期刊文献+
共找到120篇文章
< 1 2 6 >
每页显示 20 50 100
Application of Radial Basis Function Network in Sensor Failure Detection
1
作者 钮永胜 赵新民 《Journal of Beijing Institute of Technology》 EI CAS 1999年第2期70-76,共7页
Aim To detect sensor failure in control system using a single sensor signal. Methods A neural predictor was designed based on a radial basis function network(RBFN), and the neural predictor learned the sensor sig... Aim To detect sensor failure in control system using a single sensor signal. Methods A neural predictor was designed based on a radial basis function network(RBFN), and the neural predictor learned the sensor signal on line with a hybrid algorithm composed of n means clustering and Kalman filter and then gave the estimation of the sensor signal at the next step. If the difference between the estimation and the actural values of the sensor signal exceeded a threshold, the sensor could be declared to have a failure. The choice of the failure detection threshold depends on the noise variance and the possible prediction error of neural predictor. Results and Conclusion\ The computer simulation results show the proposed method can detect sensor failure correctly for a gyro in an automotive engine. 展开更多
关键词 sensor failure failure detection radial basis function network(BRFN) on line learning
在线阅读 下载PDF
Application of the optimal Latin hypercube design and radial basis function network to collaborative optimization 被引量:16
2
作者 ZHAO Min CUI Wei-cheng 《Journal of Marine Science and Application》 2007年第3期24-32,共9页
Improving the efficiency of ship optimization is crucial for modem ship design. Compared with traditional methods, multidisciplinary design optimization (MDO) is a more promising approach. For this reason, Collabora... Improving the efficiency of ship optimization is crucial for modem ship design. Compared with traditional methods, multidisciplinary design optimization (MDO) is a more promising approach. For this reason, Collaborative Optimization (CO) is discussed and analyzed in this paper. As one of the most frequently applied MDO methods, CO promotes autonomy of disciplines while providing a coordinating mechanism guaranteeing progress toward an optimum and maintaining interdisciplinary compatibility. However, there are some difficulties in applying the conventional CO method, such as difficulties in choosing an initial point and tremendous computational requirements. For the purpose of overcoming these problems, optimal Latin hypercube design and Radial basis function network were applied to CO. Optimal Latin hypercube design is a modified Latin Hypercube design. Radial basis function network approximates the optimization model, and is updated during the optimization process to improve accuracy. It is shown by examples that the computing efficiency and robustness of this CO method are higher than with the conventional CO method. 展开更多
关键词 multidisciplinary design optimization (MDO) collaborative optimization (CO) optimal Latin hypercube design radial basis function network APPROXIMATION
在线阅读 下载PDF
Crack Fault Diagnosis and Location Method for a Dual-Disk Hollow Shaft Rotor System Based on the Radial Basis Function Network and Pattern Recognition Neural Network 被引量:2
3
作者 Yuhong Jin Lei Hou +1 位作者 Zhenyong Lu Yushu Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第2期180-197,共18页
The crack fault is one of the most common faults in the rotor system,and researchers have paid close attention to its fault diagnosis.However,most studies focus on discussing the dynamic response characteristics cause... The crack fault is one of the most common faults in the rotor system,and researchers have paid close attention to its fault diagnosis.However,most studies focus on discussing the dynamic response characteristics caused by the crack rather than estimating the crack depth and position based on the obtained vibration signals.In this paper,a novel crack fault diagnosis and location method for a dual-disk hollow shaft rotor system based on the Radial basis function(RBF)network and Pattern recognition neural network(PRNN)is presented.Firstly,a rotor system model with a breathing crack suitable for a short-thick hollow shaft rotor is established based on the finite element method,where the crack's periodic opening and closing pattern and different degrees of crack depth are considered.Then,the dynamic response is obtained by the harmonic balance method.By adjusting the crack parameters,the dynamic characteristics related to the crack depth and position are analyzed through the amplitude-frequency responses and waterfall plots.The analysis results show that the first critical speed,first subcritical speed,first critical speed amplitude,and super-harmonic resonance peak at the first subcritical speed can be utilized for the crack fault diagnosis.Based on this,the RBF network and PRNN are adopted to determine the depth and approximate location of the crack respectively by taking the above dynamic characteristics as input.Test results show that the proposed method has high fault diagnosis accuracy.This research proposes a crack detection method adequate for the hollow shaft rotor system,where the crack depth and position are both unknown. 展开更多
关键词 Hollow shaft rotor Breathing crack radial basis function network Pattern recognition neural network Machine learning
在线阅读 下载PDF
An Adaptive Identification and Control SchemeUsing Radial Basis Function Networks 被引量:2
4
作者 Chen Zengqiang He Jiangfeng Yuan Zhuzhi (Department of Computer and System Science, Nankai University, Tianjin 300071, P. R. China)(Received July 12, 1998) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1999年第1期54-61,共8页
In this paper, adaptive identification and control of nonlinear dynamical systems are investigated using radial basis function networks (RBF). Firstly, a novel approach to train the RBF is introduced, which employs an... In this paper, adaptive identification and control of nonlinear dynamical systems are investigated using radial basis function networks (RBF). Firstly, a novel approach to train the RBF is introduced, which employs an adaptive fuzzy generalized learning vector quantization (AFGLVQ) technique and recursive least squares algorithm with variable forgetting factor (VRLS). The AFGLVQ adjusts the centers of the RBF while the VRLS updates the connection weights of the network. The identification algorithm has the properties of rapid convergence and persistent adaptability that make it suitable for real-time control. Secondly, on the basis of the one-step ahead RBF predictor, the control law is optimized iteratively through a numerical stable Davidon's least squares-based (SDLS) minimization approach. Four nonlinear examples are simulated to demonstrate the effectiveness of the identification and control algorithms. 展开更多
关键词 Neural networks Adaptive control Nonlinear control radial basis function networks Recursive least squares.
在线阅读 下载PDF
Radial Basis Function Networks Applied in Bacterial Classification Based on MALDI-TOF-MS
5
作者 HARRINGTON Peter de B. VOORHEES Kent J. REES Jon 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2002年第4期453-457,共5页
The radial basis function networks were applied to bacterial classification based on the matrix-assisted laser desorption/ionization time-of-flight mass spectrometric (MALDI-TOF-MS) data. The classification of bacteri... The radial basis function networks were applied to bacterial classification based on the matrix-assisted laser desorption/ionization time-of-flight mass spectrometric (MALDI-TOF-MS) data. The classification of bacteria cultured at different time was discussed and the effect of the network parameters on the classification was investigated. The cross-validation method was used to test the trained networks. The correctness of the classification of different bacteria investigated changes in a wide range from 61.5% to 92.8%. Owing to the complexity of biological effects in bacterial growth, the more rigid control of bacterial culture conditions seems to be a critical factor for improving the rate of correctness for bacterial classification. 展开更多
关键词 radial basis function network Matrix-assisted laser desorption/ionization Time-of-flight mass spectrometry BACTERIUM CLASSIFICATION
在线阅读 下载PDF
Modeling uncertainty propagation in Eccentric Braced Frames using Endurance Time method and Radial Basis Function networks
6
作者 Mohsen MASOOMZADEH Mohammad Ch.BASIM +1 位作者 Mohammad Reza CHENAGHLOU Amir H.GANDOMI 《Frontiers of Structural and Civil Engineering》 2025年第3期378-395,共18页
A robust analytical model of Eccentric Braced Frames (EBFs), as a well-known seismic resistance system, helps to comprehensive earthquake-induced risk assessment of buildings in different performance levels. Recently,... A robust analytical model of Eccentric Braced Frames (EBFs), as a well-known seismic resistance system, helps to comprehensive earthquake-induced risk assessment of buildings in different performance levels. Recently, the modeling parameters have been introduced to simulate the hysteretic behavior of shear links in EBFs with specific Coefficient of Variation associated with each parameter to consider the uncertainties. The main purpose of this paper is to assess the effect of these uncertainties in the seismic response of EBFs by combining different sources of aleatory and epistemic uncertainties while making a balance between the required computational effort and the accuracy of the responses. This assessment is carried out in multiple performance levels using Endurance Time (ET) method as an efficient Nonlinear Time History Analysis. To demonstrate the method, a 4-story EBF that considers behavioral parameters has been considered. First, a sensitivity analysis using One-Variable-At-a-Time procedure and the ET method has been utilized to sort the parameters with regard to their importance in seismic responses in two intensity levels. A sampling-based reliability method is first used to propagate the modeling uncertainties into the fragility curves of the structure. Radial Basis Function Networks are then utilized to estimate the structural responses, which makes it feasible to propagate the uncertainties with an affordable computational effort. The Design of Experiments technique is implemented to acquire the training data, reducing the required data. The results show that the mathematical relationships defined by Artificial Neural Networks and using the ET method can estimate the median Intensity Measures and shifts in dispersions with acceptable accuracy. 展开更多
关键词 Eccentric Braced Frames uncertainty propagation behavioral parameters Endurance Time method correlation Latin hypercube sampling Artificial Neural networks radial basis function networks
原文传递
Radial Basis Function Neural Network Adaptive Controller for Wearable Upper-Limb Exoskeleton with Disturbance Observer
7
作者 Mohammad Soleimani Amiri Sahbi Boubaker +1 位作者 Rizauddin Ramli Souad Kamel 《Computer Modeling in Engineering & Sciences》 2025年第9期3113-3133,共21页
Disability is defined as a condition that makes it difficult for a person to perform certain vital activities.In recent years,the integration of the concepts of intelligence in solving various problems for disabled pe... Disability is defined as a condition that makes it difficult for a person to perform certain vital activities.In recent years,the integration of the concepts of intelligence in solving various problems for disabled persons has become more frequent.However,controlling an exoskeleton for rehabilitation presents challenges due to their nonlinear characteristics and external disturbances caused by the structure itself or the patient wearing the exoskeleton.To remedy these problems,this paper presents a novel adaptive control strategy for upper-limb rehabilitation exoskeletons,addressing the challenges of nonlinear dynamics and external disturbances.The proposed controller integrated a Radial Basis Function Neural Network(RBFNN)with a disturbance observer and employed a high-dimensional integral Lyapunov function to guarantee system stability and trajectory tracking performance.In the control system,the role of the RBFNN was to estimate uncertain signals in the dynamic model,while the disturbance observer tackled external disturbances during trajectory tracking.Artificially created scenarios for Human-Robot interactive experiments and periodically repeated reference trajectory experiments validated the controller’s performance,demonstrating efficient tracking.The proposed controller is found to achieve superior tracking accuracy with Root-Mean-Squared(RMS)errors of 0.022-0.026 rad for all joints,outperforming conventional Proportional-Integral-Derivative(PID)by 73%and Neural-Fuzzy Adaptive Control(NFAC)by 389.47%lower error.These results suggested that the RBFNN adaptive controller,coupled with disturbance compensation,could serve as an effective rehabilitation tool for upper-limb exoskeletons.These results demonstrate the superiority of the proposed method in enhancing rehabilitation accuracy and robustness,offering a promising solution for the control of upper-limb assistive devices.Based on the obtained results and due to their high robustness,the proposed control schemes can be extended to other motor disabilities,including lower limb exoskeletons. 展开更多
关键词 Adaptive neural network controller disturbance observer upper-limb exoskeleton rehabilitation robotics Lyapunov stability radial basis function network
在线阅读 下载PDF
Diffuseness effect and radial basis function network for optimizing α decay calculations 被引量:2
8
作者 Na-Na Ma Xiao-Jun Bao Hong-Fei Zhang 《Chinese Physics C》 SCIE CAS CSCD 2021年第2期459-466,共8页
A radial basis function network(RBFN)approach is adopted for the first time to optimize the calculation of$\alpha$decay half-life in the generalized liquid drop model(GLDM),while concurrently incorporating the surface... A radial basis function network(RBFN)approach is adopted for the first time to optimize the calculation of$\alpha$decay half-life in the generalized liquid drop model(GLDM),while concurrently incorporating the surface diffuseness effect.The calculations presented herein agree closely with the experimental half-lives for 68 superheavy nuclei(SHN),achieving a remarkable reduction of 40%in the root-mean-square(rms)deviations of half-lives.Furthermore,using the RBFN method,the half-lives for four SHN isotopes,252-288Rf,272-310Fl,286-316119,and 292-318120,are predicted using the improved GLDM with the diffuseness correction and the decay energies from WS4 and FRDM as inputs.Therefore,we conclude that the diffuseness effect should be embodied in the proximity energy.Moreover,increased application of neural network methods in nuclear reaction studies is encouraged. 展开更多
关键词 αdecay radial basis function network the surface diffuseness effect
原文传递
Application of Near Infrared Diffuse Reflectance Spectroscopy with Radial Basis Function Neural Network to Determination of Rifampincin Isoniazid and Pyrazinamide Tablets 被引量:3
9
作者 DU Lin-na WU Li-hang +5 位作者 LU Jia-hui GUO Wei-liang MENG Qing-fan JIANG Chao-jun SHEN Si-le TENG Li-rong 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2007年第5期518-523,共6页
Partial least squares(PLS),back-propagation neural network(BPNN)and radial basis function neural network(RBFNN)were respectively used for estalishing quantative analysis models with near infrared(NIR)diffuse r... Partial least squares(PLS),back-propagation neural network(BPNN)and radial basis function neural network(RBFNN)were respectively used for estalishing quantative analysis models with near infrared(NIR)diffuse reflectance spectra for determining the contents of rifampincin(RMP),isoniazid(INH)and pyrazinamide(PZA)in rifampicin isoniazid and pyrazinamide tablets.Savitzky-Golay smoothing,first derivative,second derivative,fast Fourier transform(FFT)and standard normal variate(SNV)transformation methods were applied to pretreating raw NIR diffuse reflectance spectra.The raw and pretreated spectra were divided into several regions,depending on the average spectrum and RSD spectrum.Principal component analysis(PCA)method was used for analyzing the raw and pretreated spectra in different regions in order to reduce the dimensions of input data.The optimum spectral regions and the models' parameters were chosen by comparing the root mean square error of cross-validation(RMSECV)values which were obtained by leave-one-out cross-validation method.The RMSECV values of the RBFNN models for determining the contents of RMP,INH and PZA were 0.00288,0.00226 and 0.00341,respectively.Using these models for predicting the contents of INH,RMP and PZA in prediction set,the RMSEP values were 0.00266,0.00227 and 0.00411,respectively.These results are better than those obtained from PLS models and BPNN models.With additional advantages of fast calculation speed and less dependence on the initial conditions,RBFNN is a suitable tool to model complex systems. 展开更多
关键词 Rifampicin isoniazid and pyrazinamide tablets NIR diffuse reflectance spectroscopy Partial least square Back-propagation neural network radial basis function neural network
暂未订购
Synchronization of chaos using radial basis functions neural networks 被引量:2
10
作者 Ren Haipeng Liu Ding 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第1期83-88,100,共7页
The Radial Basis Functions Neural Network (RBFNN) is used to establish the model of a response system through the input and output data of the system. The synchronization between a drive system and the response syst... The Radial Basis Functions Neural Network (RBFNN) is used to establish the model of a response system through the input and output data of the system. The synchronization between a drive system and the response system can be implemented by employing the RBFNN model and state feedback control. In this case, the exact mathematical model, which is the precondition for the conventional method, is unnecessary for implementing synchronization. The effect of the model error is investigated and a corresponding theorem is developed. The effect of the parameter perturbations and the measurement noise is investigated through simulations. The simulation results under different conditions show the effectiveness of the method. 展开更多
关键词 Chaos synchronization radial basis function neural networks Model error Parameter perturbation Measurement noise.
在线阅读 下载PDF
Wear State Recognition of Drills Based on K-means Cluster and Radial Basis Function Neural Network 被引量:2
11
作者 Xu Yang 《International Journal of Automation and computing》 EI 2010年第3期271-276,共6页
Drill wear not only affects the surface smoothness of the hole, but also influences the life of the drill. Drill wear state recognition is important in the manufacturing process, which consists of two steps: first, d... Drill wear not only affects the surface smoothness of the hole, but also influences the life of the drill. Drill wear state recognition is important in the manufacturing process, which consists of two steps: first, decomposing cutting torque components from the original signals by wavelet packet decomposition (WPD); second, extracting wavelet coefficients of different wear states (i.e., slight, normal, or severe wear) with signal features adapting to Welch spectrum. Finally, monitoring and recognition of the feature vectors of cutting torque signal are performed by using the K-means cluster and radial basis function neural network (RBFNN). The experiments on different tool wears of the multivariable features reveal that the results of monitoring and recognition are significant and effective. 展开更多
关键词 Drill wear state recognition cutting torque signals wavelet packet decomposition (WPD) Welch spectrum energy K-means cluster radial basis function neural network
在线阅读 下载PDF
Adaptive integral dynamic surface control based on fully tuned radial basis function neural network 被引量:2
12
作者 Li Zhou Shumin Fei Changsheng Jiang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第6期1072-1078,共7页
An adaptive integral dynamic surface control approach based on fully tuned radial basis function neural network (FTRBFNN) is presented for a general class of strict-feedback nonlinear systems,which may possess a wid... An adaptive integral dynamic surface control approach based on fully tuned radial basis function neural network (FTRBFNN) is presented for a general class of strict-feedback nonlinear systems,which may possess a wide class of uncertainties that are not linearly parameterized and do not have any prior knowledge of the bounding functions.FTRBFNN is employed to approximate the uncertainty online,and a systematic framework for adaptive controller design is given by dynamic surface control. The control algorithm has two outstanding features,namely,the neural network regulates the weights,width and center of Gaussian function simultaneously,which ensures the control system has perfect ability of restraining different unknown uncertainties and the integral term of tracking error introduced in the control law can eliminate the static error of the closed loop system effectively. As a result,high control precision can be achieved.All signals in the closed loop system can be guaranteed bounded by Lyapunov approach.Finally,simulation results demonstrate the validity of the control approach. 展开更多
关键词 adaptive control integral dynamic surface control fully tuned radial basis function neural network.
在线阅读 下载PDF
Prediction of Parkinson’s Disease Using Improved Radial Basis Function Neural Network 被引量:1
13
作者 Rajalakshmi Shenbaga Moorthy P.Pabitha 《Computers, Materials & Continua》 SCIE EI 2021年第9期3101-3119,共19页
Parkinson’s disease is a neurogenerative disorder and it is difficult to diagnose as no therapies may slow down its progression.This paper contributes a novel analytic system for Parkinson’s Disease Prediction mecha... Parkinson’s disease is a neurogenerative disorder and it is difficult to diagnose as no therapies may slow down its progression.This paper contributes a novel analytic system for Parkinson’s Disease Prediction mechanism using Improved Radial Basis Function Neural Network(IRBFNN).Particle swarm optimization(PSO)with K-means is used to find the hidden neuron’s centers to improve the accuracy of IRBFNN.The performance of RBFNN is seriously affected by the centers of hidden neurons.Conventionally K-means was used to find the centers of hidden neurons.The problem of sensitiveness to the random initial centroid in K-means degrades the performance of RBFNN.Thus,a metaheuristic algorithm called PSO integrated with K-means alleviates initial random centroid and computes optimal centers for hidden neurons in IRBFNN.The IRBFNN uses Particle swarm optimization K-means to find the centers of hidden neurons and the PSO K-means was designed to evaluate the fitness measures such as Intracluster distance and Intercluster distance.Experimentation have been performed on three Parkinson’s datasets obtained from the UCI repository.The proposed IRBFNN is compared with other variations of RBFNN,conventional machine learning algorithms and other Parkinson’s Disease prediction algorithms.The proposed IRBFNN achieves an accuracy of 98.73%,98.47%and 99.03%for three Parkinson’s datasets taken for experimentation.The experimental results show that IRBFNN maximizes the accuracy in predicting Parkinson’s disease with minimum root mean square error. 展开更多
关键词 Improved radial basis function neural network K-MEANS particle swarm optimization
在线阅读 下载PDF
Electrode Wear Prediction in Milling Electrical Discharge Machining Based on Radial Basis Function Neural Network 被引量:2
14
作者 黄河 白基成 +1 位作者 卢泽生 郭永丰 《Journal of Shanghai Jiaotong university(Science)》 EI 2009年第6期736-741,共6页
Milling electrical discharge machining(EDM) enables the machining of complex cavities using cylindrical or tubular electrodes.To ensure acceptable machining accuracy the process requires some methods of compensating f... Milling electrical discharge machining(EDM) enables the machining of complex cavities using cylindrical or tubular electrodes.To ensure acceptable machining accuracy the process requires some methods of compensating for electrode wear.Due to the complexity and random nature of the process,existing methods of compensating for such wear usually involve off-line prediction.This paper discusses an innovative model of electrode wear prediction for milling EDM based upon a radial basis function(RBF) network.Data gained from an orthogonal experiment were used to provide training samples for the RBF network.The model established was used to forecast the electrode wear,making it possible to calculate the real-time tool wear in the milling EDM process and,to lay the foundations for dynamic compensation of the electrode wear on-line.This paper demonstrates that by using this model prediction errors can be controlled within 8%. 展开更多
关键词 milling electrical discharge machining (EDM) electrode wear prediction radial basis function (RBF) neural network
原文传递
High-precision chaotic radial basis function neural network model:Data forecasting for the Earth electromagnetic signal before a strong earthquake
15
作者 Guocheng Hao Juan Guo +2 位作者 Wei Zhang Yunliang Chen David AYuen 《Geoscience Frontiers》 SCIE CAS CSCD 2022年第1期364-373,共10页
The Earth’s natural pulse electromagnetic field data consists typically of an underlying variation tendency of intensity and irregularities.The change tendency may be related to the occurrence of earthquake disasters... The Earth’s natural pulse electromagnetic field data consists typically of an underlying variation tendency of intensity and irregularities.The change tendency may be related to the occurrence of earthquake disasters.Forecasting of the underlying intensity trend plays an important role in the analysis of data and disaster monitoring.Combining chaos theory and the radial basis function neural network,this paper proposes a forecasting model of the chaotic radial basis function neural network to conduct underlying intensity trend forecasting by the Earth’s natural pulse electromagnetic field signal.The main strategy of this forecasting model is to obtain parameters as the basis for optimizing the radial basis function neural network and to forecast the reconstructed Earth’s natural pulse electromagnetic field data.In verification experiments,we employ the 3 and 6 days’data of two channels as training samples to forecast the 14 and 21-day Earth’s natural pulse electromagnetic field data respectively.According to the forecasting results and absolute error results,the chaotic radial basis function forecasting model can fit the fluctuation trend of the actual signal strength,effectively reduce the forecasting error compared with the traditional radial basis function model.Hence,this network may be useful for studying the characteristics of the Earth’s natural pulse electromagnetic field signal before a strong earthquake and we hope it can contribute to the electromagnetic anomaly monitoring before the earthquake. 展开更多
关键词 Earth’s natural pulse electromagnetic field Chaos theory radial basis function neural network Forecasting model
在线阅读 下载PDF
Rough set and radial basis function neural network based insulation data mining fault diagnosis for power transformer
16
作者 董立新 肖登明 刘奕路 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2007年第2期263-268,共6页
Rough set (RS) and radial basis function neural network (RBFNN) based insulation data mining fault diagnosis for power transformer is proposed. On the one hand rough set is used as front of RBFNN to simplify the input... Rough set (RS) and radial basis function neural network (RBFNN) based insulation data mining fault diagnosis for power transformer is proposed. On the one hand rough set is used as front of RBFNN to simplify the input of RBFNN and mine the rules. The mined rules whose “confidence” and “support” is higher than requirement are used to offer fault diagnosis service for power transformer directly. On the other hand the mining samples corresponding to the mined rule, whose “confidence and support” is lower than requirement, are used to be training samples set of RBFNN and these samples are clustered by rough set. The center of each clustering set is used to be center of radial basis function, i.e., as the hidden layer neuron. The RBFNN is structured with above base, which is used to diagnose the case that can not be diagnosed by mined simplified valuable rules based on rough set. The advantages and effectiveness of this method are verified by testing. 展开更多
关键词 rough set (RS) radial basis function neural network (RBFNN) data mining fault diagnosis
在线阅读 下载PDF
Evolution Performance of Symbolic Radial Basis Function Neural Network by Using Evolutionary Algorithms
17
作者 Shehab Abdulhabib Alzaeemi Kim Gaik Tay +2 位作者 Audrey Huong Saratha Sathasivam Majid Khan bin Majahar Ali 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期1163-1184,共22页
Radial Basis Function Neural Network(RBFNN)ensembles have long suffered from non-efficient training,where incorrect parameter settings can be computationally disastrous.This paper examines different evolutionary algor... Radial Basis Function Neural Network(RBFNN)ensembles have long suffered from non-efficient training,where incorrect parameter settings can be computationally disastrous.This paper examines different evolutionary algorithms for training the Symbolic Radial Basis Function Neural Network(SRBFNN)through the behavior’s integration of satisfiability programming.Inspired by evolutionary algorithms,which can iteratively find the nearoptimal solution,different Evolutionary Algorithms(EAs)were designed to optimize the producer output weight of the SRBFNN that corresponds to the embedded logic programming 2Satisfiability representation(SRBFNN-2SAT).The SRBFNN’s objective function that corresponds to Satisfiability logic programming can be minimized by different algorithms,including Genetic Algorithm(GA),Evolution Strategy Algorithm(ES),Differential Evolution Algorithm(DE),and Evolutionary Programming Algorithm(EP).Each of these methods is presented in the steps in the flowchart form which can be used for its straightforward implementation in any programming language.With the use of SRBFNN-2SAT,a training method based on these algorithms has been presented,then training has been compared among algorithms,which were applied in Microsoft Visual C++software using multiple metrics of performance,including Mean Absolute Relative Error(MARE),Root Mean Square Error(RMSE),Mean Absolute Percentage Error(MAPE),Mean Bias Error(MBE),Systematic Error(SD),Schwarz Bayesian Criterion(SBC),and Central Process Unit time(CPU time).Based on the results,the EP algorithm achieved a higher training rate and simple structure compared with the rest of the algorithms.It has been confirmed that the EP algorithm is quite effective in training and obtaining the best output weight,accompanied by the slightest iteration error,which minimizes the objective function of SRBFNN-2SAT. 展开更多
关键词 Satisfiability logic programming symbolic radial basis function neural network evolutionary programming algorithm genetic algorithm evolution strategy algorithm differential evolution algorithm
在线阅读 下载PDF
A Novel Radial Basis Function Neural Network Approach for ECG Signal Classification
18
作者 S.Sathishkumar R.Devi Priya 《Intelligent Automation & Soft Computing》 SCIE 2023年第1期129-148,共20页
ions in the ECG signal.The cardiologist and medical specialistfind numerous difficulties in the process of traditional approaches.The specified restrictions are eliminated in the proposed classifier.The fundamental ai... ions in the ECG signal.The cardiologist and medical specialistfind numerous difficulties in the process of traditional approaches.The specified restrictions are eliminated in the proposed classifier.The fundamental aim of this work is tofind the R-R interval.To analyze the blockage,different approaches are implemented,which make the computation as facile with high accuracy.The information are recovered from the MIT-BIH dataset.The retrieved data contain normal and pathological ECG signals.To obtain a noiseless signal,Gaborfilter is employed and to compute the amplitude of the signal,DCT-DOST(Discrete cosine based Discrete orthogonal stock well transform)is implemented.The amplitude is computed to detect the cardiac abnormality.The R peak of the underlying ECG signal is noted and the segment length of the ECG cycle is identified.The Genetic algorithm(GA)retrieves the primary highlights and the classifier integrates the data with the chosen attributes to optimize the identification.In addition,the GA helps in performing hereditary calculations to reduce the problem of multi-target enhancement.Finally,the RBFNN(Radial basis function neural network)is applied,which diminishes the local minima present in the signal.It shows enhancement in characterizing the ordinary and anomalous ECG signals. 展开更多
关键词 Electrocardiogram signal gaborfilter discrete cosine based discrete orthogonal stock well transform genetic algorithm radial basis function neural network
在线阅读 下载PDF
Adaptive proportional integral differential control based on radial basis function neural network identification of a two-degree-of-freedom closed-chain robot
19
作者 陈正洪 王勇 李艳 《Journal of Shanghai University(English Edition)》 CAS 2008年第5期457-461,共5页
A closed-chain robot has several advantages over an open-chain robot, such as high mechanical rigidity, high payload, high precision. Accurate trajectory control of a robot is essential in practical-use. This paper pr... A closed-chain robot has several advantages over an open-chain robot, such as high mechanical rigidity, high payload, high precision. Accurate trajectory control of a robot is essential in practical-use. This paper presents an adaptive proportional integral differential (PID) control algorithm based on radial basis function (RBF) neural network for trajectory tracking of a two-degree-of-freedom (2-DOF) closed-chain robot. In this scheme, an RBF neural network is used to approximate the unknown nonlinear dynamics of the robot, at the same time, the PID parameters can be adjusted online and the high precision can be obtained. Simulation results show that the control algorithm accurately tracks a 2-DOF closed-chain robot trajectories. The results also indicate that the system robustness and tracking performance are superior to the classic PID method. 展开更多
关键词 closed-chain robot radial basis function (RBF) neural network adaptive proportional integral differential (PID) control identification neural network
在线阅读 下载PDF
Comparative study of honeycomb optimization using Kriging and radial basis function
20
作者 Shabram Sadeghi Esfahlani Hassan Shirvani +2 位作者 Sunny Nwaubani Ayoub Shirvani Habtom Mebrahtu 《Theoretical & Applied Mechanics Letters》 CAS 2013年第3期14-18,共5页
Structural optimization for crashworthiness criteria is of particular significance especially at early stage of design. The comparative study of Kriging and radial basis function network (RBFN) was performed in orde... Structural optimization for crashworthiness criteria is of particular significance especially at early stage of design. The comparative study of Kriging and radial basis function network (RBFN) was performed in order to improve the crashworthiness effects of honeycomb. Improving the crashworthiness characteristic of honeycomb was achieved using LS-OPT~ and domain reduction strategy. This optimization is performed on the basis of validated numerical simulation to establish the approximated model to illustrate the relationship between the responses and design variables. The results showed that Kriging meta-model is excelled in accuracy, robustness and efficiency compared to radial basis function (RBF) and crashworthiness characteristic of honeycomb is improved by 4%. 展开更多
关键词 radial basis function network (RBFN) KRIGING CRASHWORTHINESS optimization algorithm
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部