期刊文献+
共找到337篇文章
< 1 2 17 >
每页显示 20 50 100
Size-dependent strong metal-support interaction modulation of Pt/CoFe_(2)O_(4) catalysts
1
作者 Yangyang Li Jingyi Yang +1 位作者 Botao Qiao Tao Zhang 《Chinese Journal of Catalysis》 2025年第2期292-302,共11页
Supported metal catalysts are the backbone of heterogeneous catalysis,playing a crucial role in the modern chemical industry.Metal-support interactions(MSIs)are known important in determining the catalytic performance... Supported metal catalysts are the backbone of heterogeneous catalysis,playing a crucial role in the modern chemical industry.Metal-support interactions(MSIs)are known important in determining the catalytic performance of supported metal catalysts.This is particularly true for single-atom catalysts(SACs)and pseudo-single-atom catalysts(pseudo-SACs),where all metal atoms are dispersed on,and interact directly with the support.Consequently,the MSI of SACs and pseudo-SACs are theoretically more sensitive to modulation compared to that of traditional nanoparticle catalysts.In this work,we experimentally demonstrated this hypothesis by an observed size-dependent MSI modulation.We fabricated CoFe_(2)O_(4) supported Pt pseudo-SACs and nanoparticle catalysts,followed by a straightforward water treatment process.It was found that the covalent strong metal-support interaction(CMSI)in pseudo-SACs can be weakened,leading to a significant activity improvement in methane combustion reaction.This finding aligns with our recent observation of CoFe_(2)O_(4) supported Pt SACs.By contrast,the MSI in Pt nanoparticle catalyst was barely affected by the water treatment,giving rise to almost unchanged catalytic performance.This work highlights the critical role of metal size in determining the MSI modulation,offering a novel strategy for tuning the catalytic performance of SACs and pseudo-SACs by fine-tuning their MSIs. 展开更多
关键词 Strongmetal-support interaction Single-atom catalyst Pseudo-single-atom catalyst Size dependence pt/CoFe_(2)O_(4)catalyst
在线阅读 下载PDF
The sulfur and water resistance improvement of Pt/TiO_(2) catalyst for CO oxidation reaction by anatase and rutile TiO_(2) crystal interfaces
2
作者 Zhenxing Feng Bin Song +5 位作者 Zongcheng Zhan Lei Xu Hanlei Sun Shuo Yao Hongzhi Wang Licheng Liu 《Chinese Journal of Chemical Engineering》 2025年第9期128-139,共12页
Catalytic oxidation is an effective strategy for eliminating CO pollutant.Pt/TiO_(2) catalyst are one of the most active catalysts as used,but facing the issue of sulfur and water deactivation.In this study,TiO_(2) wa... Catalytic oxidation is an effective strategy for eliminating CO pollutant.Pt/TiO_(2) catalyst are one of the most active catalysts as used,but facing the issue of sulfur and water deactivation.In this study,TiO_(2) was synthesized using a sol-gel method,while Pt/TiO_(2) was prepared by impregnation method.By varying the calcination temperature of the TiO_(2) support,Pt/TiO_(2) catalysts with different proportions of anatase and rutile phases were synthesized.At the calcination temperature of 500℃,the catalysts exhibited approximately equal proportions of anatase and rutile,resulting in exceptional catalytic activity for CO oxidation,as well as improved resistance to sulfur and water in the flue gas.Consequently,the Pt/TiO_(2)-500 catalyst achieved a CO conversion of 93%at 160℃.Even under conditions of 8%(vol)H_(2)O and 0.016%(vol)SO_(2)(GHSV=300000 ml·h^(-1)·g^(-1)),the CO conversion remained above 95%at 220℃for 46 h.The catalysts were characterized and analyzed using various techniques.The results indicated that anatasephase TiO_(2) exhibited weak CO adsorption capacity but strong SO_(2) adsorption capacity,whereas rutilephase TiO_(2) demonstrated strong CO adsorption capacity and weak SO_(2) adsorption capacity.The presence of the anatase phase mitigated the CO self-poisoning phenomenon of the catalyst,while the biphase interface reduced the adsorption and oxidation of SO_(2) on the catalyst's surface,significantly inhibiting the deposition of TiOSO_4.Consequently,the Pt/TiO_(2)-500 catalyst displayed the highest CO catalytic activity along with superior resistance to sulfur and water. 展开更多
关键词 CO oxidation pt/tio_(2)catalysts tio_(2)support Crystal phase Sulfur tolerance
在线阅读 下载PDF
Propene and CO oxidation on Pt/Ce-Zr-SO_4^(2-) diesel oxidation catalysts:Effect of sulfate on activity and stability 被引量:9
3
作者 顾蕾 陈晓 +3 位作者 周瑛 朱秋莲 黄海凤 卢晗锋 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2017年第3期607-616,共10页
Platinum/cerium-zirconium-sulfate(Pt/Ce-Zr-SO_4^(2-)) catalysts were prepared by wetness impregnation.Catalytic activities were evaluated from the combustion of propene and CO.Sulfate(SO_4^(2-))addition improv... Platinum/cerium-zirconium-sulfate(Pt/Ce-Zr-SO_4^(2-)) catalysts were prepared by wetness impregnation.Catalytic activities were evaluated from the combustion of propene and CO.Sulfate(SO_4^(2-))addition improved the catalytic activity significantly.When using Pt/Ce-Zr-SO_4^(2-) with 10 wt%SO_4^(2-),the temperature for 90%conversion of propene and CO decreased by 75℃ compared with Pt/Ce-Zr.The conversion exceeded 95%at 240℃ even after 0.02%sulfur dioxide poisoning for 20 h.Temperature-programmed desorption of CO and X-ray photoelectron spectroscopy analyses revealed an improvement in Pt dispersion onto the Ce-Zr-SO_4^(2-) support,and the increased number of Pt particles built up more Pt^(-)-(SO_4^(2-))^(-) couples,which resulted in excellent activity.The increased total acidity and new Bronsted acid sites on the surface provided the Pt/Ce-Zr-SO_4^(2-) with good sulfur resistance. 展开更多
关键词 Diesel oxidation catalyst pt/Ce-Zr-SO_4^(2-) catalyst Sulfur resistance Catalytic oxidation
在线阅读 下载PDF
Se掺杂改性增强CO催化剂Pt/TiO_(2)抗硫性能机理
4
作者 王延 何璐瑶 +4 位作者 黄海敏 罗望平 朱刚 梁明华 刘弼华 《烧结球团》 北大核心 2025年第1期110-116,共7页
针对含硫烧结烟气中Pt/TiO_(2)催化氧化CO过程中SO_(2)毒化的问题,采用硒(Se)掺杂改性提高其抗硫性。通过固定床抗硫毒化性能测试、孔隙结构分析、XRD、XPS和SO_(2)-TPD等表征手段,研究了Se掺杂增强Pt/TiO_(2)催化剂(PSeT)抗硫能力的原... 针对含硫烧结烟气中Pt/TiO_(2)催化氧化CO过程中SO_(2)毒化的问题,采用硒(Se)掺杂改性提高其抗硫性。通过固定床抗硫毒化性能测试、孔隙结构分析、XRD、XPS和SO_(2)-TPD等表征手段,研究了Se掺杂增强Pt/TiO_(2)催化剂(PSeT)抗硫能力的原因。结果表明;掺杂质量分数为0.1%的Se,Pt/TiO_(2)催化剂(PSe_(0.10)T)具有最优的抗硫性能,200℃通入798 mg/m^(3)SO_(2)时,催化效率从100%略微降低,且在12 h长期测试后脱除率仍大于80%,去掉SO_(2)后,催化效率逐渐恢复至100%;SO_(2)毒化后,PSe_(0.10)T催化剂的N_(2)吸附量、比表面积降低幅度较小,抑制硫酸盐沉积效果明显;SO_(2)毒化后,XRD测试结果均未发现新物相,XPS测试结果表明PSe_(0.10)T催化剂表面S元素含量最低,且硫化产物为TiOSO 4;SO_(2)-TPD分析表明,PSe_(0.10)T催化剂对SO_(2)吸附性较弱,且具有较低的硫酸盐分解温度,表现出良好的抗硫性能。该研究结果可为开发高性能抗硫CO氧化催化剂提供理论依据。 展开更多
关键词 pt/tio_(2)催化剂 CO催化氧化 改性 抗硫
原文传递
Pt/Cd-TiO_(2)选择性催化CO_(2)加氢反应的性能
5
作者 张明文 周杰 王兆宇 《高等学校化学学报》 北大核心 2025年第9期95-103,共9页
CO_(2)加氢过程中间体CO在分子水平上的吸附/脱附行为会显著影响产物选择性.本文采用浸渍法制备了Pt/Cd-TiO_(2)催化剂.通过X射线衍射(XRD)、H_(2)气程序升温还原(H_(2)-TPR)、拉曼光谱(Raman)、电子顺磁共振波谱(ESR)、透射电子显微镜(... CO_(2)加氢过程中间体CO在分子水平上的吸附/脱附行为会显著影响产物选择性.本文采用浸渍法制备了Pt/Cd-TiO_(2)催化剂.通过X射线衍射(XRD)、H_(2)气程序升温还原(H_(2)-TPR)、拉曼光谱(Raman)、电子顺磁共振波谱(ESR)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)、CO_(2)程序升温脱附(CO_(2)-TPD)和N_(2)气吸附-脱附实验等表征手段对Pt/Cd-TiO_(2)催化剂进行表征,并将其应用于CO_(2)加氢反应中.活性测试结果显示,Pt/TiO_(2)加氢产物中CO选择性是87.5%,CH_(4)选择性是12.5%.随着Cd^(2+)的引入,Pt/Cd-TiO_(2)的加氢产物中CO选择性提升至98.1%,CH_(4)选择性降低至1.9%.以Pt/Cd-TiO_(2)为催化剂,CO的生成温度降低至225℃(Pt/TiO_(2)是250℃).原位傅里叶变换红外光谱(FTIR)和X射线光电子能谱(XPS)分析结果表明,Cd^(2+)的引入能够降低Pt纳米颗粒(Pt NPs)表面的电子密度,Pt NPs表面电子密度的降低有利于吸附态CO(CO_(ads))脱附生成气态CO,同时抑制CO_(ads)加氢生成CH_(4).在CO甲烷化实验中,Cd^(2+)的引入使CH_(4)产量降低了约6.6倍,证明Cd^(2+)抑制了CO甲烷化生成CH_(4),这与Pt/Cd-TiO_(2)在CO_(2)加氢中CO选择性提升的结果一致.通过多种阳离子(Cd^(2+),Mn^(2+),Ba^(2+),K^(+),Na^(+))对Pt/TiO_(2)进行修饰,均能提升CO选择性,其中Pt/Cd-TiO_(2)表现出最高的CO选择性. 展开更多
关键词 二氧化碳加氢 pt/Cd-tio_(2)催化剂 电子密度 一氧化碳选择性 一氧化碳吸附
在线阅读 下载PDF
Enhanced CO oxidation over potassium-promoted Pt/Al_2O_3 catalysts:Kinetic and infrared spectroscopic study 被引量:1
6
作者 刘欢欢 贾爱平 +2 位作者 王瑜 罗孟飞 鲁继青 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2015年第11期1976-1986,共11页
A series of K-promoted Pt/Al2O3 catalysts were tested for CO oxidation. It was found that the addition of K significantly enhanced the activity. A detailed kinetic study showed that the activation energies of the K-co... A series of K-promoted Pt/Al2O3 catalysts were tested for CO oxidation. It was found that the addition of K significantly enhanced the activity. A detailed kinetic study showed that the activation energies of the K-containing catalysts were lower than those of the K-free ones, particularly for catalysts with high Pt contents (51.6 k)/mol for 0.42K-2.0Pt/Al2O3 and 6:3.6 kJ/mol for 2.0Pt/Al2O3 ). The CO reaction orders were higher for the K-containing catalysts (about -0.2) than for the K-free ones (about -0.5), with the former having much lower equilibrium constants for CO adsorption than the latter. In situ Fourier-transform infrared spectroscopy showed that surface CO desorption from the 0.42K-2.0Pt/Al2O3 catalyst was easier than from 2.0Pt/Al2O3. The promoting effect of K was therefore caused by weakening of the interactions between CO and surface Pt atoms. This decreased coverage of the catalyst with CO and facilitated competitive O2 chemisorption on the Pt surface, and significantly lowered the reaction barrier between chemisorbed CO and O2 species. 展开更多
关键词 CO oxidation Potassium Kinetics pt/Al2O3 catalyst Promoting effect
在线阅读 下载PDF
Catalytic oxidation of low concentration formaldehyde over Pt/TiO_(2) catalyst 被引量:8
7
作者 Yuan Su Keming Ji +3 位作者 Jiayao Xun Kan Zhang Ping Liu Liang Zhao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第1期190-195,共6页
Formaldehyde(HCHO) is an important indoor pollutant.Catalytic oxidize low concentration HCHO is an effective way to eliminate indoor pollution.In this study,a series of Pt/TiO_(2) catalysts are prepared by impregnatio... Formaldehyde(HCHO) is an important indoor pollutant.Catalytic oxidize low concentration HCHO is an effective way to eliminate indoor pollution.In this study,a series of Pt/TiO_(2) catalysts are prepared by impregnation and reduced by NaBH_4.The effects of loading amount of Pt and cry stal type of TiO_(2) on the physical and chemical properties and the catalytic performance in HCHO oxidation reaction are investigated.The results show that the quantity of active site and the oxygen vacancy of catalysts increa sed with increasing Pt content,which is beneficial to promote the further performance of catalysts.Nevertheless,with the further rises of Pt content,the specific surface area further decreases,and the proportion of Pt^(2+) species on the catalyst surface which is significant to catalytic properties also decreases,causing catalytic performance decreases.Compared with the catalyst supporting on rutile,the Pt/α-TiO_(2) catalyst supporting on anatase has larger specific surface area,more Pt^(2+) phase and easier to form oxygen vacancy in the support,which cause better catalytic performance.The catalyst with Pt content of0.1 wt% and supported by anatase TiO_(2) has the best catalytic performance.The HCHO conversion efficiency reaches 98% and 100% at 50℃ and 100 ℃, and the stabilization time is longer than 140 h. 展开更多
关键词 catalyst support CATALYSIS FIXED-BED pt/tio_(2)
在线阅读 下载PDF
Identification of relevant active sites and a mechanism study for reverse water gas shift reaction over Pt/CeO_2 catalysts 被引量:7
8
作者 Xiaodong Chen Xiong Su +5 位作者 Binglian Liang Xiaoli Yang Xinyi Ren Hongmin Duan Yanqiang Huang Tao Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第6期1051-1057,共7页
Reverse water gas shift (RWGS) reaction can serve as a pivotal stage in the CO2 conversion processes, which is vital for the utilization of CO2. In this study, RWGS reaction was performed over Pt/CeO2 catalysts at the... Reverse water gas shift (RWGS) reaction can serve as a pivotal stage in the CO2 conversion processes, which is vital for the utilization of CO2. In this study, RWGS reaction was performed over Pt/CeO2 catalysts at the temperature range of 200-500 degrees C under ambient pressure. Compared with pure CeO2, Pt/CeO2 catalysts exhibited superior RWGS activity at lower reaction temperature. Meanwhile, the calculated TOF and E-a values are approximately the same over these Pt/CeO2 catalysts pretreated under various calcination conditions, indicating that the RWGS reaction is not affected by the morphologies of anchored Pt nanoparticles or the primary crystallinity of CeO2. TPR and XPS results indicated that the incorporation of Pt promoted the reducibility of CeO2 support and remarkably increased the content of Ce 3 + sites on the catalyst surface. Furthermore, the CO TPSR-MS signal under the condition of pure CO2 flow over Pt/CeO 2 catalyst is far lower than that under the condition of adsorbed CO2 with H-2 -assisted flow, revealing that CO2 molecules adsorbed on Ce3+ active sites have difficult in generating CO directly. Meanwhile, the adsorbed CO2 with the assistance of H-2 can form formate species easily over Ce3+ active sites and then decompose into Ce3+-CO species for CO production, which was identified by in-situ FTIR. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B. V. and Science Press. All rights reserved. 展开更多
关键词 RWGS reaction pt/CeO2 catalyst Formate intermediate MECHANISM
在线阅读 下载PDF
Performance and mechanism study for low-temperature SCR of NO with propylene in excess oxygen over Pt/TiO_2 catalyst 被引量:5
9
作者 Zhixiang Zhang,Mingxia Chen,Zhi Jiang,Wenfeng Shangguan Research Center for Combustion and Environmental Technology,Shanghai Jiao Tong University,Shanghai 200240,China. 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2010年第9期1441-1446,共6页
A 0.5 wt.% Pt/TiO2 catalyst was prepared and used for the low-temperature selective catalytic reduction (SCR) of NO with C3H6 in the presence of excess oxygen. The effects of Pt loading and 02 concentration on Pt/Ti... A 0.5 wt.% Pt/TiO2 catalyst was prepared and used for the low-temperature selective catalytic reduction (SCR) of NO with C3H6 in the presence of excess oxygen. The effects of Pt loading and 02 concentration on Pt/TiO2 catalytic performance for low-temperature SCR were investigated. It was found that optimal Pt loading was 0.5 wt.% and excess 02 favored low-temperature SCR of NOx. The mechanism of low-temperature SCR of NO with C3H6 was investigated with respect to the behavior of adsorbed species over Pt/TiO2 at 150~C using in situ DRIFTS. The results indicated that surface nitrosyl species (Pt~+-NO and Ti3+-NO) and pt2+-CO are main reaction intermediates during the interactions of NO, C3H6 and 02. A simplified NO decomposition mechanism for the low-temperature SCR of NO with C3H6 was proposed. 展开更多
关键词 NO low-temperature SCR pt/tio2 in situ DRIFTS
原文传递
Ultrafine Pt nanoparticles supported on double-shelled C/TiO2 hollow spheres material as highly efficient methanol oxidation catalysts 被引量:6
10
作者 Xiaoyu Yue Yuguang Pu +2 位作者 Wen Zhang Ting Zhang Wei Gao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第10期275-282,共8页
Catalyst support is extremely important for future fuel cell devices.In this work,we developed doubleshelled C/TiO2(DSCT)hollow spheres as an excellent catalyst support via a template-directed method.The combination o... Catalyst support is extremely important for future fuel cell devices.In this work,we developed doubleshelled C/TiO2(DSCT)hollow spheres as an excellent catalyst support via a template-directed method.The combination of hollow structure,TiO2 shell and carbon layer results in excellent electron conductivity,electrocatalytic activity,and chemical stability.These uniformed DSCT hollow spheres are used as catalyst support to synthesize Pt/DSCT hollow spheres electrocatalyst.The resulting Pt/DSCT hollow spheres exhibited high catalytic performance with a current density of 462 mA mg^-1 for methanol oxidation reaction,which is 2.52 times higher than that of the commercial Pt/C.Furthermore,the increased tolerance to carbonaceous poisoning with a higher If/Ibratio and a better long-term stability in acid media suggests that the DSCT hollow sphere is a promising C/TiO2-based catalyst support for direct methanol fuel cells applications. 展开更多
关键词 catalyst support C/tio2 hollow sphere Metal-support interactions Methanol oxidation reaction
在线阅读 下载PDF
Effect of active oxygen on the performance of Pt/CeO2 catalysts for CO oxidation 被引量:18
11
作者 Anbin Zhou Jun Wang +3 位作者 Hui Wang Hang Li Jianqiang Wang Meiqing Shen 《Journal of Rare Earths》 SCIE EI CAS CSCD 2018年第3期257-264,共8页
This study was focused on the influence of active oxygen on the performance of Pt/CeO2 catalysts for CO oxidation. A series of CeO2 supports with different contents of active oxygen were obtained by adding surfactant ... This study was focused on the influence of active oxygen on the performance of Pt/CeO2 catalysts for CO oxidation. A series of CeO2 supports with different contents of active oxygen were obtained by adding surfactant at different synthesis steps. 0.25 wt% Pt was loaded on these CeO2 supports by incipientwetness impregnation methods. The catalysts were characterized by N2 adsorption, X-ray diffraction(XRD), high-resolution transmission electron microscopy(HRTEM), H2 temperature-programmed reduction(H2-TPR), dynamic oxygen storage capacity(DOSC) and in-situ DRIFTS technologies. For S-f supports, the surfactant was added into the solution before spray-drying in the synthesis process, which facilitates more active oxygen formation on the surface of CeO2. After loading Pt, the more active oxygen on CeO2 contributes to dispersing Pt species and enhancing the CO oxidation activity. As for the aged samples,Pt-R-h shows the highest activity above 190 ℃ because of the presence of more partly oxidized Pt^(δ+) species. Thus the activity is also influenced by the states of Pt and the Pt^(δ+) species may contribute to the high activity at elevated temperature. 展开更多
关键词 CeO2 Active oxygen pt/CeO2 catalyst pt dispersion CO oxidation Rare earths
原文传递
Evaluation of H2 Influence on the Evolution Mechanism of NOx Storage and Reduction over Pt–Ba–Ce/c-Al2O3 Catalysts 被引量:3
12
作者 Pan Wang Jing Yi +2 位作者 Chuan Sun Peng Luo Lili Lei 《Engineering》 SCIE EI 2019年第3期568-575,共8页
In this investigation, Pt–Ba–Ce/c-Al2O3 catalysts were prepared by incipient wetness impregnation and experiments were performed to evaluate the influence of H2 on the evolution mechanism of nitrogen oxides (NOx) st... In this investigation, Pt–Ba–Ce/c-Al2O3 catalysts were prepared by incipient wetness impregnation and experiments were performed to evaluate the influence of H2 on the evolution mechanism of nitrogen oxides (NOx) storage and reduction (NSR). The physical and chemical properties of the Pt–Ba–Ce/c- Al2O3 catalysts were studied using a combination of characterization techniques, which showed that PtOx, CeO2, and BaCO3, whose peaks were observed in X-ray diffraction (XRD) spectra, dispersed well on the c-Al2O3, as shown by transmission electron microscope (TEM), and that the difference between Ce3+ and Ce4+, as detected by X-ray photoelectron spectroscopy (XPS), facilitated the migration of active oxygen over the catalyst. In the process of a complete NSR experiment, the NOx storage capability was greatly enhanced in the temperature range of 250–350℃, and reached a maximum value of 315.3μmol·gcat^-1 at 350℃, which was ascribed to the increase in NO2 yield. In a lean and rich cycling experiment, the results showed that NOx storage efficiency and conversion were increased when the time of H2 exposure (i.e., 30, 45, and 60 s) was extended. The maximum NOx conversion of the catalyst reached 83.5% when the duration of the lean and rich phases was 240 and 60 s, respectively. The results revealed that increasing the content of H2 by an appropriate amount was favorable to the NSR mechanism due to increased decomposition of nitrate or nitrite, and the refreshing of trapping sites for the next cycle of NSR. 展开更多
关键词 pt–Ba–Ce/c-Al2O3 catalystS Physicochemical properties NOx storage and reduction emission H2 reductant
在线阅读 下载PDF
Boosting the water gas shift reaction on Pt/CeO_(2)-based nanocatalysts by compositional modification: Support doping versus bimetallic alloying 被引量:3
13
作者 Kun Yuan Xiao-Chen Sun +4 位作者 Hai-Jing Yin Liang Zhou Hai-Chao Liu Chun-Hua Yan Ya-Wen Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第4期241-249,共9页
The water gas shift reaction is of vital significance for the generation and transition of energy due to the application in hydrogen production and industries such as ammonia synthesis and fuel cells.The influence of ... The water gas shift reaction is of vital significance for the generation and transition of energy due to the application in hydrogen production and industries such as ammonia synthesis and fuel cells.The influence of support doping and bimetallic alloying on the catalytic performance of Pt/Ce O_(2)-based nanocatalysts in water gas shift reaction was reported in this work.Various lanthanide ions and 3d transition metals were respectively introduced into the Ce O_(2)support or Pt to form Pt/Ce O_(2):Ln(Ln=La,Nd,Gd,Tb,Yb)and Pt M/Ce O_(2)(M=Fe,Co,Ni)nanocatalysts.The sample of Pt/Ce O_(2):Tb showed the highest activity(TOF at 200℃=0.051 s^(-1))among the Pt/Ce O_(2):Ln and the undoped Pt/Ce O_(2)catalysts.Besides,the sample of Pt Fe/Ce O_(2)exhibited the highest activity(TOF at 200℃=0.12 s^(-1))among Pt M/Ce O_(2)catalysts.The results of the multiple characterizations indicated that the catalytic activity of Pt/Ce O_(2):Ln catalysts was closely correlated with the amount of oxygen vacancies in doped ceria support.However,the different activity of Pt M/Ce O_(2)bimetallic catalysts was owing to the various Pt oxidation states of the bimetals dispersed on ceria.The study of the reaction pathway indicated that both the samples of Pt/Ce O_(2)and Pt/Ce O_(2):Tb catalyzed the reaction through the formate pathway,and the enhanced activity of the latter derived from the increased concentration of oxygen vacancies along with promoted water dissociation.As for the sample of Pt Fe/Ce O_(2),its catalytic mechanism was the carboxyl route with a higher reaction rate due to the moderate valence of Pt along with improved CO activation. 展开更多
关键词 pt/CeO_(2)catalysts Water–gas shift reaction Support doping Bimetallic alloying
在线阅读 下载PDF
Fabrication of C@MoxTi1-xO2-δ nanocrystalline with functionalized interface as efficient and robust PtRu catalyst support for methanol electrooxidation 被引量:2
14
作者 Jialong Li Lei Zhao +2 位作者 Xifei Li Sue Hao Zhenbo Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第1期7-14,I0001,共9页
A core shell structured C@MoxTi1-xO2-δnanocrystal with a functionalized interface(C@MTNC-FI)was fabricated via the hydrothermal method with subsequent annealing derived from tetrabutyl orthotitanate.The formation of ... A core shell structured C@MoxTi1-xO2-δnanocrystal with a functionalized interface(C@MTNC-FI)was fabricated via the hydrothermal method with subsequent annealing derived from tetrabutyl orthotitanate.The formation of anatase TiO2 was inhibited by the simultaneous presence of the hydrothermal etching/regrowth process,infiltration of Mo dopants and carbon coating,which endows the C@MTNC-FI with an ultrafine crystalline architecture that has a Mo-functionalized interface and carbon-coated shell.Pt Ru nanoparticles(NPs)were supported on C@MTNC-FI by employing a microwave-assisted polyol process(MAPP).The obtained Pt Ru/C@MTNC-FI catalyst has 2.68 times higher mass activity towards methanol electrooxidation than that of the un-functionalized catalyst(Pt Ru/C@TNC)and 1.65 times higher mass activity than that of Pt Ru/C catalyst with over 25%increase in durability.The improved catalytic performance is due to several aspects including ultrafine crystals of TiO2 with abundant grain boundaries,Mofunctionalized interface with enhanced electron interactions,and core shell architecture with excellent electrical transport properties.This work suggests the potential application of an interface-functionalized crystalline material as a sustainable and clean energy solution. 展开更多
关键词 Interface functionalization tio2 NANOCRYSTALLINE Mo doping Core–shell ptRu catalyst Methanol electrooxidation
在线阅读 下载PDF
Synthesis and study of λ-MnO_2 supported Pt nanocatalyst for methanol electro-oxidation 被引量:3
15
作者 XIE Jia, LI Xiang, YU Zhihui, ZHANG Lijuan, LI Fan, and XIA Dingguo College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China 《Rare Metals》 SCIE EI CAS CSCD 2010年第2期187-192,共6页
A λ-MnO2 supported Pt nanocatalyst(5 wt.% Pt/λ-MnO2) was synthesized using a facile approach.X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), scanning electronic microscope(SEM), transmission e... A λ-MnO2 supported Pt nanocatalyst(5 wt.% Pt/λ-MnO2) was synthesized using a facile approach.X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), scanning electronic microscope(SEM), transmission electron microscopy(TEM), and energy disperse spectroscopy(EDS) were used for catalyst structure and morphology characterization, which showed that the metallic Pt particles were attached on a λ-MnO2 surface through the interaction between Pt and λ-MnO2.Cyclic voltammetry(CV) was used to test the catalytic activity of Pt/λ-MnO2 toward methanol oxidation, which showed that Pt/λ-MnO2 catalyst has much higher catalytic activity than baseline Pt/C catalyst. 展开更多
关键词 electrochemistry composite catalyst MnO2 pt methanol oxidation
在线阅读 下载PDF
Different roles of MoO_(3)and Nb_(2)O_(5)promotion in short-chain alkane combustion over Pt/ZrO_(2)catalysts 被引量:1
16
作者 Bingheng Cen Cen Tang +2 位作者 Jiqing Lu Jian Chen Mengfei Luo 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第12期2287-2295,共9页
Pt/ZrO_(2)catalysts promoted with MoO_(3)and Nb_(2)O_(5)were tested for the combustion of short-chain alkanes(namely,methane,ethane,propane,and n-hexane).For short-chain alkane combustion,the inhibition of MoO_(3)(for... Pt/ZrO_(2)catalysts promoted with MoO_(3)and Nb_(2)O_(5)were tested for the combustion of short-chain alkanes(namely,methane,ethane,propane,and n-hexane).For short-chain alkane combustion,the inhibition of MoO_(3)(for the methane reaction)dramatically transformed to promotion(for the ethane,propane,and n-hexane reactions)as the carbon chain length increased,whereas the remarkable promotion of Nb_(2)O_(5)gradually weakened with an increase in the carbon chain length.Based on a detailed study of the oxidation reactions of methane and propane over the catalysts,the different roles of the promoters in the reactions were ascribed to differences in the acidic properties of the surface and the oxidation or reduction states of the Pt species.The MoO_(3)promoter could decorate the surface of the Pt species for a Pt-Mo/ZrO_(2)catalyst,whereas the Nb_(2)O_(5)promoter on the support could be partially covered by Pt particles for a Pt-Nb/ZrO_(2)catalyst.The formation of accessible Pt-MoO_(3)interfacial sites,a high concentration of metallic Pt species,and a high surface acidity in Pt-Mo/ZrO_(2)were responsible for the enhanced activity for catalytic propane combustion.The lack of enough accessible Pt-Nb_(2)O_(5)interfacial sites but an enhanced surface acid sites in Pt-Nb/ZrO_(2)explained the slight improvement in activity for catalytic propane combustion.However,the stabilized Pt^(n+)species in Pt-Nb/ZrO_(2)were responsible for the much-improved activity for methane combustion,whereas the Pt^(n+)species in Pt-Mo/ZrO_(2)could be reduced during the oxidation reaction,and the fewer exposed surface Pt species because of MoO_(3)decoration accounted for the inhibited activity for methane combustion.In addition,it can be concluded that MoO_(3)promotion is favorable for the activation of C-C bonds,whereas Nb_(2)O_(5)promotion is more beneficial for the activation of C-H bonds with high energy. 展开更多
关键词 pt/ZrO_(2)catalyst Alkanes combustion MoO_(3)promoter Nb_(2)O_(5)promoter Active site
在线阅读 下载PDF
NOx storage and reduction assisted by non-thermal plasma over Co/Pt/Ba/γ-Al2O3 catalyst using CH_(4) as reductant 被引量:1
17
作者 Tao ZHU Xing ZHANG +2 位作者 Nengjing YI Haibing LIU Zhenguo LI 《Plasma Science and Technology》 SCIE EI CAS CSCD 2021年第2期76-84,共9页
NOx storage and reduction(NSR)technology has been regarded as one of the most promising strategies for the removal of nitric oxides(NOx)from lean-burn engines,and the potential of the plasma catalysis method for NOx r... NOx storage and reduction(NSR)technology has been regarded as one of the most promising strategies for the removal of nitric oxides(NOx)from lean-burn engines,and the potential of the plasma catalysis method for NOx reduction has been confirmed in the past few decades.This work reports the NSR of nitric oxide(NO)by combining non-thermal plasma(NTP)and Co/Pt/Ba/γ-Al2O3(Co/PBA)catalyst using methane as a reductant.The experimental results reveal that the NOx conversion of NSR assisted by NTP is notably enhanced compared to the catalytic efficiency obtained from NSR in the range of 150°C–350°C,and NOx conversion of the 8%Co/PBA catalyst reaches 96.8%at 350°C.Oxygen(O_(2))has a significant effect on the removal of NOx,and the NOx conversion increases firstly and then decreases when the O_(2)concentration ranges from 2%to 10%.Water vapor reduces the NOx storage capacity of Co/PBA catalysts on account of the competition for adsorption sites on the surface of Co/PBA catalysts.There is a negative correlation between sulfur dioxide(SO_(2))and NOx conversion in the NTP system,and the 8%Co/PBA catalyst exhibits higher NOx conversion compared to other catalysts,which shows that Co has a certain SO_(2)resistance. 展开更多
关键词 non-thermal plasma NOx storage and reduction Co/pt/Ba/γ-Al2O3 catalyst NOx conversion influence parameter
在线阅读 下载PDF
Enhancing oxidation reaction over Pt-MnO_(2) catalyst by activation of surface oxygen
18
作者 Ruoting Shan Zhenteng Sheng +6 位作者 Shuo Hu Hongfei Xiao Yuhua Zhang Jianghao Zhang Li Wang Changbin Zhang Jinlin Li 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2023年第12期117-125,共9页
Formaldehyde(HCHO) and carbon monoxide(CO) are both common air pollutants and hazardous to human body. It is imperative to develop the catalyst that is able to efficiently remove these pollutants. In this work, we act... Formaldehyde(HCHO) and carbon monoxide(CO) are both common air pollutants and hazardous to human body. It is imperative to develop the catalyst that is able to efficiently remove these pollutants. In this work, we activated Pt-MnO_(2)under different conditions for highly active oxidation of HCHO and CO, and the catalyst activated under CO displayed superior performance. A suite of complementary characterizations revealed that the catalyst activated with CO created the highly dispersed Pt nanoparticles to maintain a more positively charged state of Pt, which appropriately weakens the Mn-O bonding strength in the adjacent region of Pt for efficient supply of active oxygen during the reaction. Compared with other catalysts activated under different conditions, the CO-activated Pt-MnO_(2)displays much higher activity for oxidation of HCHO and CO. This research contributes to elucidating the mechanism for regulating the oxidation activity of Pt-based catalyst. 展开更多
关键词 pt/MnO_(2)catalysts HCHO abatement CO abatement Catalytic oxidation Activation of surface oxygen
原文传递
THE RELATIONSHIPS BETWEEN THE POLARIZING FORCE OF CATIONS AND THE ELECTROPHILIC CHARACTER AND CATALYTIC PERFORMANCES OF PROMOTED Pt-Al_2O_3 CATALYST
19
作者 Jia LIU Xi Yao YANG Li PANG Department of Chemistry,Peking University,Beijing,100871 《Chinese Chemical Letters》 SCIE CAS CSCD 1991年第3期261-262,共2页
The electronic modification effect of various metal oxides over Pt-Al;O;catalyst andthe relationships between the polarizing force of cations(PFC)and the electrophiliccharacter(EC)and catalytic performances(CP)o... The electronic modification effect of various metal oxides over Pt-Al;O;catalyst andthe relationships between the polarizing force of cations(PFC)and the electrophiliccharacter(EC)and catalytic performances(CP)of promoted Pt catalyst have been studiecby competitive hydrogenation reaction method(CHRM)and test reaction,i.e.hydrogena-tion of benzene and hydrogenolysis of cyclopentane. 展开更多
关键词 pt EC THE RELAtioNSHIPS BETWEEN THE POLARIZING FORCE OF CAtioNS AND THE ELECTROPHILIC CHARACTER AND CATALYTIC PERFORMANCES OF PROMOTED pt-Al2O3 catalyst Al
在线阅读 下载PDF
碳载Pt-TiO_2复合催化剂对甲醇氧化的电催化性能 被引量:36
20
作者 刘长鹏 杨辉 +1 位作者 邢巍 陆天虹 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2002年第7期1367-1370,共4页
报道了通过化学还原和溶胶 -凝胶法制备不同组成的 Pt-Ti O2 /C催化剂及其对甲醇的氧化反应 .结果表明 ,该催化剂具有很好的电催化活性和稳定性 .催化剂中的 Ti和 Pt的原子比为 1 /2时 ,催化剂的性能最好 .在 5 0 0℃下热处理后 ,催化... 报道了通过化学还原和溶胶 -凝胶法制备不同组成的 Pt-Ti O2 /C催化剂及其对甲醇的氧化反应 .结果表明 ,该催化剂具有很好的电催化活性和稳定性 .催化剂中的 Ti和 Pt的原子比为 1 /2时 ,催化剂的性能最好 .在 5 0 0℃下热处理后 ,催化剂的性能得到进一步的改善 .这种催化剂有望能在 DMFC中获得实际使用 . 展开更多
关键词 碳载pt-tio2复合催化剂 氧化 电催化性能 甲醇 二氧化钛 燃料电池 电催化剂
在线阅读 下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部