The Chang'e-3 (CE-3) mission is China's first exploration mission on the surface of the Moon that uses a lander and a rover. Eight instruments that form the scientific payloads have the following objectives: (1...The Chang'e-3 (CE-3) mission is China's first exploration mission on the surface of the Moon that uses a lander and a rover. Eight instruments that form the scientific payloads have the following objectives: (1) investigate the morphological features and geological structures at the landing site; (2) integrated in-situ analysis of minerals and chemical compositions; (3) integrated exploration of the structure of the lunar interior; (4) exploration of the lunar-terrestrial space environment, lunar sur- face environment and acquire Moon-based ultraviolet astronomical observations. The Ground Research and Application System (GRAS) is in charge of data acquisition and pre-processing, management of the payload in orbit, and managing the data products and their applications. The Data Pre-processing Subsystem (DPS) is a part of GRAS. The task of DPS is the pre-processing of raw data from the eight instruments that are part of CE-3, including channel processing, unpacking, package sorting, calibration and correction, identification of geographical location, calculation of probe azimuth angle, probe zenith angle, solar azimuth angle, and solar zenith angle and so on, and conducting quality checks. These processes produce Level 0, Level 1 and Level 2 data. The computing platform of this subsystem is comprised of a high-performance computing cluster, including a real-time subsystem used for processing Level 0 data and a post-time subsystem for generating Level 1 and Level 2 data. This paper de- scribes the CE-3 data pre-processing method, the data pre-processing subsystem, data classification, data validity and data products that are used for scientific studies.展开更多
There are a number of dirty data in observation data set derived from integrated ocean observing network system. Thus, the data must be carefully and reasonably processed before they are used for forecasting or analys...There are a number of dirty data in observation data set derived from integrated ocean observing network system. Thus, the data must be carefully and reasonably processed before they are used for forecasting or analysis. This paper proposes a data pre-processing model based on intelligent algorithms. Firstly, we introduce the integrated network platform of ocean observation. Next, the preprocessing model of data is presemed, and an imelligent cleaning model of data is proposed. Based on fuzzy clustering, the Kohonen clustering network is improved to fulfill the parallel calculation of fuzzy c-means clustering. The proposed dynamic algorithm can automatically f'md the new clustering center with the updated sample data. The rapid and dynamic performance of the model makes it suitable for real time calculation, and the efficiency and accuracy of the model is proved by test results through observation data analysis.展开更多
Aiming at the problem of coal gangue identifcation in the current fully mechanized mining face and coal washing,this article proposed a convolution neural network(CNN)coal and rock identifcation method based on hypers...Aiming at the problem of coal gangue identifcation in the current fully mechanized mining face and coal washing,this article proposed a convolution neural network(CNN)coal and rock identifcation method based on hyperspectral data.First,coal and rock spectrum data were collected by a near-infrared spectrometer,and then four methods were used to flter 120 sets of collected data:frst-order diferential(FD),second-order diferential(SD),standard normal variable transformation(SNV),and multi-style smoothing.The coal and rock refectance spectrum data were pre-processed to enhance the intensity of spectral refectance and absorption characteristics,as well as efectively remove the spectral curve noise generated by instrument performance and environmental factors.A CNN model was constructed,and its advantages and disadvantages were judged based on the accuracy of the three parameter combinations(i.e.,the learning rate,the number of feature extraction layers,and the dropout rate)to generate the best CNN classifer for the hyperspectral data for rock recognition.The experiments show that the recognition accuracy of the one-dimensional CNN model proposed in this paper reaches 94.6%.Verifcation of the advantages and efectiveness of the method were proposed in this article.展开更多
This paper reports on a study of the methodology of external calibration of GOCE data,using regional terrestrial-gravity data.Three regions around the world are selected in the numerical experiments.The result indicat...This paper reports on a study of the methodology of external calibration of GOCE data,using regional terrestrial-gravity data.Three regions around the world are selected in the numerical experiments.The result indicates that this calibration method is feasible.The effect is best with an accuracy of scale factor at 10-2 level,in Australia,where the area is smooth and the gravity data points are dense.The accuracy is one order of magnitude lower in both Canada,where the area is smooth but the data points are sparse,and Norway,where the area is rather tough and the data points are sparse.展开更多
Emotion represents the feeling of an individual in a given situation. There are various ways to express the emotions of an individual. It can be categorized into verbal expressions, written expressions, facial express...Emotion represents the feeling of an individual in a given situation. There are various ways to express the emotions of an individual. It can be categorized into verbal expressions, written expressions, facial expressions and gestures. Among these various ways of expressing the emotion, the written method is a challenging task to extract the emotions, as the data is in the form of textual dat. Finding the different kinds of emotions is also a tedious task as it requires a lot of pre preparations of the textual data taken for the research. This research work is carried out to analyse and extract the emotions hidden in text data. The text data taken for the analysis is from the social media dataset. Using the raw text data directly from the social media will not serve the purpose. Therefore, the text data has to be pre-processed and then utilised for further processing. Pre-processing makes the text data more efficient and would infer valuable insights of the emotions hidden in it. The preprocessing steps also help to manage the text data for identifying the emotions conveyed in the text. This work proposes to deduct the emotions taken from the social media text data by applying the machine learning algorithm. Finally, the usefulness of the emotions is suggested for various stake holders, to find the attitude of individuals at that moment, the data is produced. .展开更多
With the development of information technology,a large number of product quality data in the entire manufacturing process is accumulated,but it is not explored and used effectively.The traditional product quality pred...With the development of information technology,a large number of product quality data in the entire manufacturing process is accumulated,but it is not explored and used effectively.The traditional product quality prediction models have many disadvantages,such as high complexity and low accuracy.To overcome the above problems,we propose an optimized data equalization method to pre-process dataset and design a simple but effective product quality prediction model:radial basis function model optimized by the firefly algorithm with Levy flight mechanism(RBFFALM).First,the new data equalization method is introduced to pre-process the dataset,which reduces the dimension of the data,removes redundant features,and improves the data distribution.Then the RBFFALFM is used to predict product quality.Comprehensive expe riments conducted on real-world product quality datasets validate that the new model RBFFALFM combining with the new data pre-processing method outperforms other previous me thods on predicting product quality.展开更多
Broadcasting gateway equipment generally uses a method of simply switching to a spare input stream when a failure occurs in a main input stream.However,when the transmission environment is unstable,problems such as re...Broadcasting gateway equipment generally uses a method of simply switching to a spare input stream when a failure occurs in a main input stream.However,when the transmission environment is unstable,problems such as reduction in the lifespan of equipment due to frequent switching and interruption,delay,and stoppage of services may occur.Therefore,applying a machine learning(ML)method,which is possible to automatically judge and classify network-related service anomaly,and switch multi-input signals without dropping or changing signals by predicting or quickly determining the time of error occurrence for smooth stream switching when there are problems such as transmission errors,is required.In this paper,we propose an intelligent packet switching method based on the ML method of classification,which is one of the supervised learning methods,that presents the risk level of abnormal multi-stream occurring in broadcasting gateway equipment based on data.Furthermore,we subdivide the risk levels obtained from classification techniques into probabilities and then derive vectorized representative values for each attribute value of the collected input data and continuously update them.The obtained reference vector value is used for switching judgment through the cosine similarity value between input data obtained when a dangerous situation occurs.In the broadcasting gateway equipment to which the proposed method is applied,it is possible to perform more stable and smarter switching than before by solving problems of reliability and broadcasting accidents of the equipment and can maintain stable video streaming as well.展开更多
Forecasting river flow is crucial for optimal planning,management,and sustainability using freshwater resources.Many machine learning(ML)approaches have been enhanced to improve streamflow prediction.Hybrid techniques...Forecasting river flow is crucial for optimal planning,management,and sustainability using freshwater resources.Many machine learning(ML)approaches have been enhanced to improve streamflow prediction.Hybrid techniques have been viewed as a viable method for enhancing the accuracy of univariate streamflow estimation when compared to standalone approaches.Current researchers have also emphasised using hybrid models to improve forecast accuracy.Accordingly,this paper conducts an updated literature review of applications of hybrid models in estimating streamflow over the last five years,summarising data preprocessing,univariate machine learning modelling strategy,advantages and disadvantages of standalone ML techniques,hybrid models,and performance metrics.This study focuses on two types of hybrid models:parameter optimisation-based hybrid models(OBH)and hybridisation of parameter optimisation-based and preprocessing-based hybridmodels(HOPH).Overall,this research supports the idea thatmeta-heuristic approaches precisely improveML techniques.It’s also one of the first efforts to comprehensively examine the efficiency of various meta-heuristic approaches(classified into four primary classes)hybridised with ML techniques.This study revealed that previous research applied swarm,evolutionary,physics,and hybrid metaheuristics with 77%,61%,12%,and 12%,respectively.Finally,there is still room for improving OBH and HOPH models by examining different data pre-processing techniques and metaheuristic algorithms.展开更多
The synchro double pulse signal mode is freuqently used in Short Base Line (SBL)underwater positioning system so as to obtain the information of both distance and depth of a target simultaneously. Howerer, this signal...The synchro double pulse signal mode is freuqently used in Short Base Line (SBL)underwater positioning system so as to obtain the information of both distance and depth of a target simultaneously. Howerer, this signal mode also brings about ranging indistinctness resulting in a shorter positioning distance much less than that limited by the period of the synchro signal. This paper presents a hardware distance-gate data acquiring scheme. It puts the original data sent to the computer in order of ' direct first pulse- depth information pulse (or first pulse reflected by water surface )…' to guarantee the effective positioning distance of the system. It has the advantage of reducing the processing time of the computer thus ensuring the realtime functioning of the system. A figure of the orbit of an underwater moving target measured in practice is attached to the end of the paper.展开更多
文摘The Chang'e-3 (CE-3) mission is China's first exploration mission on the surface of the Moon that uses a lander and a rover. Eight instruments that form the scientific payloads have the following objectives: (1) investigate the morphological features and geological structures at the landing site; (2) integrated in-situ analysis of minerals and chemical compositions; (3) integrated exploration of the structure of the lunar interior; (4) exploration of the lunar-terrestrial space environment, lunar sur- face environment and acquire Moon-based ultraviolet astronomical observations. The Ground Research and Application System (GRAS) is in charge of data acquisition and pre-processing, management of the payload in orbit, and managing the data products and their applications. The Data Pre-processing Subsystem (DPS) is a part of GRAS. The task of DPS is the pre-processing of raw data from the eight instruments that are part of CE-3, including channel processing, unpacking, package sorting, calibration and correction, identification of geographical location, calculation of probe azimuth angle, probe zenith angle, solar azimuth angle, and solar zenith angle and so on, and conducting quality checks. These processes produce Level 0, Level 1 and Level 2 data. The computing platform of this subsystem is comprised of a high-performance computing cluster, including a real-time subsystem used for processing Level 0 data and a post-time subsystem for generating Level 1 and Level 2 data. This paper de- scribes the CE-3 data pre-processing method, the data pre-processing subsystem, data classification, data validity and data products that are used for scientific studies.
基金Key Science and Technology Project of the Shanghai Committee of Science and Technology, China (No.06dz1200921)Major Basic Research Project of the Shanghai Committee of Science and Technology(No.08JC1400100)+1 种基金Shanghai Talent Developing Foundation, China(No.001)Specialized Foundation for Excellent Talent of Shanghai,China
文摘There are a number of dirty data in observation data set derived from integrated ocean observing network system. Thus, the data must be carefully and reasonably processed before they are used for forecasting or analysis. This paper proposes a data pre-processing model based on intelligent algorithms. Firstly, we introduce the integrated network platform of ocean observation. Next, the preprocessing model of data is presemed, and an imelligent cleaning model of data is proposed. Based on fuzzy clustering, the Kohonen clustering network is improved to fulfill the parallel calculation of fuzzy c-means clustering. The proposed dynamic algorithm can automatically f'md the new clustering center with the updated sample data. The rapid and dynamic performance of the model makes it suitable for real time calculation, and the efficiency and accuracy of the model is proved by test results through observation data analysis.
基金supported by the Theory and Method of Excavation-Support-Anchor Parallel Control for Intelligent Excavation Complex System(2021101030125)Green,intelligent,and safe mining of coal resources(52121003)the Mining Robotics Engineering Discipline Innovation and Intelligence Base(B21014).
文摘Aiming at the problem of coal gangue identifcation in the current fully mechanized mining face and coal washing,this article proposed a convolution neural network(CNN)coal and rock identifcation method based on hyperspectral data.First,coal and rock spectrum data were collected by a near-infrared spectrometer,and then four methods were used to flter 120 sets of collected data:frst-order diferential(FD),second-order diferential(SD),standard normal variable transformation(SNV),and multi-style smoothing.The coal and rock refectance spectrum data were pre-processed to enhance the intensity of spectral refectance and absorption characteristics,as well as efectively remove the spectral curve noise generated by instrument performance and environmental factors.A CNN model was constructed,and its advantages and disadvantages were judged based on the accuracy of the three parameter combinations(i.e.,the learning rate,the number of feature extraction layers,and the dropout rate)to generate the best CNN classifer for the hyperspectral data for rock recognition.The experiments show that the recognition accuracy of the one-dimensional CNN model proposed in this paper reaches 94.6%.Verifcation of the advantages and efectiveness of the method were proposed in this article.
基金supported by the Director Foundation of the Institute of Seismology,China Earthquake Administration(IS201126025)The Basis Research Foundation of Key laboratory of Geospace Environment&Geodesy Ministry of Education,China(10-01-09)
文摘This paper reports on a study of the methodology of external calibration of GOCE data,using regional terrestrial-gravity data.Three regions around the world are selected in the numerical experiments.The result indicates that this calibration method is feasible.The effect is best with an accuracy of scale factor at 10-2 level,in Australia,where the area is smooth and the gravity data points are dense.The accuracy is one order of magnitude lower in both Canada,where the area is smooth but the data points are sparse,and Norway,where the area is rather tough and the data points are sparse.
文摘Emotion represents the feeling of an individual in a given situation. There are various ways to express the emotions of an individual. It can be categorized into verbal expressions, written expressions, facial expressions and gestures. Among these various ways of expressing the emotion, the written method is a challenging task to extract the emotions, as the data is in the form of textual dat. Finding the different kinds of emotions is also a tedious task as it requires a lot of pre preparations of the textual data taken for the research. This research work is carried out to analyse and extract the emotions hidden in text data. The text data taken for the analysis is from the social media dataset. Using the raw text data directly from the social media will not serve the purpose. Therefore, the text data has to be pre-processed and then utilised for further processing. Pre-processing makes the text data more efficient and would infer valuable insights of the emotions hidden in it. The preprocessing steps also help to manage the text data for identifying the emotions conveyed in the text. This work proposes to deduct the emotions taken from the social media text data by applying the machine learning algorithm. Finally, the usefulness of the emotions is suggested for various stake holders, to find the attitude of individuals at that moment, the data is produced. .
基金supported by the National Science and Technology Innovation 2030 Next-Generation Artifical Intelligence Major Project(2018AAA0101801)the National Natural Science Foundation of China(72271188)。
文摘With the development of information technology,a large number of product quality data in the entire manufacturing process is accumulated,but it is not explored and used effectively.The traditional product quality prediction models have many disadvantages,such as high complexity and low accuracy.To overcome the above problems,we propose an optimized data equalization method to pre-process dataset and design a simple but effective product quality prediction model:radial basis function model optimized by the firefly algorithm with Levy flight mechanism(RBFFALM).First,the new data equalization method is introduced to pre-process the dataset,which reduces the dimension of the data,removes redundant features,and improves the data distribution.Then the RBFFALFM is used to predict product quality.Comprehensive expe riments conducted on real-world product quality datasets validate that the new model RBFFALFM combining with the new data pre-processing method outperforms other previous me thods on predicting product quality.
基金This work was supported by a research grant from Seoul Women’s University(2023-0183).
文摘Broadcasting gateway equipment generally uses a method of simply switching to a spare input stream when a failure occurs in a main input stream.However,when the transmission environment is unstable,problems such as reduction in the lifespan of equipment due to frequent switching and interruption,delay,and stoppage of services may occur.Therefore,applying a machine learning(ML)method,which is possible to automatically judge and classify network-related service anomaly,and switch multi-input signals without dropping or changing signals by predicting or quickly determining the time of error occurrence for smooth stream switching when there are problems such as transmission errors,is required.In this paper,we propose an intelligent packet switching method based on the ML method of classification,which is one of the supervised learning methods,that presents the risk level of abnormal multi-stream occurring in broadcasting gateway equipment based on data.Furthermore,we subdivide the risk levels obtained from classification techniques into probabilities and then derive vectorized representative values for each attribute value of the collected input data and continuously update them.The obtained reference vector value is used for switching judgment through the cosine similarity value between input data obtained when a dangerous situation occurs.In the broadcasting gateway equipment to which the proposed method is applied,it is possible to perform more stable and smarter switching than before by solving problems of reliability and broadcasting accidents of the equipment and can maintain stable video streaming as well.
基金This paper’s logical organisation and content quality have been enhanced,so the authors thank anonymous reviewers and journal editors for assistance.
文摘Forecasting river flow is crucial for optimal planning,management,and sustainability using freshwater resources.Many machine learning(ML)approaches have been enhanced to improve streamflow prediction.Hybrid techniques have been viewed as a viable method for enhancing the accuracy of univariate streamflow estimation when compared to standalone approaches.Current researchers have also emphasised using hybrid models to improve forecast accuracy.Accordingly,this paper conducts an updated literature review of applications of hybrid models in estimating streamflow over the last five years,summarising data preprocessing,univariate machine learning modelling strategy,advantages and disadvantages of standalone ML techniques,hybrid models,and performance metrics.This study focuses on two types of hybrid models:parameter optimisation-based hybrid models(OBH)and hybridisation of parameter optimisation-based and preprocessing-based hybridmodels(HOPH).Overall,this research supports the idea thatmeta-heuristic approaches precisely improveML techniques.It’s also one of the first efforts to comprehensively examine the efficiency of various meta-heuristic approaches(classified into four primary classes)hybridised with ML techniques.This study revealed that previous research applied swarm,evolutionary,physics,and hybrid metaheuristics with 77%,61%,12%,and 12%,respectively.Finally,there is still room for improving OBH and HOPH models by examining different data pre-processing techniques and metaheuristic algorithms.
文摘The synchro double pulse signal mode is freuqently used in Short Base Line (SBL)underwater positioning system so as to obtain the information of both distance and depth of a target simultaneously. Howerer, this signal mode also brings about ranging indistinctness resulting in a shorter positioning distance much less than that limited by the period of the synchro signal. This paper presents a hardware distance-gate data acquiring scheme. It puts the original data sent to the computer in order of ' direct first pulse- depth information pulse (or first pulse reflected by water surface )…' to guarantee the effective positioning distance of the system. It has the advantage of reducing the processing time of the computer thus ensuring the realtime functioning of the system. A figure of the orbit of an underwater moving target measured in practice is attached to the end of the paper.