Aiming at the defects of traditional four-wheel aligner such as many sensors,complex operation and slow detection speed,a fast and accurate 3D four-wheel alignment detection method is studied.Firstly,a new and special...Aiming at the defects of traditional four-wheel aligner such as many sensors,complex operation and slow detection speed,a fast and accurate 3D four-wheel alignment detection method is studied.Firstly,a new and special circle center target board is designed to calibrate the camera,and then the registration of the homography matrix is optimized by using the improved RANSAC(Random sample consensus)algorithm combined with the designed special target board,and the parameters of the wheel alignment system are adjusted by using the space vector principle.Accurate measurements are made to obtain the parameters of the four-wheel alignment.Design a calibration comparison experiment between the traditional target board and the new type of target board,and conduct a comparative test with the existing four-wheel aligner of the depot.The experimental results show that the use of the new target board-binding optimization algorithm can improve the calibration efficiency by about 9%to 21%,while improving the calibration accuracy by about 10.6%to 17.8%.And through the real vehicle test,it is verified that the use of the new target combined with the optimization algorithm can ensure the accuracy and reliability of the four-wheel positioning.This method has a certain significance in the rapid detection of vehicle four-wheel alignment parameters.展开更多
钢拱桥的线形监测是桥梁健康监测系统的重要组成部分。运用三维激光扫描技术,融合随机抽样一致(random sample consensus,RANSAC)算法对传统的具有噪声的基于密度的聚类方法(density-based spatial clustering of applications with noi...钢拱桥的线形监测是桥梁健康监测系统的重要组成部分。运用三维激光扫描技术,融合随机抽样一致(random sample consensus,RANSAC)算法对传统的具有噪声的基于密度的聚类方法(density-based spatial clustering of applications with noise,DBSCAN)算法进行改进,对钢拱桥拱肋线形进行提取。三维激光点云数据具有全面性和细节体现的优势,能够完整地呈现桥梁结构的形状和变形信息,融合RANSAC的改进DBSCAN算法根据钢拱桥结构特征对聚类结果进行约束,能够很好地实现删除离散点及桥面、横撑、横联和腹杆部分的点云这一目的。根据融合RANSAC的改进DBSCAN算法提取出的点云进行关键点拟合,与人工提取结果进行对比,拱肋关键点提取误差均在毫米级,最大误差为9.2 mm,最小误差为0.1 mm,此提取方法能够更加准确有效地完成钢拱桥线形提取,使线形提取精度达到毫米级,大大降低了人力成本和时间成本,对钢拱桥的复杂结构有更好的鲁棒性,能很好地适应实际生产需求。展开更多
基金Anhui Province Key Research and Development Program(No.2022107020012)Shenzhen Science and Technology Innovation Project(No.JSGG20191129102008260)。
文摘Aiming at the defects of traditional four-wheel aligner such as many sensors,complex operation and slow detection speed,a fast and accurate 3D four-wheel alignment detection method is studied.Firstly,a new and special circle center target board is designed to calibrate the camera,and then the registration of the homography matrix is optimized by using the improved RANSAC(Random sample consensus)algorithm combined with the designed special target board,and the parameters of the wheel alignment system are adjusted by using the space vector principle.Accurate measurements are made to obtain the parameters of the four-wheel alignment.Design a calibration comparison experiment between the traditional target board and the new type of target board,and conduct a comparative test with the existing four-wheel aligner of the depot.The experimental results show that the use of the new target board-binding optimization algorithm can improve the calibration efficiency by about 9%to 21%,while improving the calibration accuracy by about 10.6%to 17.8%.And through the real vehicle test,it is verified that the use of the new target combined with the optimization algorithm can ensure the accuracy and reliability of the four-wheel positioning.This method has a certain significance in the rapid detection of vehicle four-wheel alignment parameters.
文摘为满足车辆行驶时能对各种车道线(实线、虚线、直道、大弯道)准确识别,提出一种基于Meanshift原理和RANSAC(Random Sample Consensus)算法的车道识别方法;该方法首先利用改进的最大熵阈值分割方法和图像灰度概率密度特征对左右车道线目标进行初定位,动态地建立车道线ROI(Region of Interests),然后运用Meanshift算法对左右车道线进行精确定位,最后利用RANSAC算法对各搜索框中候选车道线的重心进行筛选,并采用最小二乘法对左右车道线进行拟合;实验结果表明,该方法可以识别各种车道线型,并具有较好的鲁棒性;车道检测平均时间为80ms/f,车道跟踪平均时间为40ms/f。