Accurately simulating water flow movement in vadose zone is crucial for effective water resources assessment.Richards'equation,which describes the movement of water flow in the vadose zone,is highly nonlinear and ...Accurately simulating water flow movement in vadose zone is crucial for effective water resources assessment.Richards'equation,which describes the movement of water flow in the vadose zone,is highly nonlinear and challenging to solve.Existing numerical methods often face issues such as numerical dispersion,oscillation,and mass non-conservation when spatial and temporal discretization conditions are not appropriately configured.To address these problems and achieve accurate and stable numerical solutions,a finite analytic method based on water content-based Richards'equation(FAM-W)is proposed.The performance of the FAM-W is compared with analytical solutions,Finite Difference Method(FDM),and Finite Analytic Method based on the pressure Head-based Richards'equation(FAM-H).Compared to analytical solution and other numerical methods(FDM and FAM-H),FAM-W demonstrates superior accuracy and efficiency in controlling mass balance errors,regardless of spatial step sizes.This study introduces a novel approach for modelling water flow in the vadose zone,offering significant benefits for water resources management.展开更多
The focus of green analytical chemistry(GAC)is to minimize the negative impacts of analytical procedures on human safety,human health,and the environment.Several factors,such as the reagents used,sample collection,sam...The focus of green analytical chemistry(GAC)is to minimize the negative impacts of analytical procedures on human safety,human health,and the environment.Several factors,such as the reagents used,sample collection,sample processing,instruments,energy consumed,and the quantities of hazardous materials and waste generated during analytical procedures,need to be considered in the evaluation of the greenness of analytical assays.In this study,we propose a greenness evaluation metric for analytical methods(GEMAM).The new greenness metric is simple,flexible,and comprehensive.The evaluation criteria are based on both the 12 principles of GAC(SIGNIFICANCE)and the 10 factors of sample preparation,and the results are presented on a 0–10 scale.The GEMAM calculation process is easy to perform,and its results are easy to interpret.The output of GEMAM is a pictogram that can provide both qualitative and quantitative information based on color and number.展开更多
This study presents a novel methodology to obtain an approximate analytical solution for an isotropic homo-geneous elastic medium with displacement and traction boundary conditions.The solution is derived through solv...This study presents a novel methodology to obtain an approximate analytical solution for an isotropic homo-geneous elastic medium with displacement and traction boundary conditions.The solution is derived through solving a specific numerical problem under the scope of the linear finite element method(LFEM),so the method is termed computational method for analytical solutions with finite elements(CMAS-FE).The primary objective of the CMAS-FE is to construct analytical expressions for displacements and reaction forces at nodes,as well as for strains and stresses at elemental quadrature points,all of which are formulated as infinite series solutions of various orders of Poisson’s ratios.Like the conventional LFEM,the CMAS-FE forms global sparse linear equations,but the Young’s modulus and Poisson’s ratio remain variables(or symbols).By employing a direct inverse method to solve these symbolic linear systems,an analytical expression of the displacement field can be constructed.The CMAS-FE is validated via patch and bending tests,which demonstrate convergence with mesh and term refine-ment.Furthermore,the CMAS-FE is applied to obtain the bending stiffness of a beam structure and to estimate an approximate stress intensity factor for a straight crack within a square-shaped plate.展开更多
Compared to the conventional permanent magnet synchronous machine(PMSM),the main characteristic of permanent magnet torque machine(PMTM)with high torque is that armature current is high,which has a great influence on ...Compared to the conventional permanent magnet synchronous machine(PMSM),the main characteristic of permanent magnet torque machine(PMTM)with high torque is that armature current is high,which has a great influence on magnetic circuit saturation,so this paper proposes a novel analytical method(AM)considering this problem.The key of this new AM is to consider armature reaction flux and armature leakage flux,which are closely related to output torque.Firstly,the expressions,including magnetomotive force(MMF)generated by permanent magnets(PMs)and armature windings are derived,and meanwhile slotting effect is considered by planning flux path.In addition,the expression of leakage flux density generated by armature windings are calculated,and flux density equivalence coefficient of tooth is calculated to be 2/3,which is used to solve the problem of uneven saturation of each tooth.Then,based on main flux factor and leakage flux factor proposed,an improved iteration process is proposed,and by this new process,the flux density of each yoke and tooth can be obtained,which is beneficial to obtain more accurate air-gap flux density and flux linkage.Finally,a prototype of 60-pole 54-slot is fabricated,and the performances of the electric machine,such as back electromotive force(EMF)and output torque,are calculated by this new AM and finite element method(FEM).The results of FEM and experimental test show that this new AM is good enough to calculate the performance of PMTM.展开更多
We propose a symplectic partitioned Runge-Kutta (SPRK) method with eighth-order spatial accuracy based on the extended Hamiltonian system of the acoustic waveequation. Known as the eighth-order NSPRK method, this te...We propose a symplectic partitioned Runge-Kutta (SPRK) method with eighth-order spatial accuracy based on the extended Hamiltonian system of the acoustic waveequation. Known as the eighth-order NSPRK method, this technique uses an eighth-orderaccurate nearly analytic discrete (NAD) operator to discretize high-order spatial differentialoperators and employs a second-order SPRK method to discretize temporal derivatives.The stability criteria and numerical dispersion relations of the eighth-order NSPRK methodare given by a semi-analytical method and are tested by numerical experiments. We alsoshow the differences of the numerical dispersions between the eighth-order NSPRK methodand conventional numerical methods such as the fourth-order NSPRK method, the eighth-order Lax-Wendroff correction (LWC) method and the eighth-order staggered-grid (SG)method. The result shows that the ability of the eighth-order NSPRK method to suppress thenumerical dispersion is obviously superior to that of the conventional numerical methods. Inthe same computational environment, to eliminate visible numerical dispersions, the eighth-order NSPRK is approximately 2.5 times faster than the fourth-order NSPRK and 3.4 timesfaster than the fourth-order SPRK, and the memory requirement is only approximately47.17% of the fourth-order NSPRK method and 49.41% of the fourth-order SPRK method,which indicates the highest computational efficiency. Modeling examples for the two-layermodels such as the heterogeneous and Marmousi models show that the wavefields generatedby the eighth-order NSPRK method are very clear with no visible numerical dispersion.These numerical experiments illustrate that the eighth-order NSPRK method can effectivelysuppress numerical dispersion when coarse grids are adopted. Therefore, this methodcan greatly decrease computer memory requirement and accelerate the forward modelingproductivity. In general, the eighth-order NSPRK method has tremendous potential value forseismic exploration and seismology research.展开更多
The chiral nature of biological systems enables their stereoselective interaction with chiral compounds. It has been well documented that the enantiomers ofa chiral drug may show differences in drug disposition especi...The chiral nature of biological systems enables their stereoselective interaction with chiral compounds. It has been well documented that the enantiomers ofa chiral drug may show differences in drug disposition especially in metabolic behavior. As a result, it is of vital importance to separate the enantiomers of a chiral drug in metabolic studies. This paper discusses enantioselective methods (include high-performance liquid chromatography, gas chromatography, capillary electrophoresis and high-performance liquid chromatography-mass spectrometry) that applied in chiral drug metabolism, using most recent examples where possible.展开更多
A new statistical method, the fuzzy analytical method, was introduced in the optimization processes of liposome preparation. It took the full advantage of the information from orthogonal experiments to obtain the opti...A new statistical method, the fuzzy analytical method, was introduced in the optimization processes of liposome preparation. It took the full advantage of the information from orthogonal experiments to obtain the optimal liposome preparation conditions by considering all the evaluation indexes. Liposomes were made by the modified reverse-phase evaporation method and the properties of liposomes including size, encapsulation efficiency and physical stability were selected as the evaluation indexes to indicate the quality of liposomes. The experimental data of these properties were analyzed by three different methods including direct observation, variance analysis and fuzzy analytical method. The optimal preparation conditions obtained from these methods were validated with further experiments. The results of all possible combinations of levels for all factors in orthogonal experiments were acquired by the fuzzy analytical method. All evaluation indexes were taken into account and the optimal preparation condition was obtained. The optimal preparation conditions from direct observation and fuzzy analytical method were different and further validation studies indicated that the optimal conditions obtained from the fuzzy analytical method were in agreement with that from traditional statistical analysis. Fuzzy analytical method avoided the problem resulted from the traditional method, in which different levels of the same factor were obtained when considering different evaluation indexes. More information could be obtained from the fuzzy analytical method and the blind area within the experimental range was eliminated. As a result, fuzzy analytical method can be applied in the optimization processes of liposome preparation.展开更多
In the present work, the different sample collection, pretreatment and analytical methods for polycyclic aromatic hydrocarbons (PAHs) in airborne particulates is systematacially reviewed, and the applications of the...In the present work, the different sample collection, pretreatment and analytical methods for polycyclic aromatic hydrocarbons (PAHs) in airborne particulates is systematacially reviewed, and the applications of these pretreatment and analytical methods for PAHs are compared in detail. Some comments on the future expectation are also presented.展开更多
To enhance the integrity, an analytic method (AM) which has less execution time is proposed to calculate the user differential range error (UDRE) used by the user to detect the potential risk. An ephemeris and clo...To enhance the integrity, an analytic method (AM) which has less execution time is proposed to calculate the user differential range error (UDRE) used by the user to detect the potential risk. An ephemeris and clock correction calculation method is introduced first. It shows that the most important thing of computing UDRE is to find the worst user location (WUL) in the service volume. Then, a UDRE algorithm using AM is described to solve this problem. By using the covariance matrix of the error vector, the searching of WUL is converted to an analytic geometry problem. The location of WUL can be obtained directly by mathematical derivation. Experiments are conducted to compare the performance between the proposed AM algorithm and the exhaustive grid search (EGS) method used in the master station. The results show that the correctness of the AM algorithm can be proved by the EGS method and the AM algorithm can reduce the calculation time by more than 90%. The computational complexity of this proposed algorithm is better than that of EGS. Thereby this algorithm is more suitable for computing UDRE at the master station.展开更多
In order to improve rolled strip quality, precise plate shape control theory should be established. Roll flat- tening theory is an important part of the plate shape theory. To improve the accuracy of roll flattening c...In order to improve rolled strip quality, precise plate shape control theory should be established. Roll flat- tening theory is an important part of the plate shape theory. To improve the accuracy of roll flattening calculation based on semi infinite body model, especially near the two roll barrel edges, a new and more accurate roll flattening model is proposed. Based on boundary integral equation method, an analytical model for solving a finite length semi infinite body is established. The lateral surface displacement field of the finite length semi-infinite body is simulated by finite element method (FEM) and lateral surface displacement decay functions are established. Based on the boundary integral equation method, the numerical solution of the finite length semi-infinite body under the distribu ted force is obtained and an accurate roll flattening model is established. Different from the traditional semi-infinite body model, the matrix form of the new roll flattening model is established through the mathematical derivation. The result from the new model is more consistent with that by FEM especially near the edges.展开更多
A differential equation of first order can be expressed by the equation of motion of a mechanical system. In this paper, three methods of analytical mechanics, i.e. the Hamilton-Noether method, the Lagrange-Noether me...A differential equation of first order can be expressed by the equation of motion of a mechanical system. In this paper, three methods of analytical mechanics, i.e. the Hamilton-Noether method, the Lagrange-Noether method and the Poisson method, are given to solve a differential equation of first order, of which the way may be called the mechanical methodology in mathematics.展开更多
Nanoliposomes are considered to be the most successful nanoparticle drug delivery system, but their fate in vivo has not been fully understood due to lack of reliable bioanalytical methods, which seriously limits the ...Nanoliposomes are considered to be the most successful nanoparticle drug delivery system, but their fate in vivo has not been fully understood due to lack of reliable bioanalytical methods, which seriously limits the development of liposomal drugs. Hence, an overview of currently used bioanalytical methods is imperative to lay the groundwork for the need of developing a bioanalytical method for liposome measurements in vivo. Currently, major analytical methods for nanoliposomes measurement in vivo include fluorescence labeling, radiolabeling, magnetic resonance imaging(MRI), mass spectrometry and computed tomography. In this review, these bioanalytical methods are summarized, and the advantages and disadvantages of each are discussed. We provide insights into the applicability and limitations of these analytical methods in the application of nanoliposomes measurement in vivo, and highlight the recent development of instrumental analysis techniques. The review is devoted to providing a comprehensive overview of the investigation of nanoliposomes design and associated fate in vivo, promoting the development of bioanalytical techniques for nanoliposomes measurement, and understanding the pharmacokinetic behavior, effectiveness and potential toxicity of nanoliposomes in vivo.展开更多
The large cylinder is a new-type structure that has been applied to harbor and offshore engineering. An analytic method of the relationship between loads and the structure displacement is developed based on the failur...The large cylinder is a new-type structure that has been applied to harbor and offshore engineering. An analytic method of the relationship between loads and the structure displacement is developed based on the failure mode of deep embedded large cylinder structures. It can be used to calculate directly the soil resistance and the ultimate bearing capacity of the structure under usage. A new criterion of the large cylinder structure, which discriminates the deep embedded cylinder from the shallow embedded cylinder, is defined. Model tests prove that the proposed method is feasible for the analysis of deep embedded large cylinder structures.展开更多
Firstly, a new analytical error model of the cumulative geoid height using the three-dimensional diagonal tensors of satellite gravity gradiometry (SGG) is introduced based on the variance-covariance matrix principl...Firstly, a new analytical error model of the cumulative geoid height using the three-dimensional diagonal tensors of satellite gravity gradiometry (SGG) is introduced based on the variance-covariance matrix principle. Secondly, a study for the requirements demonstration on the next-generation GOCE Follow-On satellite gravity gradiometry system is developed using different satellite orbital altitudes and measurement accuracies of satellite gravity gradiometer by the new analytical error model of SGG. The research results show that it is preferable to design satellite orbital altitudes of 300 km–400km and choose the measurement accuracies of 10-13/s2 –10-15/s2 from satellite gravity gradiometer. Finally, the complementarity of the four-stage satellite gravity missions, including past CHAMP, current GRACE, and GOCE, and next-generation GOCE Follow-On, is contrastively demonstrated for precisely recovering the Earth’s full-frequency gravitational field with high spatial resolution.展开更多
An impedance analytical method (IAM) is developed to study the interaction of plane water wave with a slotted-wall caisson breakwater. The non-linear boundary condition at the slotted-wall is expressed in terms of f...An impedance analytical method (IAM) is developed to study the interaction of plane water wave with a slotted-wall caisson breakwater. The non-linear boundary condition at the slotted-wall is expressed in terms of flow resistance. A set of algebraic expressions are obtained for free surface elevation inside and outside chamber, and reflection coefficient. The prediction of the reflection coefficients shows that the relative widths of the chamber inducing the minimum reflection coefficient for a slotted-wall caisson breakwater are in a range of 0.10~0.20, which are smaller than that (0.15~0.25) for a perforated-wall caisson breakwater. The reflection coefficients and free surface elevation obtained by the present model are compared with that of laboratory experiments carried out by previous researchers.展开更多
Terbinafine is a new powerful antifungal agent indicated for both oral and topical treatment of myco- sessince. It is highly effective in the treatment of determatomycoses. The chemical and pharmaceutical analysis of ...Terbinafine is a new powerful antifungal agent indicated for both oral and topical treatment of myco- sessince. It is highly effective in the treatment of determatomycoses. The chemical and pharmaceutical analysis of the drug requires effective analytical methods for quality control and pharmacodynamic and pharmacokinetic studies. Ever since it was introduced as an effective antifungal agent, many methods have been developed and validated for its assay in pharmaceuticals and biological materials. This article reviews the various methods reported during the last 25 years.展开更多
Assessment of acid sulfate soil risk is an important step for acid sulfate soil management and its reliability depends very much on the suitability and accuracy of various analytical methods for estimating sulfide-der...Assessment of acid sulfate soil risk is an important step for acid sulfate soil management and its reliability depends very much on the suitability and accuracy of various analytical methods for estimating sulfide-derived potential acidity, actual acidity and acid-neutralizing capacity in acid sulfate soils. This paper critically reviews various analytical methods that are currently used for determination of the above parameters, as well as their implications for environmental risk assessment of acid sulfate soi1s.展开更多
By using the Born-von Kfirmfin theory of lattice dynamics and the modified analytic embedded atom method, we reproduce the experimental results of the phonon dispersion in fcc metal Cu at zero pressure along three hig...By using the Born-von Kfirmfin theory of lattice dynamics and the modified analytic embedded atom method, we reproduce the experimental results of the phonon dispersion in fcc metal Cu at zero pressure along three high symmetry directions and four oft-symmetry directions, and then simulate the phonon dispersion curves of Cu at high pressures of 50, 100, and 150 GPa. The results show that the shapes of dispersion curves at high pressures are very similar to that at zero pressure. All the vibration frequencies of Cu in all vibration branches at high pressures are larger than the results at zero pressure, and increase correspondingly as pressure reaches 50, 100, and 150 GPa sequentially. Moreover, on the basis of phonon dispersion, we calculate the values of specific heat of Cu at different pressures. The prediction of thermodynamic quantities lays a significant foundation for guiding and judging experiments of thermodynamic properties of solids under high pressures.展开更多
Pioglitazone is an oral anti-hyperglycemic agent. It is used for the treatment of diabetes mellitus type 2. It selectively stimulates nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR-gamma). I...Pioglitazone is an oral anti-hyperglycemic agent. It is used for the treatment of diabetes mellitus type 2. It selectively stimulates nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR-gamma). It was the tenth-best-selling drug in the U.S. in 2008. This article examines published analytical methods reported so far in the literature for the determination of pioglitazone in biological samples and pharmaceutical formulations. They include various techniques like electrochemical methods, spectrophotometry, capillary electrophoresis, high-performance liquid chromatography, liquid chromatography-electrospray ionization-tandem mass spectrometry and high-performance thin layer chromatography.展开更多
Human error(HE) is the most important factor influencing on structural safety because its effect often exceeds the random deviation.Large numbers of facts have shown that structural failures may be caused by the gross...Human error(HE) is the most important factor influencing on structural safety because its effect often exceeds the random deviation.Large numbers of facts have shown that structural failures may be caused by the gross error due to HE.So it is essential to analyze HE in construction.The crucial work of human error analysis(HEA) is the estimation of human error probability(HEP) in construction.The method for estimating HEP,analytic hierarchy process and failure likelihood index method(AHP-FLIM),is introduced in this paper.The method also uses the process of expert judgment within the failure likelihood index method(FLIM).A numerical example shows the effectiveness of the methods proposed.展开更多
基金supported by the National Natural Science Foundation of China(No.42372287 and No.U24A20178)the Fundamental Research Funds for the Central Universities CHD(No.2024SHEEAR002)+3 种基金the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shaanxi Province(No.2020024)the China Postdoctoral Science Foundation(GZC20232955,2024M753472,and 2024MD763937)the Science-Technology Foundation for Young Scientists of Gansu Province,China(No.24JRRA097)the Study of biodiversity survey and limiting factor analysis of Yinkentala(2023ZL01).
文摘Accurately simulating water flow movement in vadose zone is crucial for effective water resources assessment.Richards'equation,which describes the movement of water flow in the vadose zone,is highly nonlinear and challenging to solve.Existing numerical methods often face issues such as numerical dispersion,oscillation,and mass non-conservation when spatial and temporal discretization conditions are not appropriately configured.To address these problems and achieve accurate and stable numerical solutions,a finite analytic method based on water content-based Richards'equation(FAM-W)is proposed.The performance of the FAM-W is compared with analytical solutions,Finite Difference Method(FDM),and Finite Analytic Method based on the pressure Head-based Richards'equation(FAM-H).Compared to analytical solution and other numerical methods(FDM and FAM-H),FAM-W demonstrates superior accuracy and efficiency in controlling mass balance errors,regardless of spatial step sizes.This study introduces a novel approach for modelling water flow in the vadose zone,offering significant benefits for water resources management.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.:81603182 and 81703607)the Fundamental Research Funds for the Central Universities,China(Grant Nos.:DUT21RC(3)057,DUT23YG226,DUT24MS018,and DUT23YG228)+1 种基金the Natural Science Foundation of Liaoning Province,China(Grant No.:2023-MSBA-018)the Open Funding of Cancer Hospital of Dalian University of Technology,China(Grant No.:2024-ZLKF-33).
文摘The focus of green analytical chemistry(GAC)is to minimize the negative impacts of analytical procedures on human safety,human health,and the environment.Several factors,such as the reagents used,sample collection,sample processing,instruments,energy consumed,and the quantities of hazardous materials and waste generated during analytical procedures,need to be considered in the evaluation of the greenness of analytical assays.In this study,we propose a greenness evaluation metric for analytical methods(GEMAM).The new greenness metric is simple,flexible,and comprehensive.The evaluation criteria are based on both the 12 principles of GAC(SIGNIFICANCE)and the 10 factors of sample preparation,and the results are presented on a 0–10 scale.The GEMAM calculation process is easy to perform,and its results are easy to interpret.The output of GEMAM is a pictogram that can provide both qualitative and quantitative information based on color and number.
基金supported by the National Natural Science Foundation of China Excellence Research Group Program for“Multiscale Problems in Nonlinear Mechanics”(Grant No.12588201)the National Key R&D Program of China(Grant No.2023YFA1008901)+1 种基金the National Nat-ural Science Foundation of China(Grant No.12172009)supported by“The Fundamental Research Funds for the Central Universities,Peking University”.
文摘This study presents a novel methodology to obtain an approximate analytical solution for an isotropic homo-geneous elastic medium with displacement and traction boundary conditions.The solution is derived through solving a specific numerical problem under the scope of the linear finite element method(LFEM),so the method is termed computational method for analytical solutions with finite elements(CMAS-FE).The primary objective of the CMAS-FE is to construct analytical expressions for displacements and reaction forces at nodes,as well as for strains and stresses at elemental quadrature points,all of which are formulated as infinite series solutions of various orders of Poisson’s ratios.Like the conventional LFEM,the CMAS-FE forms global sparse linear equations,but the Young’s modulus and Poisson’s ratio remain variables(or symbols).By employing a direct inverse method to solve these symbolic linear systems,an analytical expression of the displacement field can be constructed.The CMAS-FE is validated via patch and bending tests,which demonstrate convergence with mesh and term refine-ment.Furthermore,the CMAS-FE is applied to obtain the bending stiffness of a beam structure and to estimate an approximate stress intensity factor for a straight crack within a square-shaped plate.
基金supported in part by the National Natural Science Foundation of China under Grant 52125701.
文摘Compared to the conventional permanent magnet synchronous machine(PMSM),the main characteristic of permanent magnet torque machine(PMTM)with high torque is that armature current is high,which has a great influence on magnetic circuit saturation,so this paper proposes a novel analytical method(AM)considering this problem.The key of this new AM is to consider armature reaction flux and armature leakage flux,which are closely related to output torque.Firstly,the expressions,including magnetomotive force(MMF)generated by permanent magnets(PMs)and armature windings are derived,and meanwhile slotting effect is considered by planning flux path.In addition,the expression of leakage flux density generated by armature windings are calculated,and flux density equivalence coefficient of tooth is calculated to be 2/3,which is used to solve the problem of uneven saturation of each tooth.Then,based on main flux factor and leakage flux factor proposed,an improved iteration process is proposed,and by this new process,the flux density of each yoke and tooth can be obtained,which is beneficial to obtain more accurate air-gap flux density and flux linkage.Finally,a prototype of 60-pole 54-slot is fabricated,and the performances of the electric machine,such as back electromotive force(EMF)and output torque,are calculated by this new AM and finite element method(FEM).The results of FEM and experimental test show that this new AM is good enough to calculate the performance of PMTM.
基金This research was supported by the National Natural Science Foundation of China (Nos. 41230210 and 41204074), the Science Foundation of the Education Department of Yunnan Province (No. 2013Z152), and Statoil Company (Contract No. 4502502663).
文摘We propose a symplectic partitioned Runge-Kutta (SPRK) method with eighth-order spatial accuracy based on the extended Hamiltonian system of the acoustic waveequation. Known as the eighth-order NSPRK method, this technique uses an eighth-orderaccurate nearly analytic discrete (NAD) operator to discretize high-order spatial differentialoperators and employs a second-order SPRK method to discretize temporal derivatives.The stability criteria and numerical dispersion relations of the eighth-order NSPRK methodare given by a semi-analytical method and are tested by numerical experiments. We alsoshow the differences of the numerical dispersions between the eighth-order NSPRK methodand conventional numerical methods such as the fourth-order NSPRK method, the eighth-order Lax-Wendroff correction (LWC) method and the eighth-order staggered-grid (SG)method. The result shows that the ability of the eighth-order NSPRK method to suppress thenumerical dispersion is obviously superior to that of the conventional numerical methods. Inthe same computational environment, to eliminate visible numerical dispersions, the eighth-order NSPRK is approximately 2.5 times faster than the fourth-order NSPRK and 3.4 timesfaster than the fourth-order SPRK, and the memory requirement is only approximately47.17% of the fourth-order NSPRK method and 49.41% of the fourth-order SPRK method,which indicates the highest computational efficiency. Modeling examples for the two-layermodels such as the heterogeneous and Marmousi models show that the wavefields generatedby the eighth-order NSPRK method are very clear with no visible numerical dispersion.These numerical experiments illustrate that the eighth-order NSPRK method can effectivelysuppress numerical dispersion when coarse grids are adopted. Therefore, this methodcan greatly decrease computer memory requirement and accelerate the forward modelingproductivity. In general, the eighth-order NSPRK method has tremendous potential value forseismic exploration and seismology research.
基金National Natural Science Foundation of China(Grant No.30225047 and 30701038)
文摘The chiral nature of biological systems enables their stereoselective interaction with chiral compounds. It has been well documented that the enantiomers ofa chiral drug may show differences in drug disposition especially in metabolic behavior. As a result, it is of vital importance to separate the enantiomers of a chiral drug in metabolic studies. This paper discusses enantioselective methods (include high-performance liquid chromatography, gas chromatography, capillary electrophoresis and high-performance liquid chromatography-mass spectrometry) that applied in chiral drug metabolism, using most recent examples where possible.
文摘A new statistical method, the fuzzy analytical method, was introduced in the optimization processes of liposome preparation. It took the full advantage of the information from orthogonal experiments to obtain the optimal liposome preparation conditions by considering all the evaluation indexes. Liposomes were made by the modified reverse-phase evaporation method and the properties of liposomes including size, encapsulation efficiency and physical stability were selected as the evaluation indexes to indicate the quality of liposomes. The experimental data of these properties were analyzed by three different methods including direct observation, variance analysis and fuzzy analytical method. The optimal preparation conditions obtained from these methods were validated with further experiments. The results of all possible combinations of levels for all factors in orthogonal experiments were acquired by the fuzzy analytical method. All evaluation indexes were taken into account and the optimal preparation condition was obtained. The optimal preparation conditions from direct observation and fuzzy analytical method were different and further validation studies indicated that the optimal conditions obtained from the fuzzy analytical method were in agreement with that from traditional statistical analysis. Fuzzy analytical method avoided the problem resulted from the traditional method, in which different levels of the same factor were obtained when considering different evaluation indexes. More information could be obtained from the fuzzy analytical method and the blind area within the experimental range was eliminated. As a result, fuzzy analytical method can be applied in the optimization processes of liposome preparation.
基金Project supported by the National Natural Science Foundation of China (No. 20437020 20575073) NSFC-JSPS Joint Research Project (No. 20511140134) the Major Research Program of Chinese Academy of Sciences (KZCX3-SW-432)
文摘In the present work, the different sample collection, pretreatment and analytical methods for polycyclic aromatic hydrocarbons (PAHs) in airborne particulates is systematacially reviewed, and the applications of these pretreatment and analytical methods for PAHs are compared in detail. Some comments on the future expectation are also presented.
文摘To enhance the integrity, an analytic method (AM) which has less execution time is proposed to calculate the user differential range error (UDRE) used by the user to detect the potential risk. An ephemeris and clock correction calculation method is introduced first. It shows that the most important thing of computing UDRE is to find the worst user location (WUL) in the service volume. Then, a UDRE algorithm using AM is described to solve this problem. By using the covariance matrix of the error vector, the searching of WUL is converted to an analytic geometry problem. The location of WUL can be obtained directly by mathematical derivation. Experiments are conducted to compare the performance between the proposed AM algorithm and the exhaustive grid search (EGS) method used in the master station. The results show that the correctness of the AM algorithm can be proved by the EGS method and the AM algorithm can reduce the calculation time by more than 90%. The computational complexity of this proposed algorithm is better than that of EGS. Thereby this algorithm is more suitable for computing UDRE at the master station.
基金Item Sponsored by National Natural Science Foundation of China(51075353)
文摘In order to improve rolled strip quality, precise plate shape control theory should be established. Roll flat- tening theory is an important part of the plate shape theory. To improve the accuracy of roll flattening calculation based on semi infinite body model, especially near the two roll barrel edges, a new and more accurate roll flattening model is proposed. Based on boundary integral equation method, an analytical model for solving a finite length semi infinite body is established. The lateral surface displacement field of the finite length semi-infinite body is simulated by finite element method (FEM) and lateral surface displacement decay functions are established. Based on the boundary integral equation method, the numerical solution of the finite length semi-infinite body under the distribu ted force is obtained and an accurate roll flattening model is established. Different from the traditional semi-infinite body model, the matrix form of the new roll flattening model is established through the mathematical derivation. The result from the new model is more consistent with that by FEM especially near the edges.
基金Project supported by the National Natural Science Foundation of China (Grant No 10272021) and the Doctorate Foundation of the State Education Ministry of China (Grant No 20040007022).
文摘A differential equation of first order can be expressed by the equation of motion of a mechanical system. In this paper, three methods of analytical mechanics, i.e. the Hamilton-Noether method, the Lagrange-Noether method and the Poisson method, are given to solve a differential equation of first order, of which the way may be called the mechanical methodology in mathematics.
基金supported by the National Natural Science Foundation of China (Grant No. 81430087, 81673396, 81603182)
文摘Nanoliposomes are considered to be the most successful nanoparticle drug delivery system, but their fate in vivo has not been fully understood due to lack of reliable bioanalytical methods, which seriously limits the development of liposomal drugs. Hence, an overview of currently used bioanalytical methods is imperative to lay the groundwork for the need of developing a bioanalytical method for liposome measurements in vivo. Currently, major analytical methods for nanoliposomes measurement in vivo include fluorescence labeling, radiolabeling, magnetic resonance imaging(MRI), mass spectrometry and computed tomography. In this review, these bioanalytical methods are summarized, and the advantages and disadvantages of each are discussed. We provide insights into the applicability and limitations of these analytical methods in the application of nanoliposomes measurement in vivo, and highlight the recent development of instrumental analysis techniques. The review is devoted to providing a comprehensive overview of the investigation of nanoliposomes design and associated fate in vivo, promoting the development of bioanalytical techniques for nanoliposomes measurement, and understanding the pharmacokinetic behavior, effectiveness and potential toxicity of nanoliposomes in vivo.
文摘The large cylinder is a new-type structure that has been applied to harbor and offshore engineering. An analytic method of the relationship between loads and the structure displacement is developed based on the failure mode of deep embedded large cylinder structures. It can be used to calculate directly the soil resistance and the ultimate bearing capacity of the structure under usage. A new criterion of the large cylinder structure, which discriminates the deep embedded cylinder from the shallow embedded cylinder, is defined. Model tests prove that the proposed method is feasible for the analysis of deep embedded large cylinder structures.
基金Project supported by the Main Direction Program of Knowledge Innovation of Chinese Academy of Sciences for Distinguished Young Scholar (Grant No. KZCX2-EW-QN114)the National Natural Science Foundation of China for Young Scholar (Grant Nos. 41004006, 41131067, 11173049, and 41202094)+5 种基金the Merit-based Scientific Research Foundation of the State Ministry of Human Resources and Social Security of China for Returned Overseas Chinese Scholars(Grant No. 2011)the Open Research Fund Program of the Key Laboratory of Computational Geodynamics of Chinese Academy of Sciences (Grant No. 2011-04)the Open Research Fund Program of the Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, China (Grant No. 11-01-02)the Open Research Fund Program of the Key Laboratory of Geo-Informatics of National Administration of Surveying, Mapping and Geoinformation of China(Grant No. 201322)the Open Fund of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Grant No. PLN1113)the Foundation of State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing (Grant No. PRP/open-1206)
文摘Firstly, a new analytical error model of the cumulative geoid height using the three-dimensional diagonal tensors of satellite gravity gradiometry (SGG) is introduced based on the variance-covariance matrix principle. Secondly, a study for the requirements demonstration on the next-generation GOCE Follow-On satellite gravity gradiometry system is developed using different satellite orbital altitudes and measurement accuracies of satellite gravity gradiometer by the new analytical error model of SGG. The research results show that it is preferable to design satellite orbital altitudes of 300 km–400km and choose the measurement accuracies of 10-13/s2 –10-15/s2 from satellite gravity gradiometer. Finally, the complementarity of the four-stage satellite gravity missions, including past CHAMP, current GRACE, and GOCE, and next-generation GOCE Follow-On, is contrastively demonstrated for precisely recovering the Earth’s full-frequency gravitational field with high spatial resolution.
文摘An impedance analytical method (IAM) is developed to study the interaction of plane water wave with a slotted-wall caisson breakwater. The non-linear boundary condition at the slotted-wall is expressed in terms of flow resistance. A set of algebraic expressions are obtained for free surface elevation inside and outside chamber, and reflection coefficient. The prediction of the reflection coefficients shows that the relative widths of the chamber inducing the minimum reflection coefficient for a slotted-wall caisson breakwater are in a range of 0.10~0.20, which are smaller than that (0.15~0.25) for a perforated-wall caisson breakwater. The reflection coefficients and free surface elevation obtained by the present model are compared with that of laboratory experiments carried out by previous researchers.
文摘Terbinafine is a new powerful antifungal agent indicated for both oral and topical treatment of myco- sessince. It is highly effective in the treatment of determatomycoses. The chemical and pharmaceutical analysis of the drug requires effective analytical methods for quality control and pharmacodynamic and pharmacokinetic studies. Ever since it was introduced as an effective antifungal agent, many methods have been developed and validated for its assay in pharmaceuticals and biological materials. This article reviews the various methods reported during the last 25 years.
文摘Assessment of acid sulfate soil risk is an important step for acid sulfate soil management and its reliability depends very much on the suitability and accuracy of various analytical methods for estimating sulfide-derived potential acidity, actual acidity and acid-neutralizing capacity in acid sulfate soils. This paper critically reviews various analytical methods that are currently used for determination of the above parameters, as well as their implications for environmental risk assessment of acid sulfate soi1s.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61078057 and 11204227)the Scientific Research Program of Education Department of Shaanxi Province, China (Grant No. 12JK0958)
文摘By using the Born-von Kfirmfin theory of lattice dynamics and the modified analytic embedded atom method, we reproduce the experimental results of the phonon dispersion in fcc metal Cu at zero pressure along three high symmetry directions and four oft-symmetry directions, and then simulate the phonon dispersion curves of Cu at high pressures of 50, 100, and 150 GPa. The results show that the shapes of dispersion curves at high pressures are very similar to that at zero pressure. All the vibration frequencies of Cu in all vibration branches at high pressures are larger than the results at zero pressure, and increase correspondingly as pressure reaches 50, 100, and 150 GPa sequentially. Moreover, on the basis of phonon dispersion, we calculate the values of specific heat of Cu at different pressures. The prediction of thermodynamic quantities lays a significant foundation for guiding and judging experiments of thermodynamic properties of solids under high pressures.
文摘Pioglitazone is an oral anti-hyperglycemic agent. It is used for the treatment of diabetes mellitus type 2. It selectively stimulates nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR-gamma). It was the tenth-best-selling drug in the U.S. in 2008. This article examines published analytical methods reported so far in the literature for the determination of pioglitazone in biological samples and pharmaceutical formulations. They include various techniques like electrochemical methods, spectrophotometry, capillary electrophoresis, high-performance liquid chromatography, liquid chromatography-electrospray ionization-tandem mass spectrometry and high-performance thin layer chromatography.
文摘Human error(HE) is the most important factor influencing on structural safety because its effect often exceeds the random deviation.Large numbers of facts have shown that structural failures may be caused by the gross error due to HE.So it is essential to analyze HE in construction.The crucial work of human error analysis(HEA) is the estimation of human error probability(HEP) in construction.The method for estimating HEP,analytic hierarchy process and failure likelihood index method(AHP-FLIM),is introduced in this paper.The method also uses the process of expert judgment within the failure likelihood index method(FLIM).A numerical example shows the effectiveness of the methods proposed.