The coincidence rates were more than 96% among the instar-weighted average of bioassaysin the lab, the percentage of resistance to Km in the field and the percentage of plantscontaining Bt gene. So, the performance of...The coincidence rates were more than 96% among the instar-weighted average of bioassaysin the lab, the percentage of resistance to Km in the field and the percentage of plantscontaining Bt gene. So, the performance of resistance to Km in the field can be used torepresent the transgenic Bt gene for selecting the resistance to bollworm. The instar-weighted averages were 30.585, 24.182, 16.615, 10.601, 10.123, 7.440 and 7.215 for theC0, P1, M1, M2, MP1, P2 and MP2 populations, respectively. The variance analysisindicated that the instar-weighted average in C0 was greatly significantly higher thanthat in all other populations, i.e., the performance of resistance to bollworm in C0 washighly significantly lower than all other populations. And the resistance in P1 wasgreatly lower than that of M1, M2, MP1, P2 and MP2, and M1 greatly lower than that of M2,MP1, P2 and MP2. There were no significant differences among M2, MP1, P2 and MP2. Withinthe populations of the first cycle selection, MP1 and M1 were greatly significantlyhigher than P1, and MP1 significantly higher than M1. The populations of the second cycleselection were significantly higher than their initial population M1, but no significantdifference among them. The boll size, seed index, the percent of the first harvest yield,fiber length, strength and elongation of the resistant plants to bollworm were significantlylower than that of sensitive plants to bollworm. And the yield of seed and lint cottonof the resistant plant to bollworm were lower than that of the sensitive to bollworm, butno significant difference between them. The boll numbers per plant, lint percent andmicronaire of the resistant plants to bollworm were significantly higher than that of thesensitive plant to bollworm.展开更多
1000-Grain weight and spikelet number per panicle are two important components for rice grain yield. In our previous study, eight quantitative trait loci (QTLs) conferring spikelet number per panicle and 1000-grain ...1000-Grain weight and spikelet number per panicle are two important components for rice grain yield. In our previous study, eight quantitative trait loci (QTLs) conferring spikelet number per panicle and 1000-grain weight were mapped through sequencing-based genotyping of 150 rice recombinant inbred lines (RILs). In this study, we validated the effects of four QTLs from Nipponbare using chromosome segment substitution lines (CSSLs), and pyramided eight grain yield related QTLs. The new lines containing the eight QTLs with positive effects showed increased panicle and spikelet size as compared with the parent variety 93-11. We further proposed a novel pyramid breeding scheme based on marker-assistant and phenotype selection (MAPS). This scheme allowed pyramiding of as many as 24 QTLs at a single hybridization without massive cross work. This study provided insights into the molecular basis of rice grain yield for direct wealth for high-yielding rice breeding.展开更多
Clubroot and herbicide resistance,high oleic acid(OA)content,and early maturity are targets of rapeseed(Brassica napus L.)breeding.The objective of this study was to develop new male-fertility restorer lines by pyrami...Clubroot and herbicide resistance,high oleic acid(OA)content,and early maturity are targets of rapeseed(Brassica napus L.)breeding.The objective of this study was to develop new male-fertility restorer lines by pyramiding favorable genes to improve these traits simultaneously.Seven elite alleles for the four traits were introduced into the restorer line 621R by speed breeding with marker-assisted and phenotypic selection.Six introgression lines(ILs)were developed with four-to seven-gene combinations and crossed with two elite parents to develop hybrids.All ILs and their corresponding hybrids displayed high resistance to both clubroot pathotype 4 and sulfonylurea herbicides.Three ILs and their hybrids showed large increases in OA contents and four showed earlier maturity.These new ILs may be useful in rapeseed hybrid breeding for the target traits.展开更多
Development of hybrid rice with high yield and grain quality is a goal of rice breeding.To investigate the genetic mechanism of heterosis for rice milling and appearance quality in indica/xian rice,QTL mapping was con...Development of hybrid rice with high yield and grain quality is a goal of rice breeding.To investigate the genetic mechanism of heterosis for rice milling and appearance quality in indica/xian rice,QTL mapping was conducted using 1061 recombinant inbred lines(RILs)derived from a cross of the xian rice cultivars Quan 9311B(Q9311B)and Wu-shan-si-miao(WSSM),and a backcross F_(1)(BC_(1)F_(1)) population developed by crossing the RILs with Quan 9311A(Q9311A),combined with phenotyping in two environments.The F_(1) hybrid(Q9311A×WSSM)showed various degrees of heterosis for milling and appearance quality.A total of 142 main-effect QTL(M-QTL)and 407 pairs of epistatic QTL(E-QTL)were identified for five milling and appearance quality traits and grain yield per plant(GYP)in the RIL,BC_(1)F_(1) and mid-parental heterosis(H_(MP)) populations.Differential detection of QTL in three populations revealed that most additive loci detected in the RILs did not show heterotic effects,but some of them did contribute to BC_(1)F_(1) trait performance.Unlike heterosis of GYP,single-locus overdominance and epistasis were the main contributors to heterosis for milling and appearance quality.Epistasis contributed more to the heterosis for milling quality than to that for appearance quality.Three(four)QTL regions harboring opposite(consistent)directions of favorable allele effects for GYP and grain quality were identified,indicating the presence of partial genetic overlaps between GYP and grain quality.Three strategies are proposed to develop hybrid rice with high yield and good grain quality:1)pyramiding favorable alleles with consistent directions of gene effects for GYP and grain quality at the M-QTL on different chromosomes;2)introgressing favorable alleles for GYP and grain quality into the parents and then pyramiding and fixing these additive effects in hybrids;and 3)pyramiding overdominant and dominant loci and minimizing or eliminating underdominant loci from the parents.展开更多
基金supported in part by the National High Tech Program(2001AA211101)Trans-century Training Program Foundation for the Talents by the Ministry of Education and the Ministry of Science and Technology Program(J99-A-023).
文摘The coincidence rates were more than 96% among the instar-weighted average of bioassaysin the lab, the percentage of resistance to Km in the field and the percentage of plantscontaining Bt gene. So, the performance of resistance to Km in the field can be used torepresent the transgenic Bt gene for selecting the resistance to bollworm. The instar-weighted averages were 30.585, 24.182, 16.615, 10.601, 10.123, 7.440 and 7.215 for theC0, P1, M1, M2, MP1, P2 and MP2 populations, respectively. The variance analysisindicated that the instar-weighted average in C0 was greatly significantly higher thanthat in all other populations, i.e., the performance of resistance to bollworm in C0 washighly significantly lower than all other populations. And the resistance in P1 wasgreatly lower than that of M1, M2, MP1, P2 and MP2, and M1 greatly lower than that of M2,MP1, P2 and MP2. There were no significant differences among M2, MP1, P2 and MP2. Withinthe populations of the first cycle selection, MP1 and M1 were greatly significantlyhigher than P1, and MP1 significantly higher than M1. The populations of the second cycleselection were significantly higher than their initial population M1, but no significantdifference among them. The boll size, seed index, the percent of the first harvest yield,fiber length, strength and elongation of the resistant plants to bollworm were significantlylower than that of sensitive plants to bollworm. And the yield of seed and lint cottonof the resistant plant to bollworm were lower than that of the sensitive to bollworm, butno significant difference between them. The boll numbers per plant, lint percent andmicronaire of the resistant plants to bollworm were significantly higher than that of thesensitive plant to bollworm.
基金supported by the Ministry of Science and Technology(Grant No. 2011 CB 100205)the Ministry of Agriculture of China (Grant Nos.2011ZX08001-004 and 2011ZX08009-002)the National Natural Science Foundation of China(Grant No. 31121063)
文摘1000-Grain weight and spikelet number per panicle are two important components for rice grain yield. In our previous study, eight quantitative trait loci (QTLs) conferring spikelet number per panicle and 1000-grain weight were mapped through sequencing-based genotyping of 150 rice recombinant inbred lines (RILs). In this study, we validated the effects of four QTLs from Nipponbare using chromosome segment substitution lines (CSSLs), and pyramided eight grain yield related QTLs. The new lines containing the eight QTLs with positive effects showed increased panicle and spikelet size as compared with the parent variety 93-11. We further proposed a novel pyramid breeding scheme based on marker-assistant and phenotype selection (MAPS). This scheme allowed pyramiding of as many as 24 QTLs at a single hybridization without massive cross work. This study provided insights into the molecular basis of rice grain yield for direct wealth for high-yielding rice breeding.
基金supported by the China Agriculture Research System of MOF and MARA(CARS-12)the Open Fund of the National Key Laboratory of Crop Genetic Improvement(ZK201909)。
文摘Clubroot and herbicide resistance,high oleic acid(OA)content,and early maturity are targets of rapeseed(Brassica napus L.)breeding.The objective of this study was to develop new male-fertility restorer lines by pyramiding favorable genes to improve these traits simultaneously.Seven elite alleles for the four traits were introduced into the restorer line 621R by speed breeding with marker-assisted and phenotypic selection.Six introgression lines(ILs)were developed with four-to seven-gene combinations and crossed with two elite parents to develop hybrids.All ILs and their corresponding hybrids displayed high resistance to both clubroot pathotype 4 and sulfonylurea herbicides.Three ILs and their hybrids showed large increases in OA contents and four showed earlier maturity.These new ILs may be useful in rapeseed hybrid breeding for the target traits.
基金funded by the Key Research and Development Project of Hainan Province(ZDYF2021XDNY128)the Hainan Yazhou Bay Seed Lab Project(B21HJ0216)+1 种基金the Agricultural Science and Technology Innovation Programthe Cooperation and Innovation Mission(CAAS-ZDXT202001)。
文摘Development of hybrid rice with high yield and grain quality is a goal of rice breeding.To investigate the genetic mechanism of heterosis for rice milling and appearance quality in indica/xian rice,QTL mapping was conducted using 1061 recombinant inbred lines(RILs)derived from a cross of the xian rice cultivars Quan 9311B(Q9311B)and Wu-shan-si-miao(WSSM),and a backcross F_(1)(BC_(1)F_(1)) population developed by crossing the RILs with Quan 9311A(Q9311A),combined with phenotyping in two environments.The F_(1) hybrid(Q9311A×WSSM)showed various degrees of heterosis for milling and appearance quality.A total of 142 main-effect QTL(M-QTL)and 407 pairs of epistatic QTL(E-QTL)were identified for five milling and appearance quality traits and grain yield per plant(GYP)in the RIL,BC_(1)F_(1) and mid-parental heterosis(H_(MP)) populations.Differential detection of QTL in three populations revealed that most additive loci detected in the RILs did not show heterotic effects,but some of them did contribute to BC_(1)F_(1) trait performance.Unlike heterosis of GYP,single-locus overdominance and epistasis were the main contributors to heterosis for milling and appearance quality.Epistasis contributed more to the heterosis for milling quality than to that for appearance quality.Three(four)QTL regions harboring opposite(consistent)directions of favorable allele effects for GYP and grain quality were identified,indicating the presence of partial genetic overlaps between GYP and grain quality.Three strategies are proposed to develop hybrid rice with high yield and good grain quality:1)pyramiding favorable alleles with consistent directions of gene effects for GYP and grain quality at the M-QTL on different chromosomes;2)introgressing favorable alleles for GYP and grain quality into the parents and then pyramiding and fixing these additive effects in hybrids;and 3)pyramiding overdominant and dominant loci and minimizing or eliminating underdominant loci from the parents.