diffraction procedure is mathematically modeled into a matrix B, from which the projections without signal splitting can be generated invertedly. Furthermore, a penalized weighted least-square model with total variation(PWLSTV) is employed to denoise these projections, from which nPCT images with high accuracy are directly reconstructed.Numerical experiments demonstrate that this new algorithm is able to work with phase projections having any splitting distances. Moreover, results also reveal that nPCT images of higher signal-to-noise-ratio(SNR) could be reconstructed from projections having larger splitting distances. In summary, a novel model-driven nPCT image reconstruction algorithm with high accuracy and robustness is verified for the Lau interferometer-based hard x-ray nano-resolution phase contrast imaging.展开更多
Three dimensional(3-D)imaging algorithms with irregular planar multiple-input-multiple-output(MIMO)arrays are discussed and compared with each other.Based on the same MIMO array,a modified back projection algorithm(MB...Three dimensional(3-D)imaging algorithms with irregular planar multiple-input-multiple-output(MIMO)arrays are discussed and compared with each other.Based on the same MIMO array,a modified back projection algorithm(MBPA)is accordingly proposed and four imaging algorithms are used for comparison,back-projection method(BP),back-projection one in time domain(BP-TD),modified back-projection one and fast Fourier transform(FFT)-based MIMO range migration algorithm(FFT-based MIMO RMA).All of the algorithms have been implemented in practical application scenarios by use of the proposed imaging system.Back to the practical applications,MIMO array-based imaging system with wide-bandwidth properties provides an efficient tool to detect objects hidden behind a wall.An MIMO imaging radar system,composed of a vector network analyzer(VNA),a set of switches,and an array of Vivaldi antennas,have been designed,fabricated,and tested.Then,these algorithms have been applied to measured data collected in different scenarios constituted by five metallic spheres in the absence and in the presence of a wall between the antennas and the targets in simulation and pliers in free space for experimental test.Finally,the focusing properties and time consumption of the above algorithms are compared.展开更多
Steganography is a technique for hiding secret messages while sending and receiving communications through a cover item.From ancient times to the present,the security of secret or vital information has always been a s...Steganography is a technique for hiding secret messages while sending and receiving communications through a cover item.From ancient times to the present,the security of secret or vital information has always been a significant problem.The development of secure communication methods that keep recipient-only data transmissions secret has always been an area of interest.Therefore,several approaches,including steganography,have been developed by researchers over time to enable safe data transit.In this review,we have discussed image steganography based on Discrete Cosine Transform(DCT)algorithm,etc.We have also discussed image steganography based on multiple hashing algorithms like the Rivest–Shamir–Adleman(RSA)method,the Blowfish technique,and the hash-least significant bit(LSB)approach.In this review,a novel method of hiding information in images has been developed with minimal variance in image bits,making our method secure and effective.A cryptography mechanism was also used in this strategy.Before encoding the data and embedding it into a carry image,this review verifies that it has been encrypted.Usually,embedded text in photos conveys crucial signals about the content.This review employs hash table encryption on the message before hiding it within the picture to provide a more secure method of data transport.If the message is ever intercepted by a third party,there are several ways to stop this operation.A second level of security process implementation involves encrypting and decrypting steganography images using different hashing algorithms.展开更多
The quality of synthetic aperture radar(SAR)image degrades in the case of multiple imaging projection planes(IPPs)and multiple overlapping ship targets,and then the performance of target classification and recognition...The quality of synthetic aperture radar(SAR)image degrades in the case of multiple imaging projection planes(IPPs)and multiple overlapping ship targets,and then the performance of target classification and recognition can be influenced.For addressing this issue,a method for extracting ship targets with overlaps via the expectation maximization(EM)algorithm is pro-posed.First,the scatterers of ship targets are obtained via the target detection technique.Then,the EM algorithm is applied to extract the scatterers of a single ship target with a single IPP.Afterwards,a novel image amplitude estimation approach is pro-posed,with which the radar image of a single target with a sin-gle IPP can be generated.The proposed method can accom-plish IPP selection and targets separation in the image domain,which can improve the image quality and reserve the target information most possibly.Results of simulated and real mea-sured data demonstrate the effectiveness of the proposed method.展开更多
The single-pixel imaging(SPI) technique is able to capture two-dimensional(2 D) images without conventional array sensors by using a photodiode. As a novel scheme, Fourier single-pixel imaging(FSI) has been proven cap...The single-pixel imaging(SPI) technique is able to capture two-dimensional(2 D) images without conventional array sensors by using a photodiode. As a novel scheme, Fourier single-pixel imaging(FSI) has been proven capable of reconstructing high-quality images. Due to the fact that the Fourier basis patterns(also known as grayscale sinusoidal patterns)cannot be well displayed on the digital micromirror device(DMD), a fast FSI system is proposed to solve this problem by binarizing Fourier pattern through a dithering algorithm. However, the traditional dithering algorithm leads to low quality as the extra noise is inevitably induced in the reconstructed images. In this paper, we report a better dithering algorithm to binarize Fourier pattern, which utilizes the Sierra–Lite kernel function by a serpentine scanning method. Numerical simulation and experiment demonstrate that the proposed algorithm is able to achieve higher quality under different sampling ratios.展开更多
In the imaging observation system, imaging task scheduling is an important topic. Most scholars study the imaging task scheduling from the perspective of static priority, and only a few from the perspective of dynamic...In the imaging observation system, imaging task scheduling is an important topic. Most scholars study the imaging task scheduling from the perspective of static priority, and only a few from the perspective of dynamic priority. However,the priority of the imaging task is dynamic in actual engineering. To supplement the research on imaging observation, this paper proposes the task priority model, dynamic scheduling strategy and Heuristic algorithm. At first, this paper analyzes the relevant theoretical basis of imaging observation, decomposes the task priority into four parts, including target priority, imaging task priority, track, telemetry & control(TT&C)requirement priority and data transmission requirement priority, summarizes the attribute factors that affect the above four types of priority in detail, and designs the corresponding priority model. Then, this paper takes the emergency tasks scheduling problem as the background, proposes the dynamic scheduling strategy and heuristic algorithm. Finally, the task priority model,dynamic scheduling strategy and heuristic algorithm are verified by experiments.展开更多
In blood or bone marrow,leukemia is a form of cancer.A person with leukemia has an expansion of white blood cells(WBCs).It primarily affects children and rarely affects adults.Treatment depends on the type of leukemia...In blood or bone marrow,leukemia is a form of cancer.A person with leukemia has an expansion of white blood cells(WBCs).It primarily affects children and rarely affects adults.Treatment depends on the type of leukemia and the extent to which cancer has established throughout the body.Identifying leukemia in the initial stage is vital to providing timely patient care.Medical image-analysis-related approaches grant safer,quicker,and less costly solutions while ignoring the difficulties of these invasive processes.It can be simple to generalize Computer vision(CV)-based and image-processing techniques and eradicate human error.Many researchers have implemented computer-aided diagnosticmethods andmachine learning(ML)for laboratory image analysis,hopefully overcoming the limitations of late leukemia detection and determining its subgroups.This study establishes a Marine Predators Algorithm with Deep Learning Leukemia Cancer Classification(MPADL-LCC)algorithm onMedical Images.The projectedMPADL-LCC system uses a bilateral filtering(BF)technique to pre-process medical images.The MPADL-LCC system uses Faster SqueezeNet withMarine Predators Algorithm(MPA)as a hyperparameter optimizer for feature extraction.Lastly,the denoising autoencoder(DAE)methodology can be executed to accurately detect and classify leukemia cancer.The hyperparameter tuning process using MPA helps enhance leukemia cancer classification performance.Simulation results are compared with other recent approaches concerning various measurements and the MPADL-LCC algorithm exhibits the best results over other recent approaches.展开更多
To enhance the diversity and distribution uniformity of initial population,as well as to avoid local extrema in the Chimp Optimization Algorithm(CHOA),this paper improves the CHOA based on chaos initialization and Cau...To enhance the diversity and distribution uniformity of initial population,as well as to avoid local extrema in the Chimp Optimization Algorithm(CHOA),this paper improves the CHOA based on chaos initialization and Cauchy mutation.First,Sin chaos is introduced to improve the random population initialization scheme of the CHOA,which not only guarantees the diversity of the population,but also enhances the distribution uniformity of the initial population.Next,Cauchy mutation is added to optimize the global search ability of the CHOA in the process of position(threshold)updating to avoid the CHOA falling into local optima.Finally,an improved CHOA was formed through the combination of chaos initialization and Cauchy mutation(CICMCHOA),then taking fuzzy Kapur as the objective function,this paper applied CICMCHOA to natural and medical image segmentation,and compared it with four algorithms,including the improved Satin Bowerbird optimizer(ISBO),Cuckoo Search(ICS),etc.The experimental results deriving from visual and specific indicators demonstrate that CICMCHOA delivers superior segmentation effects in image segmentation.展开更多
Metal active gas(MAG)welding is one of the widely applied welding techniques using argon and carbon dioxide as shielding gas.In response to the problem of welding halo and drag shadow during the image acquisition proc...Metal active gas(MAG)welding is one of the widely applied welding techniques using argon and carbon dioxide as shielding gas.In response to the problem of welding halo and drag shadow during the image acquisition process of it,which makes it difficult to accurately extract the contour of the molten pool,this paper proposes a molten pool edge detection method that combines dark channel prior dehazing(DCPD)and improved single scale Retinex image enhancement algorithm.This method overcomes the problem of excessive edge noise in the original molten pool image and the difficulty in feature extraction caused by the dark part of the molten pool after DCPD processing.Through comparative experiments and ablation experiments,it has been shown that the algorithm proposed in this paper has significantly improved the enhancement effect and feature extraction effect,extracting accurate and complete molten pool contours.展开更多
In ophthalmology,the quality of fundus images is critical for accurate diagnosis,both in clinical practice and in artificial intelligence(AI)-assisted diagnostics.Despite the broad view provided by ultrawide-field(UWF...In ophthalmology,the quality of fundus images is critical for accurate diagnosis,both in clinical practice and in artificial intelligence(AI)-assisted diagnostics.Despite the broad view provided by ultrawide-field(UWF)imaging,pseudocolor images may conceal critical lesions necessary for precise diagnosis.To address this,we introduce UWF-Net,a sophisticated image enhancement algorithm that takes disease characteristics into consideration.Using the Fudan University ultra-wide-field image(FDUWI)dataset,which includes 11294 Optos pseudocolor and 2415 Zeiss true-color UWF images,each of which is rigorously annotated,UWF-Net combines global style modeling with feature-level lesion enhancement.Pathological consistency loss is also applied to maintain fundus feature integrity,significantly improving image quality.Quantitative and qualitative evaluations demonstrated that UWF-Net outperforms existing methods such as contrast limited adaptive histogram equalization(CLAHE)and structure and illumination constrained generative adversarial network(StillGAN),delivering superior retinal image quality,higher quality scores,and preserved feature details after enhancement.In disease classification tasks,images enhanced by UWF-Net showed notable improvements when processed with existing classification systems over those enhanced by StillGAN,demonstrating a 4.62%increase in sensitivity(SEN)and a 3.97%increase in accuracy(ACC).In a multicenter clinical setting,UWF-Net-enhanced images were preferred by ophthalmologic technicians and doctors,and yielded a significant reduction in diagnostic time((13.17±8.40)s for UWF-Net enhanced images vs(19.54±12.40)s for original images)and an increase in diagnostic accuracy(87.71%for UWF-Net enhanced images vs 80.40%for original images).Our research verifies that UWF-Net markedly improves the quality of UWF imaging,facilitating better clinical outcomes and more reliable AI-assisted disease classification.The clinical integration of UWF-Net holds great promise for enhancing diagnostic processes and patient care in ophthalmology.展开更多
At present,both the point source and the imaging polarization navigation devices only can output the angle information,which means that the velocity information of the carrier cannot be extracted from the polarization...At present,both the point source and the imaging polarization navigation devices only can output the angle information,which means that the velocity information of the carrier cannot be extracted from the polarization field pattern directly.Optical flow is an image-based method for calculating the velocity of pixel point movement in an image.However,for ordinary optical flow,the difference in pixel value as well as the calculation accuracy can be reduced in weak light.Polarization imaging technology has the ability to improve both the detection accuracy and the recognition probability of the target because it can acquire the extra polarization multi-dimensional information of target radiation or reflection.In this paper,combining the polarization imaging technique with the traditional optical flow algorithm,a polarization optical flow algorithm is proposed,and it is verified that the polarized optical flow algorithm has good adaptation in weak light and can improve the application range of polarization navigation sensors.This research lays the foundation for day and night all-weather polarization navigation applications in future.展开更多
Towards efficient implementation of x-ray ghost imaging(XGI),efficient data acquisition and fast image reconstruction together with high image quality are preferred.In view of radiation dose resulted from the incident...Towards efficient implementation of x-ray ghost imaging(XGI),efficient data acquisition and fast image reconstruction together with high image quality are preferred.In view of radiation dose resulted from the incident x-rays,fewer measurements with sufficient signal-to-noise ratio(SNR)are always anticipated.Available methods based on linear and compressive sensing algorithms cannot meet all the requirements simultaneously.In this paper,a method based on a modified compressive sensing algorithm with conjugate gradient descent method(CGDGI)is developed to solve the problems encountered in available XGI methods.Simulation and experiments demonstrate the practicability of CGDGI-based method for the efficient implementation of XGI.The image reconstruction time of sub-second implicates that the proposed method has the potential for real-time XGI.展开更多
Full matrix focusing method of ultrasonic phased array has been proved with advantages of good signal-to-noise ratio and imaging resolution in the field of Ultrasonic NDT.However,it is still suffering from the time-co...Full matrix focusing method of ultrasonic phased array has been proved with advantages of good signal-to-noise ratio and imaging resolution in the field of Ultrasonic NDT.However,it is still suffering from the time-consuming data acquisition and processing.In order to solve the problem,two simplified matrix focusing methods are provided in the paper.One provided method is a triangular matrix focusing algorithm based on the principle of reciprocity for the multi-channel ultrasonic system.The other provided method is a trapezoidal matrix focusing algorithm based on the energy weight of the different channel to the focusing area.Time of data acquisition and computational is decreased with the provided simplified matrix focusing methods.In order to prove the validity of two provided algorithms,both side-drilled holes and oblique cracks are used for imaging experiments.The experimental results show that the imaging quality of the triangular matrix focusing algorithm is basically consistent to that of the full matrix focusing method.And imaging quality of the trapezoidal matrix focusing algorithm is slightly reduced with the amount of multi-channel data decreasing.Both data acquisition and computational efficiency using the triangular matrix focusing algorithm and the trapezoidal matrix focusing algorithm have been improved significantly compared with original full matrix focusing method.展开更多
基金supported by the Science and Technology Development Plan Project of Jilin Provincial Department of Science and Technology (No.20220203112S)the Jilin Provincial Department of Education Science and Technology Research Project (No.JJKH20210039KJ)。
文摘In this study,eight different varieties of maize seeds were used as the research objects.Conduct 81 types of combined preprocessing on the original spectra.Through comparison,Savitzky-Golay(SG)-multivariate scattering correction(MSC)-maximum-minimum normalization(MN)was identified as the optimal preprocessing technique.The competitive adaptive reweighted sampling(CARS),successive projections algorithm(SPA),and their combined methods were employed to extract feature wavelengths.Classification models based on back propagation(BP),support vector machine(SVM),random forest(RF),and partial least squares(PLS)were established using full-band data and feature wavelengths.Among all models,the(CARS-SPA)-BP model achieved the highest accuracy rate of 98.44%.This study offers novel insights and methodologies for the rapid and accurate identification of corn seeds as well as other crop seeds.
基金Princess Nourah Bint Abdulrahman University Researchers Supporting Project number(PNURSP2025R826),Princess Nourah Bint Abdulrahman University,Riyadh,Saudi ArabiaNorthern Border University,Saudi Arabia,for supporting this work through project number(NBU-CRP-2025-2933).
文摘Brain tumor segmentation from Magnetic Resonance Imaging(MRI)supports neurologists and radiologists in analyzing tumors and developing personalized treatment plans,making it a crucial yet challenging task.Supervised models such as 3D U-Net perform well in this domain,but their accuracy significantly improves with appropriate preprocessing.This paper demonstrates the effectiveness of preprocessing in brain tumor segmentation by applying a pre-segmentation step based on the Generalized Gaussian Mixture Model(GGMM)to T1 contrastenhanced MRI scans from the BraTS 2020 dataset.The Expectation-Maximization(EM)algorithm is employed to estimate parameters for four tissue classes,generating a new pre-segmented channel that enhances the training and performance of the 3DU-Net model.The proposed GGMM+3D U-Net framework achieved a Dice coefficient of 0.88 for whole tumor segmentation,outperforming both the standard multiscale 3D U-Net(0.84)and MMU-Net(0.85).It also delivered higher Intersection over Union(IoU)scores compared to models trained without preprocessing or with simpler GMM-based segmentation.These results,supported by qualitative visualizations,suggest that GGMM-based preprocessing should be integrated into brain tumor segmentation pipelines to optimize performance.
基金supported by the National Natural Science Foundation of China(Grant Nos.62001249 and62375140)。
文摘Color Fourier single-pixel imaging(FSI)enables efficient spectral and spatial imaging.Here,we propose a Fourier single-pixel imaging scheme with a random color filter array(FSI-RCFA).The proposed method employs a random color filter array(RCFA)to modulate Fourier patterns.A three-step phase-shifting technique reconstructs the Fourier spectrum,followed by an RCFA-based demosaicing algorithm to recover color images.Compared to traditional color FSI based on Bayer color filter array schemes(FSI-BCFA),our approach achieves superior separation between chrominance and luminance components in the frequency domain.Simulation results demonstrate that the FSI-RCFA method achieves a lower mean squared error(MSE),a higher peak signal-to-noise ratio(PSNR),and superior noise resistance compared to FSI-BCFA,while enabling direct single-channel pixel measurements for targeted applications such as agricultural defect detection.
基金supported by the Research on theKey Technology of Damage Identification Method of Dam Concrete Structure based on Transformer Image Processing(242102521031)the project Research on Situational Awareness and Behavior Anomaly Prediction of Social Media Based on Multimodal Time Series Graph(232102520004)Key Scientific Research Project of Higher Education Institutions in Henan Province(25B520019).
文摘Image enhancement utilizes intensity transformation functions to maximize the information content of enhanced images.This paper approaches the topic as an optimization problem and uses the bald eagle search(BES)algorithm to achieve optimal results.In our proposed model,gamma correction and Retinex address color cast issues and enhance image edges and details.The final enhanced image is obtained through color balancing.The BES algorithm seeks the optimal solution through the selection,search,and swooping stages.However,it is prone to getting stuck in local optima and converges slowly.To overcome these limitations,we propose an improved BES algorithm(ABES)with enhanced population learning,position updates,and control parameters.ABES is employed to optimize the core parameters of gamma correction and Retinex to improve image quality,and the maximization of information entropy is utilized as the objective function.Real benchmark images are collected to validate its performance.Experimental results demonstrate that ABES outperforms the existing image enhancement methods,including the flower pollination algorithm,the chimp optimization algorithm,particle swarm optimization,and BES,in terms of information entropy,peak signal-to-noise ratio(PSNR),structural similarity index(SSIM),and patch-based contrast quality index(PCQI).ABES demonstrates superior performance both qualitatively and quantitatively,and it helps enhance prominent features and contrast in the images while maintaining the natural appearance of the original images.
文摘Background:Quantum-enhanced medical imaging algorithms–quantum entanglement reconstruction,quantum noise suppression,and quantum beamforming–propose possible remedies for significant constraints in traditional diagnostic imaging,such as resolution,radiation efficiency,and real-time processing.Methods:This work used a mixed-methods strategy,including controlled phantom experiments,retrospective multi-center clinical data analysis,and quantum-classical hybrid processing to assess enhancements in resolution,dosage efficiency,and diagnostic confidence.Statistical validation included analysis of variance(ANOVA)and receiver-operating characteristic curve analysis,juxtaposing quantum-enhanced methodologies with conventional and deep learning approaches.Results:Quantum entanglement reconstruction enhanced magnetic resonance imaging spatial resolution by 33.2%(P<0.01),quantum noise suppression facilitated computed tomography scans with a 60%reduction in radiation,and quantum beamforming improved ultrasound contrast by 27%while preserving real-time processing(<2 ms delay).Inter-reader variability(12%in Diagnostic Confidence Scores)showed that systematic training is needed,even if the performance was better.The research presented(1)a reusable clinical quantum imaging framework,(2)enhanced hardware processes(field-programmable gate array/graphics processing unit acceleration),and(3)cost-benefit analyses demonstrating a 22-month return on investment breakeven point.Conclusion:Quantum-enhanced imaging has a lot of promise for use in medicine,especially in neurology and cancer.Future research should focus on multi-modal integration(e.g.,positron emission tomography–magnetic resonance imaging),cloud-based quantum simulations for enhanced accessibility,and extensive trials to confirm long-term diagnostic accuracy.This breakthrough gives healthcare systems a technology roadmap and a reason to spend money on quantum-enhanced diagnostics.
文摘Aimed at the long and narrow geometric features and poor generalization ability of the damage detection in conveyor belts with steel rope cores using the X-ray image,a detection method of damage X-ray image is proposed based on the improved fully convolutional one-stage object detection(FCOS)algorithm.The regression performance of bounding boxes was optimized by introducing the complete intersection over union loss function into the improved algorithm.The feature fusion network structure is modified by adding adaptive fusion paths to the feature fusion network structure,which makes full use of the features of accurate localization and semantics of multi-scale feature fusion networks.Finally,the network structure was trained and validated by using the X-ray image dataset of damages in conveyor belts with steel rope cores provided by a flaw detection equipment manufacturer.In addition,the data enhancement methods such as rotating,mirroring,and scaling,were employed to enrich the image dataset so that the model is adequately trained.Experimental results showed that the improved FCOS algorithm promoted the precision rate and the recall rate by 20.9%and 14.8%respectively,compared with the original algorithm.Meanwhile,compared with Fast R-CNN,Faster R-CNN,SSD,and YOLOv3,the improved FCOS algorithm has obvious advantages;detection precision rate and recall rate of the modified network reached 95.8%and 97.0%respectively.Furthermore,it demonstrated a higher detection accuracy without affecting the speed.The results of this work have some reference significance for the automatic identification and detection of steel core conveyor belt damage.
基金funded by the Third Xinjiang Scientific Expedition Program(2021xjkk1400)the National Natural Science Foundation of China(42071049)+2 种基金the Natural Science Foundation of Xinjiang Uygur Autonomous Region(2019D01C022)the Xinjiang Uygur Autonomous Region Innovation Environment Construction Special Project&Science and Technology Innovation Base Construction Project(PT2107)the Tianshan Talent-Science and Technology Innovation Team(2022TSYCTD0006).
文摘Snow cover plays a critical role in global climate regulation and hydrological processes.Accurate monitoring is essential for understanding snow distribution patterns,managing water resources,and assessing the impacts of climate change.Remote sensing has become a vital tool for snow monitoring,with the widely used Moderate-resolution Imaging Spectroradiometer(MODIS)snow products from the Terra and Aqua satellites.However,cloud cover often interferes with snow detection,making cloud removal techniques crucial for reliable snow product generation.This study evaluated the accuracy of four MODIS snow cover datasets generated through different cloud removal algorithms.Using real-time field camera observations from four stations in the Tianshan Mountains,China,this study assessed the performance of these datasets during three distinct snow periods:the snow accumulation period(September-November),snowmelt period(March-June),and stable snow period(December-February in the following year).The findings showed that cloud-free snow products generated using the Hidden Markov Random Field(HMRF)algorithm consistently outperformed the others,particularly under cloud cover,while cloud-free snow products using near-day synthesis and the spatiotemporal adaptive fusion method with error correction(STAR)demonstrated varying performance depending on terrain complexity and cloud conditions.This study highlighted the importance of considering terrain features,land cover types,and snow dynamics when selecting cloud removal methods,particularly in areas with rapid snow accumulation and melting.The results suggested that future research should focus on improving cloud removal algorithms through the integration of machine learning,multi-source data fusion,and advanced remote sensing technologies.By expanding validation efforts and refining cloud removal strategies,more accurate and reliable snow products can be developed,contributing to enhanced snow monitoring and better management of water resources in alpine and arid areas.
基金Project supported by the National Natural Science Foundation of China(Grant No.12027812)the Guangdong Basic and Applied Basic Research Foundation of Guangdong Province,China(Grant No.2021A1515111031)。
文摘The low-density imaging performance of a zone plate-based nano-resolution hard x-ray computed tomography(CT)system can be significantly improved by incorporating a grating-based Lau interferometer. Due to the diffraction, however,the acquired nano-resolution phase signal may suffer splitting problem, which impedes the direct reconstruction of phase contrast CT(nPCT) images. To overcome, a new model-driven nPCT image reconstruction algorithm is developed in this study. In it, the diffraction procedure is mathematically modeled into a matrix B, from which the projections without signal splitting can be generated invertedly. Furthermore, a penalized weighted least-square model with total variation(PWLSTV) is employed to denoise these projections, from which nPCT images with high accuracy are directly reconstructed.Numerical experiments demonstrate that this new algorithm is able to work with phase projections having any splitting distances. Moreover, results also reveal that nPCT images of higher signal-to-noise-ratio(SNR) could be reconstructed from projections having larger splitting distances. In summary, a novel model-driven nPCT image reconstruction algorithm with high accuracy and robustness is verified for the Lau interferometer-based hard x-ray nano-resolution phase contrast imaging.
基金National Natural Science Foundation of China(No.62293493)。
文摘Three dimensional(3-D)imaging algorithms with irregular planar multiple-input-multiple-output(MIMO)arrays are discussed and compared with each other.Based on the same MIMO array,a modified back projection algorithm(MBPA)is accordingly proposed and four imaging algorithms are used for comparison,back-projection method(BP),back-projection one in time domain(BP-TD),modified back-projection one and fast Fourier transform(FFT)-based MIMO range migration algorithm(FFT-based MIMO RMA).All of the algorithms have been implemented in practical application scenarios by use of the proposed imaging system.Back to the practical applications,MIMO array-based imaging system with wide-bandwidth properties provides an efficient tool to detect objects hidden behind a wall.An MIMO imaging radar system,composed of a vector network analyzer(VNA),a set of switches,and an array of Vivaldi antennas,have been designed,fabricated,and tested.Then,these algorithms have been applied to measured data collected in different scenarios constituted by five metallic spheres in the absence and in the presence of a wall between the antennas and the targets in simulation and pliers in free space for experimental test.Finally,the focusing properties and time consumption of the above algorithms are compared.
文摘Steganography is a technique for hiding secret messages while sending and receiving communications through a cover item.From ancient times to the present,the security of secret or vital information has always been a significant problem.The development of secure communication methods that keep recipient-only data transmissions secret has always been an area of interest.Therefore,several approaches,including steganography,have been developed by researchers over time to enable safe data transit.In this review,we have discussed image steganography based on Discrete Cosine Transform(DCT)algorithm,etc.We have also discussed image steganography based on multiple hashing algorithms like the Rivest–Shamir–Adleman(RSA)method,the Blowfish technique,and the hash-least significant bit(LSB)approach.In this review,a novel method of hiding information in images has been developed with minimal variance in image bits,making our method secure and effective.A cryptography mechanism was also used in this strategy.Before encoding the data and embedding it into a carry image,this review verifies that it has been encrypted.Usually,embedded text in photos conveys crucial signals about the content.This review employs hash table encryption on the message before hiding it within the picture to provide a more secure method of data transport.If the message is ever intercepted by a third party,there are several ways to stop this operation.A second level of security process implementation involves encrypting and decrypting steganography images using different hashing algorithms.
基金This work was supported by the National Science Fund for Distinguished Young Scholars(62325104).
文摘The quality of synthetic aperture radar(SAR)image degrades in the case of multiple imaging projection planes(IPPs)and multiple overlapping ship targets,and then the performance of target classification and recognition can be influenced.For addressing this issue,a method for extracting ship targets with overlaps via the expectation maximization(EM)algorithm is pro-posed.First,the scatterers of ship targets are obtained via the target detection technique.Then,the EM algorithm is applied to extract the scatterers of a single ship target with a single IPP.Afterwards,a novel image amplitude estimation approach is pro-posed,with which the radar image of a single target with a sin-gle IPP can be generated.The proposed method can accom-plish IPP selection and targets separation in the image domain,which can improve the image quality and reserve the target information most possibly.Results of simulated and real mea-sured data demonstrate the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(Grant No.61271376)the Anhui Provincial Natural Science Foundation,China(Grant No.1208085MF114)
文摘The single-pixel imaging(SPI) technique is able to capture two-dimensional(2 D) images without conventional array sensors by using a photodiode. As a novel scheme, Fourier single-pixel imaging(FSI) has been proven capable of reconstructing high-quality images. Due to the fact that the Fourier basis patterns(also known as grayscale sinusoidal patterns)cannot be well displayed on the digital micromirror device(DMD), a fast FSI system is proposed to solve this problem by binarizing Fourier pattern through a dithering algorithm. However, the traditional dithering algorithm leads to low quality as the extra noise is inevitably induced in the reconstructed images. In this paper, we report a better dithering algorithm to binarize Fourier pattern, which utilizes the Sierra–Lite kernel function by a serpentine scanning method. Numerical simulation and experiment demonstrate that the proposed algorithm is able to achieve higher quality under different sampling ratios.
基金supported by the National Natural Science Foundation of China(61773120,61473301,71501180,71501179,61603400)。
文摘In the imaging observation system, imaging task scheduling is an important topic. Most scholars study the imaging task scheduling from the perspective of static priority, and only a few from the perspective of dynamic priority. However,the priority of the imaging task is dynamic in actual engineering. To supplement the research on imaging observation, this paper proposes the task priority model, dynamic scheduling strategy and Heuristic algorithm. At first, this paper analyzes the relevant theoretical basis of imaging observation, decomposes the task priority into four parts, including target priority, imaging task priority, track, telemetry & control(TT&C)requirement priority and data transmission requirement priority, summarizes the attribute factors that affect the above four types of priority in detail, and designs the corresponding priority model. Then, this paper takes the emergency tasks scheduling problem as the background, proposes the dynamic scheduling strategy and heuristic algorithm. Finally, the task priority model,dynamic scheduling strategy and heuristic algorithm are verified by experiments.
基金funded by Researchers Supporting Program at King Saud University,(RSPD2024R809).
文摘In blood or bone marrow,leukemia is a form of cancer.A person with leukemia has an expansion of white blood cells(WBCs).It primarily affects children and rarely affects adults.Treatment depends on the type of leukemia and the extent to which cancer has established throughout the body.Identifying leukemia in the initial stage is vital to providing timely patient care.Medical image-analysis-related approaches grant safer,quicker,and less costly solutions while ignoring the difficulties of these invasive processes.It can be simple to generalize Computer vision(CV)-based and image-processing techniques and eradicate human error.Many researchers have implemented computer-aided diagnosticmethods andmachine learning(ML)for laboratory image analysis,hopefully overcoming the limitations of late leukemia detection and determining its subgroups.This study establishes a Marine Predators Algorithm with Deep Learning Leukemia Cancer Classification(MPADL-LCC)algorithm onMedical Images.The projectedMPADL-LCC system uses a bilateral filtering(BF)technique to pre-process medical images.The MPADL-LCC system uses Faster SqueezeNet withMarine Predators Algorithm(MPA)as a hyperparameter optimizer for feature extraction.Lastly,the denoising autoencoder(DAE)methodology can be executed to accurately detect and classify leukemia cancer.The hyperparameter tuning process using MPA helps enhance leukemia cancer classification performance.Simulation results are compared with other recent approaches concerning various measurements and the MPADL-LCC algorithm exhibits the best results over other recent approaches.
基金This work is supported by Natural Science Foundation of Anhui under Grant 1908085MF207,KJ2020A1215,KJ2021A1251 and 2023AH052856the Excellent Youth Talent Support Foundation of Anhui underGrant gxyqZD2021142the Quality Engineering Project of Anhui under Grant 2021jyxm1117,2021kcszsfkc307,2022xsxx158 and 2022jcbs043.
文摘To enhance the diversity and distribution uniformity of initial population,as well as to avoid local extrema in the Chimp Optimization Algorithm(CHOA),this paper improves the CHOA based on chaos initialization and Cauchy mutation.First,Sin chaos is introduced to improve the random population initialization scheme of the CHOA,which not only guarantees the diversity of the population,but also enhances the distribution uniformity of the initial population.Next,Cauchy mutation is added to optimize the global search ability of the CHOA in the process of position(threshold)updating to avoid the CHOA falling into local optima.Finally,an improved CHOA was formed through the combination of chaos initialization and Cauchy mutation(CICMCHOA),then taking fuzzy Kapur as the objective function,this paper applied CICMCHOA to natural and medical image segmentation,and compared it with four algorithms,including the improved Satin Bowerbird optimizer(ISBO),Cuckoo Search(ICS),etc.The experimental results deriving from visual and specific indicators demonstrate that CICMCHOA delivers superior segmentation effects in image segmentation.
基金supported by the National Natural Science Foundation of China(No.62073118)。
文摘Metal active gas(MAG)welding is one of the widely applied welding techniques using argon and carbon dioxide as shielding gas.In response to the problem of welding halo and drag shadow during the image acquisition process of it,which makes it difficult to accurately extract the contour of the molten pool,this paper proposes a molten pool edge detection method that combines dark channel prior dehazing(DCPD)and improved single scale Retinex image enhancement algorithm.This method overcomes the problem of excessive edge noise in the original molten pool image and the difficulty in feature extraction caused by the dark part of the molten pool after DCPD processing.Through comparative experiments and ablation experiments,it has been shown that the algorithm proposed in this paper has significantly improved the enhancement effect and feature extraction effect,extracting accurate and complete molten pool contours.
基金supported by the National Natural Science Foundation of China(82020108006 and 81730025 to Chen Zhao,U2001209 to Bo Yan)the Excellent Academic Leaders of Shanghai(18XD1401000 to Chen Zhao)the Natural Science Foundation of Shanghai,China(21ZR1406600 to Weimin Tan).
文摘In ophthalmology,the quality of fundus images is critical for accurate diagnosis,both in clinical practice and in artificial intelligence(AI)-assisted diagnostics.Despite the broad view provided by ultrawide-field(UWF)imaging,pseudocolor images may conceal critical lesions necessary for precise diagnosis.To address this,we introduce UWF-Net,a sophisticated image enhancement algorithm that takes disease characteristics into consideration.Using the Fudan University ultra-wide-field image(FDUWI)dataset,which includes 11294 Optos pseudocolor and 2415 Zeiss true-color UWF images,each of which is rigorously annotated,UWF-Net combines global style modeling with feature-level lesion enhancement.Pathological consistency loss is also applied to maintain fundus feature integrity,significantly improving image quality.Quantitative and qualitative evaluations demonstrated that UWF-Net outperforms existing methods such as contrast limited adaptive histogram equalization(CLAHE)and structure and illumination constrained generative adversarial network(StillGAN),delivering superior retinal image quality,higher quality scores,and preserved feature details after enhancement.In disease classification tasks,images enhanced by UWF-Net showed notable improvements when processed with existing classification systems over those enhanced by StillGAN,demonstrating a 4.62%increase in sensitivity(SEN)and a 3.97%increase in accuracy(ACC).In a multicenter clinical setting,UWF-Net-enhanced images were preferred by ophthalmologic technicians and doctors,and yielded a significant reduction in diagnostic time((13.17±8.40)s for UWF-Net enhanced images vs(19.54±12.40)s for original images)and an increase in diagnostic accuracy(87.71%for UWF-Net enhanced images vs 80.40%for original images).Our research verifies that UWF-Net markedly improves the quality of UWF imaging,facilitating better clinical outcomes and more reliable AI-assisted disease classification.The clinical integration of UWF-Net holds great promise for enhancing diagnostic processes and patient care in ophthalmology.
基金supported by the National Natural Science Foundation of China(Nos.51675076 and 51505062)the Science Fund for Creative Research Groups of NSFC(No.51621064)the Basic scientific research fees for Central Universities(Nos.DUT17GF109 and DUT16TD20)
文摘At present,both the point source and the imaging polarization navigation devices only can output the angle information,which means that the velocity information of the carrier cannot be extracted from the polarization field pattern directly.Optical flow is an image-based method for calculating the velocity of pixel point movement in an image.However,for ordinary optical flow,the difference in pixel value as well as the calculation accuracy can be reduced in weak light.Polarization imaging technology has the ability to improve both the detection accuracy and the recognition probability of the target because it can acquire the extra polarization multi-dimensional information of target radiation or reflection.In this paper,combining the polarization imaging technique with the traditional optical flow algorithm,a polarization optical flow algorithm is proposed,and it is verified that the polarized optical flow algorithm has good adaptation in weak light and can improve the application range of polarization navigation sensors.This research lays the foundation for day and night all-weather polarization navigation applications in future.
基金supported by the National Key Research and Development Program of China(Grant Nos.2017YFA0206004,2017YFA0206002,2018YFC0206002,and 2017YFA0403801)National Natural Science Foundation of China(Grant No.81430087)。
文摘Towards efficient implementation of x-ray ghost imaging(XGI),efficient data acquisition and fast image reconstruction together with high image quality are preferred.In view of radiation dose resulted from the incident x-rays,fewer measurements with sufficient signal-to-noise ratio(SNR)are always anticipated.Available methods based on linear and compressive sensing algorithms cannot meet all the requirements simultaneously.In this paper,a method based on a modified compressive sensing algorithm with conjugate gradient descent method(CGDGI)is developed to solve the problems encountered in available XGI methods.Simulation and experiments demonstrate the practicability of CGDGI-based method for the efficient implementation of XGI.The image reconstruction time of sub-second implicates that the proposed method has the potential for real-time XGI.
基金Supported by the National Natural Science Foundation of China(Grant No.51905070).
文摘Full matrix focusing method of ultrasonic phased array has been proved with advantages of good signal-to-noise ratio and imaging resolution in the field of Ultrasonic NDT.However,it is still suffering from the time-consuming data acquisition and processing.In order to solve the problem,two simplified matrix focusing methods are provided in the paper.One provided method is a triangular matrix focusing algorithm based on the principle of reciprocity for the multi-channel ultrasonic system.The other provided method is a trapezoidal matrix focusing algorithm based on the energy weight of the different channel to the focusing area.Time of data acquisition and computational is decreased with the provided simplified matrix focusing methods.In order to prove the validity of two provided algorithms,both side-drilled holes and oblique cracks are used for imaging experiments.The experimental results show that the imaging quality of the triangular matrix focusing algorithm is basically consistent to that of the full matrix focusing method.And imaging quality of the trapezoidal matrix focusing algorithm is slightly reduced with the amount of multi-channel data decreasing.Both data acquisition and computational efficiency using the triangular matrix focusing algorithm and the trapezoidal matrix focusing algorithm have been improved significantly compared with original full matrix focusing method.