期刊文献+
共找到2,046篇文章
< 1 2 103 >
每页显示 20 50 100
Robust H_∞ control of piecewise-linear chaotic systems with random data loss
1
作者 张洪斌 于永斌 张健 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第8期191-199,共9页
This paper studies the problem of robust H∞ control of piecewise-linear chaotic systems with random data loss. The communication links between the plant and the controller are assumed to be imperfect (that is, data ... This paper studies the problem of robust H∞ control of piecewise-linear chaotic systems with random data loss. The communication links between the plant and the controller are assumed to be imperfect (that is, data loss occurs intermittently, which appears typically in a network environment). The data loss is modelled as a random process which obeys a Bernoulli distribution. In the face of random data loss, a piecewise controller is designed to robustly stabilize the networked system in the sense of mean square and also achieve a prescribed H∞ disturbance attenuation performance based on a piecewise-quadratic Lyapunov function. The required H∞ controllers can be designed by solving a set of linear matrix inequalities (LMIs). Chua's system is provided to illustrate the usefulness and applicability of the developed theoretical results. 展开更多
关键词 CHAOS H∞ control piecewise-linear systems piecewise-quadratic Lyapunov functions random data loss
原文传递
Research and Simulation of Mass Random Data Association Rules Based on Fuzzy Cluster Analysis
2
作者 Huaisheng Wu Qin Li and Xiumng Li 《国际计算机前沿大会会议论文集》 2021年第1期80-89,共10页
Because the traditional method is difficult to obtain the internal relationshipand association rules of data when dealingwith massive data, a fuzzy clusteringmethod is proposed to analyze massive data. Firstly, the sa... Because the traditional method is difficult to obtain the internal relationshipand association rules of data when dealingwith massive data, a fuzzy clusteringmethod is proposed to analyze massive data. Firstly, the sample matrix wasnormalized through the normalization of sample data. Secondly, a fuzzy equivalencematrix was constructed by using fuzzy clustering method based on thenormalization matrix, and then the fuzzy equivalence matrix was applied as thebasis for dynamic clustering. Finally, a series of classifications were carried out onthe mass data at the cut-set level successively and a dynamic cluster diagram wasgenerated. The experimental results show that using data fuzzy clustering methodcan effectively identify association rules of data sets by multiple iterations ofmassive data, and the clustering process has short running time and good robustness.Therefore, it can be widely applied to the identification and classification ofassociation rules of massive data such as sound, image and natural resources. 展开更多
关键词 Fuzzy clustering Massive random data Management rules Cut-set levels
原文传递
Fuzzy norm method for evaluating random vibration of airborne platform from limited PSD data 被引量:7
3
作者 Wang Zhongyu Wang Yanqing +1 位作者 Wang Qian Zhang Jianjun 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第6期1442-1450,共9页
For random vibration of airborne platform, the accurate evaluation is a key indicator to ensure normal operation of airborne equipment in flight. However, only limited power spectral density(PSD) data can be obtaine... For random vibration of airborne platform, the accurate evaluation is a key indicator to ensure normal operation of airborne equipment in flight. However, only limited power spectral density(PSD) data can be obtained at the stage of flight test. Thus, those conventional evaluation methods cannot be employed when the distribution characteristics and priori information are unknown. In this paper, the fuzzy norm method(FNM) is proposed which combines the advantages of fuzzy theory and norm theory. The proposed method can deeply dig system information from limited data, which probability distribution is not taken into account. Firstly, the FNM is employed to evaluate variable interval and expanded uncertainty from limited PSD data, and the performance of FNM is demonstrated by confidence level, reliability and computing accuracy of expanded uncertainty. In addition, the optimal fuzzy parameters are discussed to meet the requirements of aviation standards and metrological practice. Finally, computer simulation is used to prove the adaptability of FNM. Compared with statistical methods, FNM has superiority for evaluating expanded uncertainty from limited data. The results show that the reliability of calculation and evaluation is superior to 95%. 展开更多
关键词 Expanded uncertainty Fuzzy norm method Limited PSD data random vibration Reliability Variable interval
原文传递
Forest type identification by random forest classification combined with SPOT and multitemporal SAR data 被引量:4
4
作者 Ying Yu Mingze Li Yu Fu 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第5期1407-1414,共8页
We developed a forest type classification technology for the Daxing'an Mountains of northeast China using multisource remote sensing data.A SPOT-5 image and two temporal images of RADARSAT-2 full-polarization SAR wer... We developed a forest type classification technology for the Daxing'an Mountains of northeast China using multisource remote sensing data.A SPOT-5 image and two temporal images of RADARSAT-2 full-polarization SAR were used to identify forest types in the Pangu Forest Farm of the Daxing'an Mountains.Forest types were identified using random forest(RF) classification with the following data combination types: SPOT-5 alone,SPOT-5 and SAR images in August or November,and SPOT-5 and two temporal SAR images.We identified many forest types using a combination of multitemporal SAR and SPOT-5 images,including Betula platyphylla,Larix gmelinii,Pinus sylvestris and Picea koraiensis forests.The accuracy of classification exceeded 88% and improved by 12% when compared to the classification results obtained using SPOT data alone.RF classification using a combination of multisource remote sensing data improved classification accuracy compared to that achieved using single-source remote sensing data. 展开更多
关键词 random forest classification MULTITEMPORAL Multisource remote sensing data Polarization decomposition
在线阅读 下载PDF
THE INFLUENCE OF THE DIFFERENT DISTRIBUTEDPHASE-RANDOMIZED ON THE EXPERIMENTAL DATA OBTAINEd IN DYNAMIC ANALYSIS 被引量:1
5
作者 马军海 陈予恕 刘曾荣 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1998年第11期0-0,0-0+0-0+0-0+0-0,共10页
In this paper the influence of the differently distributed phase-randontized to the data obtained in dynamic analysis for critical value is studied.The calculation results validate that the sufficient phase-randomized... In this paper the influence of the differently distributed phase-randontized to the data obtained in dynamic analysis for critical value is studied.The calculation results validate that the sufficient phase-randomized of the different distributed random numbers are less influential on the critical value . This offers the theoretical foundation of the feasibility and practicality of the phase-randomized method. 展开更多
关键词 experimental data surrogate data critical value phaserandomized random timeseries chaotic timeseries
在线阅读 下载PDF
Automatic Variable Selection for Single-Index Random Effects Models with Longitudinal Data
6
作者 Suigen Yang Liugen Xue 《Open Journal of Statistics》 2014年第3期230-237,共8页
We consider the problem of variable selection for the single-index random effects models with longitudinal data. An automatic variable selection procedure is developed using smooth-threshold. The proposed method share... We consider the problem of variable selection for the single-index random effects models with longitudinal data. An automatic variable selection procedure is developed using smooth-threshold. The proposed method shares some of the desired features of existing variable selection methods: the resulting estimator enjoys the oracle property;the proposed procedure avoids the convex optimization problem and is flexible and easy to implement. Moreover, we use the penalized weighted deviance criterion for a data-driven choice of the tuning parameters. Simulation studies are carried out to assess the performance of our method, and a real dataset is analyzed for further illustration. 展开更多
关键词 VARIABLE SELECTION Single-Index MODEL random Effects Longitudinal data
暂未订购
Thermal stability and data retention of resistive random access memory with HfOx/ZnO double layers
7
作者 赖云锋 陈凡 +3 位作者 曾泽村 林培杰 程树英 俞金玲 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第8期411-416,共6页
As an industry accepted storage scheme, hafnium oxide(HfO_x) based resistive random access memory(RRAM)should further improve its thermal stability and data retention for practical applications. We therefore fabri... As an industry accepted storage scheme, hafnium oxide(HfO_x) based resistive random access memory(RRAM)should further improve its thermal stability and data retention for practical applications. We therefore fabricated RRAMs with HfO_x/ZnO double-layer as the storage medium to study their thermal stability as well as data retention. The HfO_x/ZnO double-layer is capable of reversible bipolar switching under ultralow switching current(〈 3 μA) with a Schottky emission dominant conduction for the high resistance state and a Poole–Frenkel emission governed conduction for the low resistance state. Compared with a drastically increased switching current at 120℃ for the single HfO_x layer RRAM, the HfO_x/ZnO double-layer exhibits excellent thermal stability and maintains neglectful fluctuations in switching current at high temperatures(up to 180℃), which might be attributed to the increased Schottky barrier height to suppress current at high temperatures. Additionally, the HfO_x/ZnO double-layer exhibits 10-year data retention @85℃ that is helpful for the practical applications in RRAMs. 展开更多
关键词 resistive random access memory (RRAM) thermal stability data retention double layer
原文传递
A Data-Driven Car-Following Model Based on the Random Forest
8
作者 Huili Shi Tingli Wang +3 位作者 Fusheng Zhong Hanqing Wang Junyan Han Xiaoyuan Wang 《World Journal of Engineering and Technology》 2021年第3期503-515,共13页
The car-following models are the research basis of traffic flow theory and microscopic traffic simulation. Among the previous work, the theory-driven models are dominant, while the data-driven ones are relatively rare... The car-following models are the research basis of traffic flow theory and microscopic traffic simulation. Among the previous work, the theory-driven models are dominant, while the data-driven ones are relatively rare. In recent years, the related technologies of Intelligent Transportation System (ITS) re</span><span style="font-family:Verdana;">- </span><span style="font-family:Verdana;">presented by the Vehicles to Everything (V2X) technology have been developing rapidly. Utilizing the related technologies of ITS, the large-scale vehicle microscopic trajectory data with high quality can be acquired, which provides the research foundation for modeling the car-following behavior based on the data-driven methods. According to this point, a data-driven car-following model based on the Random Forest (RF) method was constructed in this work, and the Next Generation Simulation (NGSIM) dataset was used to calibrate and train the constructed model. The Artificial Neural Network (ANN) model, GM model, and Full Velocity Difference (FVD) model are em</span><span style="font-family:Verdana;">- </span><span style="font-family:Verdana;">ployed to comparatively verify the proposed model. The research results suggest that the model proposed in this work can accurately describe the car-</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">following behavior with better performance under multiple performance indicators. 展开更多
关键词 Traffic Flow Car-Following Model data-Driven Method random Forest Intelligent Transportation System
在线阅读 下载PDF
TESTING FOR VARYING DISPERSION OF LONGITUDINAL BINOMIAL DATA IN NONLINEAR LOGISTIC MODELS WITH RANDOM EFFECTS 被引量:2
9
作者 林金官 韦博成 《Acta Mathematica Scientia》 SCIE CSCD 2004年第4期559-568,共10页
In this paper, it is discussed that two tests for varying dispersion of binomial data in the framework of nonlinear logistic models with random effects, which are widely used in analyzing longitudinal binomial data. O... In this paper, it is discussed that two tests for varying dispersion of binomial data in the framework of nonlinear logistic models with random effects, which are widely used in analyzing longitudinal binomial data. One is the individual test and power calculation for varying dispersion through testing the randomness of cluster effects, which is extensions of Dean(1992) and Commenges et al (1994). The second test is the composite test for varying dispersion through simultaneously testing the randomness of cluster effects and the equality of random-effect means. The score test statistics are constructed and expressed in simple, easy to use, matrix formulas. The authors illustrate their test methods using the insecticide data (Giltinan, Capizzi & Malani (1988)). 展开更多
关键词 Longitudinal binomial data logistic regression nonlinear models power calculation random effects score test varying dispersion
在线阅读 下载PDF
多组学拓展骨质疏松症的新治疗靶点:亚洲、欧洲项目组数据分析
10
作者 陈勇喜 《中国组织工程研究》 北大核心 2026年第24期6382-6389,共8页
背景:随着中国老龄化进程的加快,骨质疏松症患者也逐渐增多,而全基因组关联研究和单细胞转录测序的发展使得研究者们可通过将各组学研究数据相结合以发现更多与骨质疏松症相关的基因。目的:通过整合亚洲、欧洲人群的全基因组关联研究和... 背景:随着中国老龄化进程的加快,骨质疏松症患者也逐渐增多,而全基因组关联研究和单细胞转录测序的发展使得研究者们可通过将各组学研究数据相结合以发现更多与骨质疏松症相关的基因。目的:通过整合亚洲、欧洲人群的全基因组关联研究和转录组学,基于汇总统计数据的孟德尔随机化拓展骨质疏松症新的治疗靶点。方法:通过整合来自多个组织(血液、肌肉-骨骼)的顺式表达数量性状位点和蛋白质数量性状位点数据集(基因-组织表达项目组V.8选取了人类血液与骨骼-肌肉两种组织的表达数量性状位点数据集,基因-组织表达项目组是研究基因表达在不同组织/器官中变异及其与遗传调控关系的大型国际合作项目)及骨质疏松症全基因组关联研究数据(FinnGen数据库2021年发布的关于欧洲人种骨质疏松症的全基因组关联研究数据,FinnGen是芬兰的一个大型基因组研究项目);从日本生物银行数据库获取的2020年发布关于东亚人群的大规模全基因组关联研究,是日本主导的大规模人群队列研究项目,使用基于汇总统计数据的孟德尔随机化方法来鉴定骨质疏松症的相关基因,并使用共定位分析、单细胞测序及富集分析对已鉴定出的相关基因做进一步分析。所有数据均来自于已发表的研究或公开可用的数据,均已提供伦理审批书和知情同意书。结果与结论:①基于汇总统计数据的孟德尔随机化分析一共确定了64个(去除重复基因后)与骨质疏松症显著相关的基因,其中人类白细胞抗原(HLA)等位基因HLA-DQA1、HLA-DQA2、HLA-DQB1、HLA-DQB2和HLA-DRB5在2个结局数据集中得到了相互验证,具有显著相关性;②进一步的共定位分析表明,HLA-DQA2、HLA-DQB1具有共定位的证据(后验概率PPH4>0.8);③蛋白质数量性状位点分析结果表明,血浆中高水平的HLA-DQA2与骨质疏松症风险降低相关;④在单细胞测序分析方面,在骨质疏松症的免疫微环境中,树突状细胞、B细胞、巨噬细胞和中性粒细胞丰度较其他细胞群明显升高;⑤富集分析结果表明,鉴定出的基因在组织相容性复合物Ⅱ分子抗原呈递途径富集;⑥此次研究通过生物信息学结合亚洲、欧洲人群的全基因组关联数据,初步确定了几个以前尚未报道过的与骨质疏松症相关的基因,研究者们可在临床试验中进一步探索上述基因作为骨质疏松症新的治疗途径的潜力。 展开更多
关键词 全基因组关联研究 单细胞测序 骨质疏松症 基于汇总数据的孟德尔随机化
暂未订购
DYRK2:基于东亚和欧洲人群揭示类风湿关节炎合并骨质疏松症的治疗新靶点
11
作者 吴治林 何秦 +4 位作者 王枰稀 石现 袁松 张骏 王浩 《中国组织工程研究》 北大核心 2026年第6期1569-1579,共11页
背景:研究表明,类风湿关节炎与骨质疏松症呈正相关趋势,但因果关系和相关机制仍未得到证实。随着计算机科学和生命科学的交叉融合,基于全基因组关联研究数据和转录组测序数据进行孟德尔随机化和生信分析,可以评估两疾病间的因果关系、... 背景:研究表明,类风湿关节炎与骨质疏松症呈正相关趋势,但因果关系和相关机制仍未得到证实。随着计算机科学和生命科学的交叉融合,基于全基因组关联研究数据和转录组测序数据进行孟德尔随机化和生信分析,可以评估两疾病间的因果关系、探索相关机制以及挖掘治疗靶点,这将利于类风湿关节炎合并骨质疏松症的精准治疗。目的:采用双样本孟德尔随机化分析类风湿关节炎和骨质疏松症间的因果关系,同时基于汇总数据的孟德尔随机化分析和生信分析挖掘潜在共病靶点和靶向药物,旨在为类风湿关节炎合并骨质疏松症的机制探索和精准治疗提供理论依据。方法:①从基于亚洲人群和欧洲人群的GWAS Catalog、IEU Open GWAS、FinnGen以及eQTLGen数据库下载类风湿关节炎、骨质疏松症和顺式表达数量性状位点的全基因组关联研究数据,用于双样本孟德尔随机化和基于汇总数据的孟德尔随机化分析。②从GEO数据库下载类风湿关节炎的转录组测序数据(GSE93272和GSE15573),用于生物信息学分析。③以逆方差加权法作为主要分析方法,进行类风湿关节炎和骨质疏松症之间的正向和反向双样本孟德尔随机化分析,并用MR Egger法、简单模式法、加权中位数法和加权模式法对结果加以佐证。④基于汇总数据的孟德尔随机化分析鉴定与类风湿关节炎和骨质疏松症相关的基因,并基于交叉分析挖掘出类风湿关节炎和骨质疏松症共病靶点。同时,基于生信分析和细胞实验验证共病靶点的生物学功能。⑤此外,基于DYRK2构建类风湿关节炎风险预测诺莫图,通过受试者特征曲线、矫正曲线和决策曲线验证预测性能。最后,基于Enrichr数据库挖掘靶点潜在药物并进行分子对接。结果与结论:①正向孟德尔随机化分析结果显示,除外GCST90044540和GCST90086118无统计学意义,其他所有结果均表明类风湿关节炎和骨质疏松症间存在显著因果关系,并且呈正相关。②反向孟德尔随机化分析结果提示,骨质疏松症和类风湿关节炎间未见显著因果关系。③基于汇总数据的孟德尔随机化分析共鉴定出412和344个与类风湿关节炎和骨质疏松症正相关的基因,421和347个负相关基因。基于交叉分析得到26个共病基因。其中,DYRK2是潜在治疗靶点,后续生信分析和细胞实验证实DYRK2在类风湿关节炎和骨质疏松症的进展过程中发挥重要作用。④此外,构建的诺莫图具有出色的预测性能。最后,挖掘出4个DYRK2的潜在靶向药物(Undecanoic Acid、Metyrapone、JNJ-38877605和ACA),分子对接也证明具有可靠的靶向能力。⑤总之,基于亚洲人群和欧洲人群的全基因组关联研究数据证明了类风湿关节炎和骨质疏松症在遗传学层面存在着因果关系,DYRK2是潜在治疗靶点,有4种小分子是潜在靶向药物。 展开更多
关键词 类风湿关节炎 骨质疏松症 孟德尔随机化 基于汇总数据的孟德尔随机化 共病基因 DYRK2
暂未订购
基于特征加权与ISIA-RF的油浸式变压器故障诊断
12
作者 张富民 张菁 解大 《实验室研究与探索》 北大核心 2026年第1期71-78,84,共9页
针对电力变压器早期故障诊断准确性较低的问题,提出一种基于ISIA-RF的变压器故障诊断模型。该模型首先采用数据加权策略对DGA数据进行处理;进而融合自适应t分布和Levy飞行策略,提升IVYA算法的全局搜索能力与收敛性能;在此基础上,利用改... 针对电力变压器早期故障诊断准确性较低的问题,提出一种基于ISIA-RF的变压器故障诊断模型。该模型首先采用数据加权策略对DGA数据进行处理;进而融合自适应t分布和Levy飞行策略,提升IVYA算法的全局搜索能力与收敛性能;在此基础上,利用改进的ISIA算法对随机森林(RF)模型参数进行寻优。通过将所构建的变压器故障诊断模型ISIA-RF与经SSA、GWO、WOA及IVYA算法优化的RF模型实验对比,结果表明,ISIA-RF模型的变压器故障诊断平均准确率达到97.16%,均高于其他诊断模型。该模型有效提升了故障诊断的准确率与鲁棒性,具有较强的泛化能力,为变压器早期故障诊断提供了有效的解决方案。 展开更多
关键词 电力变压器 故障诊断 数据优化 随机森林 常青藤优化算法
在线阅读 下载PDF
基于Panel Data的高速公路事故预测模型 被引量:5
13
作者 徐婷 孙小端 +1 位作者 王伟力 贺玉龙 《北京工业大学学报》 EI CAS CSCD 北大核心 2010年第4期495-499,共5页
使用Panel Data模型进行不同路段交通事故的统计回归,可以识别路段样本间的固有差异以及未观测到的变量影响.作者介绍了个体固定效应模型和随机效应模型的建立过程和相关检验,并以京津塘高速为例,分别建立了一般混合回归模型、个体固定... 使用Panel Data模型进行不同路段交通事故的统计回归,可以识别路段样本间的固有差异以及未观测到的变量影响.作者介绍了个体固定效应模型和随机效应模型的建立过程和相关检验,并以京津塘高速为例,分别建立了一般混合回归模型、个体固定效应模型和随机效应模型,通过Hausman检验比较模型效果,最终得出个体固定效应模型更加合理、适合于高速公路事故分析的结论. 展开更多
关键词 交通安全 事故预测 一般混合模型 个体固定效应 随机效应
在线阅读 下载PDF
Epstein-Barr病毒与强直性脊柱炎互作:基于UK Biobank与FinnGen数据库的分析
14
作者 刘恩旭 孙钰 +3 位作者 段嘉豪 杨雷 蒋浩波 杨少锋 《中国组织工程研究》 北大核心 2026年第17期4542-4547,共6页
背景:Epstein-Barr病毒(EBV)作为一种人类疱疹病毒,在人群中广泛存在。既往观察性研究提示EBV感染与强直性脊柱炎相关,但传统方法因混杂因素和反向因果偏倚无法明确因果关联。阐明EBV与强直性脊柱炎的因果关联,不仅有助于揭示强直性脊... 背景:Epstein-Barr病毒(EBV)作为一种人类疱疹病毒,在人群中广泛存在。既往观察性研究提示EBV感染与强直性脊柱炎相关,但传统方法因混杂因素和反向因果偏倚无法明确因果关联。阐明EBV与强直性脊柱炎的因果关联,不仅有助于揭示强直性脊柱炎的免疫致病机制,也为靶向EBV的预防策略提供理论依据。目的:通过双向孟德尔随机化分析,探讨EBV感染与强直性脊柱炎之间的双向因果关系。方法:基于欧洲人群的全基因组关联研究汇总数据,采用双向双样本孟德尔随机化分析,结合广义汇总数据孟德尔随机化与传统方法(逆方差加权、MR-Egger、加权中位数),探讨EBV感染与强直性脊柱炎的双向因果关系。EBV抗体(EA-D、EBNA-1、VCA p18、ZEBRA)数据来源于UK Biobank数据库,强直性脊柱炎数据来自FinnGen数据库。工具变量筛选遵循全基因组显著性(P<5×10^(-6))、排除连锁不平衡及混杂相关单核苷酸多态性(吸烟、类风湿关节炎、银屑病)。统计检验采用Bonferroni校正(显著性阈值P=6.3×10^(-3)),并通过异质性(Cochran’s Q)、多效性(MR-Egger截距、MR-PRESSO)及稳健性(留一法)分析验证结果的可靠性。广义汇总数据孟德尔随机化方法进一步通过HEIDI-outlier检验(P<0.01)剔除多效性单核苷酸多态性,确保因果推断的准确性。结果与结论:①双向孟德尔随机化分析显示,EBV感染显著增加强直性脊柱炎发病风险:EBNA-1抗体水平升高与强直性脊柱炎风险呈正相关(OR=1.41,95%CI:1.14-1.76,P=0.002),而ZEBRA抗体效应更强(OR=1.56,95%CI:1.31-1.85,P=5.4×10^(-7)),提示EBV潜伏期(EBNA-1)与裂解期(ZEBRA)感染均可能通过交叉免疫反应驱动强直性脊柱炎发生;②反向因果分析显示,强直性脊柱炎与EBV裂解期标志物EA-D抗体呈负相关(OR=0.96,95%CI:0.94-0.98,P=3.25×10^(-4)),表明强直性脊柱炎患者免疫状态可能抑制EBV再激活;③所有结果通过异质性、多效性及稳健性检验,无潜在偏倚;④此研究基于国际数据库和欧洲人群数据,首次证实EBV感染是强直性脊柱炎的独立因果风险因素。尽管人群遗传背景存在差异,但欧洲人群的发现为解析强直性脊柱炎的共性免疫机制提供了关键线索。因此,未来需结合中国本土队列验证结果,探索EBV与中国人群强直性脊柱炎的分子互作特征。此外,广义汇总数据孟德尔随机化方法的应用为利用公共全基因组关联研究数据开展因果推断提供了范例,可推动中国研究者高效挖掘疾病风险因素,助力精准医学发展。 展开更多
关键词 强直性脊柱炎 EPSTEIN-BARR病毒 抗体 因果关系 广义汇总数据孟德尔随机化 异质性依赖工具检验 工程化组织构建
暂未订购
结合Voronoi划分HMRF模型的模糊ISODATA图像分割 被引量:7
15
作者 赵泉华 李晓丽 +1 位作者 赵雪梅 李玉 《信号处理》 CSCD 北大核心 2016年第10期1233-1243,共11页
为了解决传统模糊聚类图像分割方法对噪声敏感及无法自动准确确定聚类数的问题,提出结合Voronoi划分HMRF模型的模糊ISODATA图像分割方法。利用Voronoi划分将图像域划分为若干子区域,以划分子区域为基本单元定义基于隐马尔科夫随机场(HM... 为了解决传统模糊聚类图像分割方法对噪声敏感及无法自动准确确定聚类数的问题,提出结合Voronoi划分HMRF模型的模糊ISODATA图像分割方法。利用Voronoi划分将图像域划分为若干子区域,以划分子区域为基本单元定义基于隐马尔科夫随机场(HMRF)模型的模糊聚类目标函数,以解决噪声敏感问题;通过迭代自组织数据分析技术算法(ISODATA)中聚类分裂、合并技术改变聚类数,以实现聚类数的自动确定。对模拟、合成图像和真实图像分割结果的定性、定量分析表明:提出算法不仅可以有效克服噪声和像素异常值对分割结果的影响,而且还能自动准确确定聚类数,实现自动变类图像分割。 展开更多
关键词 VORONOI划分 隐马尔科夫随机场(HMRF) 迭代自组织数据分析技术算法(ISOdata) 模糊聚类 图像分割
在线阅读 下载PDF
变系数Panel Data模型的建立与估计
16
作者 徐达明 唐安民 李德旺 《湖南文理学院学报(自然科学版)》 CAS 2007年第4期32-34,共3页
研究了一类变系数Panel Data模型的建立与估计问题,并介绍了两个重要的变系数Panel Data模型.
关键词 PANEL data模型 变系数模型 固定影响 随机影响
在线阅读 下载PDF
肠道菌群与肌萎缩侧索硬化症的因果关系:IEU Open GWAS数据库的样本分析
17
作者 汪涛 闵友江 +5 位作者 王敏 王顺谱 李乐 张宸 肖伟平 余艺萍 《中国组织工程研究》 北大核心 2026年第12期3182-3189,共8页
背景:近期研究表明,肠道菌群可能会影响肌萎缩侧索硬化症的发展进程,然而两者之间的因果关系尚不清楚。目的:利用孟德尔随机化方法探索肠道菌群与肌萎缩侧索硬化症之间的因果关系。方法:从IEU Open GWAS数据库(由英国布里斯托尔大学的... 背景:近期研究表明,肠道菌群可能会影响肌萎缩侧索硬化症的发展进程,然而两者之间的因果关系尚不清楚。目的:利用孟德尔随机化方法探索肠道菌群与肌萎缩侧索硬化症之间的因果关系。方法:从IEU Open GWAS数据库(由英国布里斯托尔大学的英国医学研究委员会和遗传流行病学研究所开发,旨在提供与多种疾病相关的全基因组关联研究数据,为开放数据库)中分别获取肠道菌群和肌萎缩侧索硬化症的GWAS数据,以肠道菌群为暴露因素、肌萎缩侧索硬化症为结局变量,使用逆方差加权法、MR-Egger回归法、加权中位数法、加权模型法和简单模型法来探究两者之间的因果关系。使用敏感性分析检验孟德尔随机化结果的可靠性,使用反向孟德尔随机化分析进一步验证两者间的因果关系。结果与结论:(1)正向孟德尔随机化分析结果表明,6种肠道菌群与肌萎缩侧索硬化症之间存在因果关系,其中嗜胆菌属(β=0.206,OR=1.229)、毛螺菌属(β=0.288,OR=1.333)、马文-布莱恩特氏菌属(β=0.196,OR=1.216)、瘤胃球菌UCG010属(β=0.254,OR=1.289)和泰泽氏菌属3型(β=0.128,OR=1.136)可能是肌萎缩侧索硬化症的潜在危险因素,肠杆菌属(β=-0.203,OR=0.816)可能是肌萎缩侧索硬化症的保护因素;(2)在敏感性分析中,未发现显著的异质性和水平多效性(P均> 0.05),反向孟德尔随机化分析亦未揭示肠道菌群与肌萎缩侧索硬化症之间存在反向因果关系;(3)该研究结果不仅为肌萎缩侧索硬化症治疗提供了潜在的生物标志物,还为开发基于肠道菌群的新的干预治疗方案提供了理论依据,对中国基础医学研究具有一定的启示意义。 展开更多
关键词 肠道菌群 肌萎缩侧索硬化症 孟德尔随机化 因果关系 逆方差加权法 全基因组关联研究数据
暂未订购
降水与光谱数据同化下泥沙反演模型的构建
18
作者 张欣欣 《黑龙江水利科技》 2026年第1期50-55,共6页
本研究针对辽河中下游长期存在的泥沙淤积与土地沙化问题,结合多源遥感数据与水文观测数据,构建了基于降水与光谱数据同化的随机森林泥沙反演模型,旨在突破传统监测方法成本高、时效性差的瓶颈,为流域综合治理提供动态化、精准化的技术... 本研究针对辽河中下游长期存在的泥沙淤积与土地沙化问题,结合多源遥感数据与水文观测数据,构建了基于降水与光谱数据同化的随机森林泥沙反演模型,旨在突破传统监测方法成本高、时效性差的瓶颈,为流域综合治理提供动态化、精准化的技术支撑。辽河流域作为我国东北地区重要的生态与经济廊道,受季风气候影响显著(年均降水量400~800 mm,时空分布不均),叠加河道整治、农业开垦等人类活动干扰,导致下游年均输沙量达1187.96万t,含沙量高达3.32 kg/m^(3),河道行洪能力下降,河床抬升形成429处险工险段,沙化土地面积达5.5万hm^(2),严重威胁区域防洪安全与生态稳定。本研究创新性地将多光谱遥感与降水时序动态特征融合,解决了传统模型在复杂水文条件下的适用性局限,研究成果可为辽河流域防洪标准提升(2030年目标)、生态修复及“双碳”目标实现提供科学依据,同时为类似流域的泥沙监测与治理提供方法论参考。 展开更多
关键词 泥沙反演模型 随机森林算法 多源数据同化 辽河中下游 多光谱遥感
在线阅读 下载PDF
Data Matrix码的AES加密与解密研究
19
作者 刘迪 周丹晨 《电子技术应用》 北大核心 2013年第11期125-128,共4页
将AES加密算法应用于Data Matrix码的加密,并在.net平台上运用C#语言开发加密Data Matrix生成系统。通过运用条码扫描枪对加密Data Matrix码进行识别,并利用AES解密程序对其所携数据解密验证,最后对该系统生成的80串比特流进行密码学随... 将AES加密算法应用于Data Matrix码的加密,并在.net平台上运用C#语言开发加密Data Matrix生成系统。通过运用条码扫描枪对加密Data Matrix码进行识别,并利用AES解密程序对其所携数据解密验证,最后对该系统生成的80串比特流进行密码学随机性测试。实验结果表明,该系统生成的加密条码在一定程度上提高了Data Matrix码的安全性,能够满足识别速度和可靠性的要求。 展开更多
关键词 data MATRIX AES 加密 随机性
在线阅读 下载PDF
Generalized unscented Kalman filtering based radial basis function neural network for the prediction of ground radioactivity time series with missing data 被引量:2
20
作者 伍雪冬 王耀南 +1 位作者 刘维亭 朱志宇 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第6期546-551,共6页
On the assumption that random interruptions in the observation process are modeled by a sequence of independent Bernoulli random variables, we firstly generalize two kinds of nonlinear filtering methods with random in... On the assumption that random interruptions in the observation process are modeled by a sequence of independent Bernoulli random variables, we firstly generalize two kinds of nonlinear filtering methods with random interruption failures in the observation based on the extended Kalman filtering (EKF) and the unscented Kalman filtering (UKF), which were shortened as GEKF and CUKF in this paper, respectively. Then the nonlinear filtering model is established by using the radial basis function neural network (RBFNN) prototypes and the network weights as state equation and the output of RBFNN to present the observation equation. Finally, we take the filtering problem under missing observed data as a special case of nonlinear filtering with random intermittent failures by setting each missing data to be zero without needing to pre-estimate the missing data, and use the GEKF-based RBFNN and the GUKF-based RBFNN to predict the ground radioactivity time series with missing data. Experimental results demonstrate that the prediction results of GUKF-based RBFNN accord well with the real ground radioactivity time series while the prediction results of GEKF-based RBFNN are divergent. 展开更多
关键词 prediction of time series with missing data random interruption failures in the observation neural network approximation
原文传递
上一页 1 2 103 下一页 到第
使用帮助 返回顶部