为了提高对管制物品的检测精度,本文提出一种结合RFB(receptive field block)网络结构和特征融合的目标检测算法。首先对采集的安检数据进行无效内容剔除、滤波;接着对安检数据进行人工标注和数据增强;然后在MobileNetV3-SSD算法的基础...为了提高对管制物品的检测精度,本文提出一种结合RFB(receptive field block)网络结构和特征融合的目标检测算法。首先对采集的安检数据进行无效内容剔除、滤波;接着对安检数据进行人工标注和数据增强;然后在MobileNetV3-SSD算法的基础上,通过引入RFB网络改进其网络结构,以加强网络的特征提取能力,并利用特征融合的方法提高模型的小目标检测能力;最后,构建了一个安检数据集SCCI2020来验证算法的性能,该数据集包含91767张图片。实验结果表明,本算法在安检数据集SCCI2020上的检测精度为87.0%,比MobileNetV3-SSD算法的检测精度高2.7个百分点;在COCO2014和COCO2017通用数据集上的检测精度分别为21.9%和23%,相对于VGG16-SSD、MobileNetV3-SSD算法均有一定提升。展开更多
为了解决多任务级联卷积神经网络(MTCNN)算法网络模型在小人脸检测方面鲁棒性较低的问题,提出了一种基于感受野增强的网络模型。首先,为MTCNN算法模型中的R-Net网络和O-Net网络添加感受野模块(receptive field blocks,RFB-S)。其次,通...为了解决多任务级联卷积神经网络(MTCNN)算法网络模型在小人脸检测方面鲁棒性较低的问题,提出了一种基于感受野增强的网络模型。首先,为MTCNN算法模型中的R-Net网络和O-Net网络添加感受野模块(receptive field blocks,RFB-S)。其次,通过添加批量标准化和全局平均池化,加速网络模型的收敛,防止模型过拟合。最后,调整网络任务的权重,P-Net和R-Net网络用于人脸区域粗筛选,O-Net网络用于人脸区域精筛选以及人脸关键点回归。实验结果表明,与MTCNN算法网络模型相比,所提模型缩小了16%,但检测速度提升了9%,在FDDB数据集上的检测精度提高了2.3%。因此,基于感受野增强的网络模型能有效完成人脸的检测任务,增强对小人脸检测的鲁棒性,可为人脸识别、表情识别等提供技术支持。展开更多
文摘为了提高对管制物品的检测精度,本文提出一种结合RFB(receptive field block)网络结构和特征融合的目标检测算法。首先对采集的安检数据进行无效内容剔除、滤波;接着对安检数据进行人工标注和数据增强;然后在MobileNetV3-SSD算法的基础上,通过引入RFB网络改进其网络结构,以加强网络的特征提取能力,并利用特征融合的方法提高模型的小目标检测能力;最后,构建了一个安检数据集SCCI2020来验证算法的性能,该数据集包含91767张图片。实验结果表明,本算法在安检数据集SCCI2020上的检测精度为87.0%,比MobileNetV3-SSD算法的检测精度高2.7个百分点;在COCO2014和COCO2017通用数据集上的检测精度分别为21.9%和23%,相对于VGG16-SSD、MobileNetV3-SSD算法均有一定提升。
文摘为了解决多任务级联卷积神经网络(MTCNN)算法网络模型在小人脸检测方面鲁棒性较低的问题,提出了一种基于感受野增强的网络模型。首先,为MTCNN算法模型中的R-Net网络和O-Net网络添加感受野模块(receptive field blocks,RFB-S)。其次,通过添加批量标准化和全局平均池化,加速网络模型的收敛,防止模型过拟合。最后,调整网络任务的权重,P-Net和R-Net网络用于人脸区域粗筛选,O-Net网络用于人脸区域精筛选以及人脸关键点回归。实验结果表明,与MTCNN算法网络模型相比,所提模型缩小了16%,但检测速度提升了9%,在FDDB数据集上的检测精度提高了2.3%。因此,基于感受野增强的网络模型能有效完成人脸的检测任务,增强对小人脸检测的鲁棒性,可为人脸识别、表情识别等提供技术支持。