期刊文献+
共找到4,071篇文章
< 1 2 204 >
每页显示 20 50 100
Mesenchymal stem cell-derived small extracellular vesicles enhance the therapeutic effect of retinal progenitor cells in retinal degenerative disease rats
1
作者 Chunge Ren Min Chen +10 位作者 Bangqi Ren Yuxiao Zeng Qiang Tan Qiyou Li Xue Zhang Yajie Fang Yixiao Zhou Weitao Zhang Fang Chen Baishijiao Bian Yong Liu 《Neural Regeneration Research》 2026年第2期821-832,共12页
Our previous study demonstrated that combined transplantation of bone marrow mesenchymal stem cells and retinal progenitor cells in rats has therapeutic effects on retinal degeneration that are superior to transplanta... Our previous study demonstrated that combined transplantation of bone marrow mesenchymal stem cells and retinal progenitor cells in rats has therapeutic effects on retinal degeneration that are superior to transplantation of retinal progenitor cells alone.Bone marrow mesenchymal stem cells regulate and interact with various cells in the retinal microenvironment by secreting neurotrophic factors and extracellular vesicles.Small extracellular vesicles derived from bone marrow mesenchymal stem cells,which offer low immunogenicity,minimal tumorigenic risk,and ease of transportation,have been utilized in the treatment of various neurological diseases.These vesicles exhibit various activities,including anti-inflammatory actions,promotion of tissue repair,and immune regulation.Therefore,novel strategies using human retinal progenitor cells combined with bone marrow mesenchymal stem cell-derived small extracellular vesicles may represent an innovation in stem cell therapy for retinal degeneration.In this study,we developed such an approach utilizing retinal progenitor cells combined with bone marrow mesenchymal stem cell-derived small extracellular vesicles to treat retinal degeneration in Royal College of Surgeons rats,a genetic model of retinal degeneration.Our findings revealed that the combination of bone marrow mesenchymal stem cell-derived small extracellular vesicles and retinal progenitor cells significantly improved visual function in these rats.The addition of bone marrow mesenchymal stem cell-derived small extracellular vesicles as adjuvants to stem cell transplantation with retinal progenitor cells enhanced the survival,migration,and differentiation of the exogenous retinal progenitor cells.Concurrently,these small extracellular vesicles inhibited the activation of regional microglia,promoted the migration of transplanted retinal progenitor cells to the inner nuclear layer of the retina,and facilitated their differentiation into photoreceptors and bipolar cells.These findings suggest that bone marrow mesenchymal stem cell-derived small extracellular vesicles potentiate the therapeutic efficacy of retinal progenitor cells in retinal degeneration by promoting their survival and differentiation. 展开更多
关键词 DIFFERENTIATION inflammation mesenchymal stem cells MICROGLIA migration rat retinal degeneration retinal progenitor cells small extracellular vesicles stem cell transplantation
暂未订购
Single-cell transcriptomics identifies PDGFRA^(+) progenitors orchestrating angiogenesis and periodontal tissue regeneration
2
作者 Jianing Liu Junxi He +21 位作者 Ziqi Zhang Lu Liu Yuan Cao Xiaohui Zhang Xinyue Cai Xinyan Luo Xiao Lei Nan Zhang Hao Wang Ji Chen Peisheng Liu Jiongyi Tian Jiexi Liu Yuru Gao Haokun Xu Chao Ma Shengfeng Bai Yubohan Zhang Yan Jin Chenxi Zheng Bingdong Sui Fang Jin 《International Journal of Oral Science》 2025年第5期677-691,共15页
Periodontal bone defects,primarily caused by periodontitis,are highly prevalent in clinical settings and manifest as bone fenestration,dehiscence,or attachment loss,presenting a significant challenge to oral health.In... Periodontal bone defects,primarily caused by periodontitis,are highly prevalent in clinical settings and manifest as bone fenestration,dehiscence,or attachment loss,presenting a significant challenge to oral health.In regenerative medicine,harnessing developmental principles for tissue repair offers promising therapeutic potential.Of particular interest is the condensation of progenitor cells,an essential event in organogenesis that has inspired clinically effective cell aggregation approaches in dental regeneration.However,the precise cellular coordination mechanisms during condensation and regeneration remain elusive.Here,taking the tooth as a model organ,we employed single-cell RNA sequencing to dissect the cellular composition and heterogeneity of human dental follicle and dental papilla,revealing a distinct Platelet-derived growth factor receptor alpha(PDGFRA)mesenchymal stem/stromal cell(MSC)population with remarkable odontogenic potential.Interestingly,a reciprocal paracrine interaction between PDGFRA^(+)dental follicle stem cells(DFSCs)and CD31^(+)Endomucin^(+)endothelial cells(ECs)was mediated by Vascular endothelial growth factor A(VEGFA)and Platelet-derived growth factor subunit BB(PDGFBB).This crosstalk not only maintains the functionality of PDGFRA^(+)DFSCs but also drives specialized angiogenesis.In vivo periodontal bone regeneration experiments further reveal that communication between PDGFRA+DFSC aggregates and recipient ECs is essential for effective angiogenic-osteogenic coupling and rapid tissue repair.Collectively,our results unravel the importance of MSC-EC crosstalk mediated by the VEGFA and PDGFBB-PDGFRA reciprocal signaling in orchestrating angiogenesis and osteogenesis.These findings not only establish a framework for deciphering and promoting periodontal bone regeneration in potential clinical applications but also offer insights for future therapeutic strategies in dental or broader regenerative medicine. 展开更多
关键词 single cell transcriptomics PDGFR progenitors periodontal bone defectsprimarily regenerative medicineharnessing developmental principles condensation progenitor cellsan dental regen cell aggregation approaches bone fenestrationdehiscenceor
暂未订购
Perilipin-2 mediates ferroptosis in oligodendrocyte progenitor cells and myelin injury after ischemic stroke 被引量:2
3
作者 Jian Yang Jiang Wu +7 位作者 Xueshun Xie Pengfei Xia Jinxin Lu Jiale Liu Lei Bai Xiang Li Zhengquan Yu Haiying Li 《Neural Regeneration Research》 SCIE CAS 2025年第7期2015-2028,共14页
Differentiation of oligodendrocyte progenitor cells into mature myelin-forming oligodendrocytes contributes to remyelination.Failure of remyelination due to oligodendrocyte progenitor cell death can result in severe n... Differentiation of oligodendrocyte progenitor cells into mature myelin-forming oligodendrocytes contributes to remyelination.Failure of remyelination due to oligodendrocyte progenitor cell death can result in severe nerve damage.Ferroptosis is an iron-dependent form of regulated cell death caused by membrane rupture induced by lipid peroxidation,and plays an important role in the pathological process of ischemic stroke.However,there are few studies on oligodendrocyte progenitor cell ferroptosis.We analyzed transcriptome sequencing data from GEO databases and identified a role of ferroptosis in oligodendrocyte progenitor cell death and myelin injury after cerebral ischemia.Bioinformatics analysis suggested that perilipin-2(PLIN2)was involved in oligodendrocyte progenitor cell ferroptosis.PLIN2 is a lipid storage protein and a marker of hypoxia-sensitive lipid droplet accumulation.For further investigation,we established a mouse model of cerebral ischemia/reperfusion.We found significant myelin damage after cerebral ischemia,as well as oligodendrocyte progenitor cell death and increased lipid peroxidation levels around the infarct area.The ferroptosis inhibitor,ferrostatin-1,rescued oligodendrocyte progenitor cell death and subsequent myelin injury.We also found increased PLIN2 levels in the peri-infarct area that co-localized with oligodendrocyte progenitor cells.Plin2 knockdown rescued demyelination and improved neurological deficits.Our findings suggest that targeting PLIN2 to regulate oligodendrocyte progenitor cell ferroptosis may be a potential therapeutic strategy for rescuing myelin damage after cerebral ischemia. 展开更多
关键词 BIOINFORMATICS bulk RNA sequencing ferroptosis ischemic stroke myelin injury oligodendrocyte progenitor cell perilipin-2 single-cell RNA sequencing
暂未订购
CD47 is required for mesenchymal progenitor proliferation and fracture repair 被引量:1
4
作者 Robert L.Zondervan Christina A.Capobianco +8 位作者 Daniel C.Jenkins John D.Reicha Livia Fredrick Charles Lam Jeanna T.Schmanski Jeffery S.Isenberg Jaimo Ahn Ralph S.Marcucio Kurt D.Hankenson 《Bone Research》 2025年第3期640-654,共15页
CD47 is a ubiquitous and pleiotropic cell-surface receptor.Disrupting CD47 enhances injury repair in various tissues but the role of CD47 has not been studied in bone injuries.In a murine closed-fracture model,CD47-nu... CD47 is a ubiquitous and pleiotropic cell-surface receptor.Disrupting CD47 enhances injury repair in various tissues but the role of CD47 has not been studied in bone injuries.In a murine closed-fracture model,CD47-null mice showed decreased callus bone formation as assessed by microcomputed tomography 10 days post-fracture and increased fibrous volume as determined by histology.To understand the cellular basis for this phenotype,mesenchymal progenitors(MSC)were harvested from bone marrow.CD47-null MSC showed decreased large fibroblast colony formation(CFU-F),significantly less proliferation,and fewer cells in Sphase,although osteoblast differentiation was unaffected.However,consistent with prior research,CD47-null endothelial cells showed increased proliferation relative to WT cells.Similarly,in a murine ischemic fracture model,CD47-null mice showed reduced fracture callus size due to a reduction in bone relative to WT 15 days-post fracture.Consistent with our in vitro results,in vivo EdU labeling showed decreased cell proliferation in the callus of CD47-null mice,while staining for CD31 and endomucin demonstrated increased endothelial cell density.Finally,WT mice with ischemic fracture that were administered a CD47 morpholino,which blocks CD47 protein production,showed a callus phenotype similar to that of ischemic fractures in CD47-null mice,suggesting the phenotype was not due to developmental changes in the knockout mice.Thus,inhibition of CD47 during bone healing reduces both non-ischemic and ischemic fracture healing,in part,by decreasing MSC proliferation.Furthermore,the increase in endothelial cell proliferation and early blood vessel density caused by CD47 disruption is not sufficient to overcome MSC dysfunction. 展开更多
关键词 Microcomputed Tomography callus bone Mesenchymal progenitors injury repair microcomputed tomography Fracture Repair CD fibrous volume
暂未订购
Skeletal progenitor LRP1 deficiency causes severe and persistent skeletal defects with Wnt pathway dysregulation 被引量:1
5
作者 Mohammad Alhashmi Abdulrahman M.E.Gremida +15 位作者 Santosh K.Maharana Marco Antonaci Amy Kerr Shijian Fu Sharna Lunn David A.Turner Noor A.Al-Maslamani Ke Liu Maria M.Meschis Hazel Sutherland Peter Wilson Peter Clegg Grant N.Wheeler Robert J.van‘t Hof George Bou-Gharios Kazuhiro Yamamoto 《Bone Research》 2025年第2期384-400,共17页
Low-density lipoprotein receptor-related protein 1(LRP1)is a multifunctional endocytic receptor whose dysfunction is linked to developmental dysplasia of the hip,osteoporosis and osteoarthritis.Our work addresses the ... Low-density lipoprotein receptor-related protein 1(LRP1)is a multifunctional endocytic receptor whose dysfunction is linked to developmental dysplasia of the hip,osteoporosis and osteoarthritis.Our work addresses the critical question of how these skeletal pathologies emerge.Here,we show the abundant expression of LRP1 in skeletal progenitor cells at mouse embryonic stage E10.5 and onwards,especially in the perichondrium,the stem cell layer surrounding developing limbs essential for bone formation.Lrp1 deficiency in these stem cells causes joint fusion,malformation of cartilage/bone template and markedly delayed or lack of primary ossification. 展开更多
关键词 Wnt pathway LRP osteoarthritis stem cell layer multifunctional endocytic receptor developmental dysplasia hip skeletal progenitor cells osteoporosis
暂未订购
Small extracellular vesicles derived from human induced pluripotent stem cell-differentiated neural progenitor cells mitigate retinal ganglion cell degeneration in a mouse model of optic nerve injury
6
作者 Tong Li Hui-Min Xing +4 位作者 Hai-Dong Qian Qiao Gao Sheng-Lan Xu Hua Ma Zai-Long Chi 《Neural Regeneration Research》 SCIE CAS 2025年第2期587-597,共11页
Several studies have found that transplantation of neural progenitor cells(NPCs)promotes the survival of injured neurons.However,a poor integration rate and high risk of tumorigenicity after cell transplantation limit... Several studies have found that transplantation of neural progenitor cells(NPCs)promotes the survival of injured neurons.However,a poor integration rate and high risk of tumorigenicity after cell transplantation limits their clinical application.Small extracellular vesicles(sEVs)contain bioactive molecules for neuronal protection and regeneration.Previous studies have shown that stem/progenitor cell-derived sEVs can promote neuronal survival and recovery of neurological function in neurodegenerative eye diseases and other eye diseases.In this study,we intravitreally transplanted sEVs derived from human induced pluripotent stem cells(hiPSCs)and hiPSCs-differentiated NPCs(hiPSC-NPC)in a mouse model of optic nerve crush.Our results show that these intravitreally injected sEVs were ingested by retinal cells,especially those localized in the ganglion cell layer.Treatment with hiPSC-NPC-derived sEVs mitigated optic nerve crush-induced retinal ganglion cell degeneration,and regulated the retinal microenvironment by inhibiting excessive activation of microglia.Component analysis further revealed that hiPSC-NPC derived sEVs transported neuroprotective and anti-inflammatory miRNA cargos to target cells,which had protective effects on RGCs after optic nerve injury.These findings suggest that sEVs derived from hiPSC-NPC are a promising cell-free therapeutic strategy for optic neuropathy. 展开更多
关键词 EXOSOME miRNA neural progenitor cell NEURODEGENERATION NEUROINFLAMMATION neuroprotection optic nerve crush optic neuropathy retinal ganglion cell small extracellular vesicles
暂未订购
Fibro-adipogenic progenitors prevent skeletal muscle degeneration at acute phase upon tendon rupture in a murine tibialis anterior tenotomy model
7
作者 Zhe-Ci Ding Juan-Juan He +4 位作者 Lu-Ze Shi Jin Qian Shu-Hao Mei Xia Kang Ji-Wu Chen 《World Journal of Stem Cells》 2025年第6期63-77,共15页
BACKGROUND Fibro-adipogenic progenitors(FAPs)are a group of mesenchymal stem cells that cause fibro-fatty degeneration in skeletal muscle in various chronic disease mode-ls.FAPs also play a role in preventing muscle d... BACKGROUND Fibro-adipogenic progenitors(FAPs)are a group of mesenchymal stem cells that cause fibro-fatty degeneration in skeletal muscle in various chronic disease mode-ls.FAPs also play a role in preventing muscle degeneration at acute stages during disease progression.However,few studies have reported the changes in and function of FAPs in the acute phase after tendon rupture.AIM To clarify the changes in the number of FAPs and their impact on skeletal muscle soon after tendon rupture to facilitate future studies targeting FAPs to treat muscle degeneration.METHODS We utilized Pdgfra-H2B::eGFP mice to trace and quantify FAPs in a tibialis anterior tenotomy(TAT)model at 0 and 3 days,1 week,2 weeks,3 weeks,4 weeks,5 weeks,and 6 weeks post-injury,and the results were further validated using fluorescence-activated cell sorting analysis with C57BL/6 mice at the same post-injury timepoints.We subsequently used PdgfraCreERT::RosaDTA mice,and evaluated the severity of post-TAT skeletal muscle degeneration with or without FAP-depletion.RESULTS The number of FAPs peaked at 1 week post-TAT before gradually declining to a level comparable to that pre-TAT.The change in the number of FAPs was potentially temporally correlated with the progression of skeletal muscle degeneration after TAT.FAP-depletion led to more severe degeneration early after TAT,indicating that FAPs potentially alleviate muscle degeneration after tendon rupture in the early post-injury phase.CONCLUSION FAPs potentially alleviate the degeneration of skeletal muscle in the acute stage after tendon rupture. 展开更多
关键词 Fibro-adipogenic progenitors Skeletal muscle degeneration Tibialis anterior tenotomy Tendon rupture Acute phase
暂未订购
Mechanism of trypsin-mediated differentiation of pancreatic progenitor cells into functional islet-like clusters
8
作者 Ling Gao Jia-Shuang Lai +3 位作者 Han Chen Li-Xia Qian Wan-Jin Hong Liang-Cheng Li 《World Journal of Diabetes》 2025年第6期233-248,共16页
BACKGROUND Endogenous regeneration of pancreatic isletβ-cells is a path to cure both type 1 and advanced type 2 diabetes.Pancreatic cancer cell line-1(PANC-1),a human pancreatic islet progenitor cell line,can be indu... BACKGROUND Endogenous regeneration of pancreatic isletβ-cells is a path to cure both type 1 and advanced type 2 diabetes.Pancreatic cancer cell line-1(PANC-1),a human pancreatic islet progenitor cell line,can be induced by trypsin to differentiate into insulin-secreting islet-like aggregates(ILAs).However,the underlying mechanism has not been explored.AIM To explore the mechanism and signaling pathway of trypsin-induced differentiation of islet progenitor cells into insulin-secreting cells.METHODS PANC-1 cells were induced by trypsin to form ILAs and differentiate into insulinsecreting cells.Clustered regularly interspaced short palindromic repeats(CRISPR)-associated protein 9 knockout and small interfering RNA knockdown techniques were used to investigate membrane proteins and downstream signaling pathways involved in the process.RESULTS The extracellular domain of membrane receptor E-cadherin hydrolyzed by trypsin induced the aggregation of PANC-1 cells and stimulated E-cadherin-recruited casein kinase-1γ3,which specifically phosphorylated the Ser655/Thr658 site ofα-catenin in the cadherin-catenin complex,participating in the process of PANC-1 differentiation and affecting the maturation of differentiated ILAs.CONCLUSION The current study reveals the mechanism by which trypsin promotes PANC-1 cell differentiation into islet-like cells,providing a novel approach for endogenous isletβ-cell regeneration. 展开更多
关键词 Endogenous isletβ-cell regeneration TRYPSIN Pancreatic cancer cell line-1 Pancreatic islet progenitor cell E-cadherin ALPHA-CATENIN
暂未订购
Potential effect of endothelial progenitor cells on pentylenetetrazole induced seizures in rats:an evaluation of relevant lncRNAs
9
作者 Shimaa O.ALI Nancy N.SHAHIN +1 位作者 Marwa M.SAFAR Sherine M.RIZK 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 2025年第8期789-804,共16页
Objective:The use of stem cells is a promising strategy for seizure treatment owing to their unique characteristics.We investigated the role of endothelial progenitor cells(EPCs)in a pentylenetetrazole(PTZ)-induced ra... Objective:The use of stem cells is a promising strategy for seizure treatment owing to their unique characteristics.We investigated the role of endothelial progenitor cells(EPCs)in a pentylenetetrazole(PTZ)-induced rat seizure model.A selected panel of long noncoding RNAs(lncRNAs),which maintain an elaborate balance in brain neural regulatory networks as well as the autophagy pathway,was also targeted.Methods:The impact of intravenously administered EPCs on PTZ-induced kindling in rats was evaluated by measuring the expression of neuronal damage markers,neurotrophic factors,and relevant lncRNA genes.Rat behavior was assessed using Y-maze test and open field test(OFT).Results:EPCs mitigated seizure associated neurological damage and reversed PTZ-induced working memory and locomotor activity deficits,as evidenced by improved performance in the Y-maze test and OFT.EPC treatment reversed the downregulation of the expression of the lncRNAs Evf2,Pnky,Dlx1,APF,HOTAIR,and FLJ11812.EPCs also boosted vascular endothelial growth factor(VEGF)expression.The ameliorative effect achieved by EPCs was comparable to that produced by valproate.Conclusions:These findings indicate that EPCs ameliorate kindling epileptic seizures and their associated abnormalities and that the effect of EPCs may be mediated via the upregulation of certain regulatory lncRNAs. 展开更多
关键词 Endothelial progenitor cell(EPC) Long noncoding RNA(lncRNA) Pentylenetetrazole(PTZ) Neuronal damage SEIZURE
原文传递
Endothelial progenitor cells and coronary artery disease:Current concepts and future research directions 被引量:4
10
作者 Sen-Tong Xiao Chun-Yan Kuang 《World Journal of Clinical Cases》 SCIE 2021年第30期8953-8966,共14页
Vascular injury is a frequent pathology in coronary artery disease.To repair the vasculature,scientists have found that endothelial progenitor cells(EPCs)have excellent properties associated with angiogenesis.Over tim... Vascular injury is a frequent pathology in coronary artery disease.To repair the vasculature,scientists have found that endothelial progenitor cells(EPCs)have excellent properties associated with angiogenesis.Over time,research on EPCs has made encouraging progress regardless of pathology or clinical technology.This review focuses on the origins and cell markers of EPCs,and the connection between EPCs and coronary artery disease.In addition,we summarized various studies of EPC-capturing stents and EPC infusion therapy,and aim to learn from past technology to predict the future. 展开更多
关键词 Endothelial progenitor cells Coronary disease Endothelial progenitor-cell capture stents Endothelial progenitor-cell infusion Clinical application
暂未订购
Erythropoietin Receptor Positive Circulating Progenitor Cells and Endothelial Progenitor Cells in Patients with Different Stages of Diabetic Retinopathy 被引量:5
11
作者 Liu-mei Hu Xia Lei +9 位作者 Bo Ma Yu Zhang Yan Yan Ya-lan Wu Ge-zhi Xu Wen Ye Ling Wang Guo-xu Xu Guo-tong Xu Wei-ye Li 《Chinese Medical Sciences Journal》 CAS CSCD 2011年第2期69-76,共8页
Objective To investigate the possible involvement of erythropoietin (EPO)/erythropoietin receptor (EPOR) system in neovascularization and vascular regeneration in diabetic retinopathy (DR). Methods EPOR positive... Objective To investigate the possible involvement of erythropoietin (EPO)/erythropoietin receptor (EPOR) system in neovascularization and vascular regeneration in diabetic retinopathy (DR). Methods EPOR positive circulating progenitor cells (CPCs: CD34^+) and endothelial progenitor cells (EPCs: CD34^+KDR^+) were assessed by flow cytometry in type 2 diabetic patients with different stages of DR. The cohort consisted of age- and sex-matched control patients without diabetes (n=7), non-prolif- erative DR (NPDR, n=7), proliferative DR (PDR, n=8), and PDR complicated with diabetic nephropathy (PDR-DN, n=7). Results The numbers of EPOR^+ CPCs and EPOR^+ EPCs were reduced remarkably in NPDR corn pared with the control group (both P(0.01), whereas rebounded in PDR and PDR-DN groups in varying degrees. Similar changes were observed in respect of the proportion of EPOR^+ CPCs in CPCs (NPDR vs. control, P(0.01) and that of EPOR^+ EPCs in EPCs (NPDR vs. control, P〈0.05). Conclusion Exogenous EPO, mediated via the EPO/EPOR system of EPCs, may alleviate the impaired vascular regeneration in NPDR, whereas it might aggravate retinal neovascularization in PDR due to a rebound of EPOR^+ EPCs associated with ischemia. 展开更多
关键词 circulating progenitor cells endothelial progenitor cells erythropoietin re-ceptor diabetic retinopathy
在线阅读 下载PDF
To stay or to leave: Stem cells and progenitor cells navigating the S1P gradient 被引量:3
12
作者 Andrew Hsu Jen-Fu Lee +1 位作者 Daniel E Cramer Menq-Jer Lee 《World Journal of Biological Chemistry》 CAS 2011年第1期1-13,共13页
Most hematopoietic stem progenitor cells (HSPCs) reside in bone marrow (BM), but a small amount of HSPCs have been found to circulate between BM and tissues through blood and lymph. Several lines of evidence suggest t... Most hematopoietic stem progenitor cells (HSPCs) reside in bone marrow (BM), but a small amount of HSPCs have been found to circulate between BM and tissues through blood and lymph. Several lines of evidence suggest that sphingosine-1-phosphate (S1P) gradient triggers HSPC egression to blood circulation after mobilization from BM stem cell niches. Stem cells also visit certain tissues. After a temporary 36 h short stay in local tissues, HSPCs go to lymph in response to S1P gradient between lymph and tissue and eventually enter the blood circulation. S1P also has a role in the guidance of the primitive HSPCs homing to BM in vivo, as S1P analogue FTY720 treatment can improve HSPC BM homing and engraftment. In stress conditions, various stem cells or progenitor cells can be attracted to local injured tissues and participate in local tissue cell differentiation and tissue rebuilding through modulation the expression level of S1P1, S1P2 or S1P3 receptors. Hence, S1P is important for stem cells circulation in blood system to accomplish its role in body surveillance and injury recovery. 展开更多
关键词 Hematopoietic STEM progenitor cells Tissue specific stem/progenitor cells Mesenchymal STEM CELL STEM CELL homing STEM CELL egress Sphingosine-1-phosphate Sphingosine-1-phosphate GRADIENT Sphingosine-1-phosphate receptors
暂未订购
Hypoxic pre-conditioned adipose-derived stem/progenitor cells embedded in fibrin conduits promote peripheral nerve regeneration in a sciatic nerve graft model
13
作者 Julius M.Mayer Christian Krug +4 位作者 Maximilian M.Saller Annette Feuchtinger Riccardo E.Giunta Elias Volkmer Thomas Holzbach 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第3期652-656,共5页
Recent results emphasize the supportive effects of adipose-derived multipotent stem/progenitor cells(ADSPCs)in peripheral nerve recovery.Cultivation under hypoxia is considered to enhance the release of the regenerati... Recent results emphasize the supportive effects of adipose-derived multipotent stem/progenitor cells(ADSPCs)in peripheral nerve recovery.Cultivation under hypoxia is considered to enhance the release of the regenerative potential of ADSPCs.This study aimed to examine whether peripheral nerve regeneration in a rat model of autologous sciatic nerve graft benefits from an additional custom-made fibrin conduit seeded with hypoxic pre-conditioned(2%oxygen for 72 hours)autologous ADSPCs(n=9).This treatment mode was compared with three others:fibrin conduit seeded with ADSPCs cultivated under normoxic conditions(n=9);non-cell-carrying conduit(n=9);and nerve autograft only(n=9).A 16-week follow-up included functional testing(sciatic functional index and static sciatic index)as well as postmortem muscle mass analyses and morphometric nerve evaluations(histology,g-ratio,axon density,and diameter).At 8 weeks,the hypoxic pre-conditioned group achieved significantly higher sciatic functional index/static sciatic index scores than the other three groups,indicating faster functional regeneration.Furthermore,histologic evaluation showed significantly increased axon outgrowth/branching,axon density,remyelination,and a reduced relative connective tissue area.Hypoxic pre-conditioned ADSPCs seeded in fibrin conduits are a promising adjunct to current nerve autografts.Further studies are needed to understand the underlying cellular mechanism and to investigate a potential application in clinical practice. 展开更多
关键词 adipose-derived progenitor cells adipose-derived multipotent stem/progenitor cell autologous nerve graft fibrin conduit hypoxia hypoxic pre-conditioning nerve defect nerve tissue engineering peripheral nerve regeneration regenerative medicine
暂未订购
Biological Characteristics of Endothelial Progenitor Cell and Its Influence on Angiogenesis Improvement 被引量:3
14
作者 元虹懿 杜海荣 张明海 《Agricultural Science & Technology》 CAS 2017年第2期303-306,共4页
Endothelial progenitor cell (EPC) is a term that refers to multiple cell types that play roles in the regeneration of the endothelial lining of blood vessels. The EPCs in bone marrow will participate in the internal... Endothelial progenitor cell (EPC) is a term that refers to multiple cell types that play roles in the regeneration of the endothelial lining of blood vessels. The EPCs in bone marrow will participate in the internal circulation in a body sub- jected to the stimulation by external factors such as injury, ischemia or drug. EPCs regulate the angiogenic switch via paracrine secretion of proangiogenic growth factors and by direct luminal incorporation into sprouting nascent vessels. Therefore, this paper reviews the sources, isolation and culture of EPCs, the factors influencing the proliferation and activity of EPCs, and the roles of EPCs in angiogenesis. 展开更多
关键词 Endothelial progenitor cells Myocardial infarction ANGIOGENESIS
暂未订购
Endothelial progenitor cells in cardiovascular diseases 被引量:26
15
作者 Poay Sian Sabrina Lee Kian Keong Poh 《World Journal of Stem Cells》 SCIE CAS 2014年第3期355-366,共12页
Endothelial dysfunction has been associated with the development of atherosclerosis and cardiovascular diseases. Adult endothelial progenitor cells(EPCs) are derived from hematopoietic stem cells and are capable of fo... Endothelial dysfunction has been associated with the development of atherosclerosis and cardiovascular diseases. Adult endothelial progenitor cells(EPCs) are derived from hematopoietic stem cells and are capable of forming new blood vessels through a process of vas-culogenesis. There are studies which report correlations between circulating EPCs and cardiovascular risk fac-tors. There are also studies on how pharmacotherapies may influence levels of circulating EPCs. In this review, we discuss the potential role of endothelial progenitor cells as both diagnostic and prognostic biomarkers. In addition, we look at the interaction between cardio-vascular pharmacotherapies and endothelial progenitor cells. We also discuss how EPCs can be used directly and indirectly as a therapeutic agent. Finally, we evalu-ate the challenges facing EPC research and how these may be overcome. 展开更多
关键词 ENDOTHELIAL progenitor cells Cardiovasculardiseases HYPERTENSION Diabetes DYSLIPIDEMIA Therapy STENTS
暂未订购
Transplantation of endothelial progenitor cells transfected with VEGF165 to restore erectile function in diabetic rats 被引量:17
16
作者 Xin Gou Wei-Yang He Ming-Zhao Xiao Ming Qiu Ming Wang Yuan-Zhong Deng Chao-Dong Liu Zao-Bing Tang lie Li Yong Chen 《Asian Journal of Andrology》 SCIE CAS CSCD 2011年第2期332-338,共7页
The present study investigated the effect of transplanting endothelial progenitor cells (EPCs) transfected with the vascular endothelial growth factor gene (VEGF165) into the corpora cavernosa of rats with diabeti... The present study investigated the effect of transplanting endothelial progenitor cells (EPCs) transfected with the vascular endothelial growth factor gene (VEGF165) into the corpora cavernosa of rats with diabetic erectile dysfunction (ED). A rat model of diabetic ED was constructed via intraperitoneal injection of streptozotocin. After streptozotocin treatment, pre-treated EPCs from each of three groups of rats were transplanted into their corpora cavernosa. Our results, following intracavernosal pressure (ICP) monitoring, showed that ICP increased significantly among rats in the trial group when compared to the results from rats in the blank-plasmid and control groups during basal conditions and electrical stimulation (P〈O.01 for both comparisons). Histological examination revealed extensive neovascularisation in the corpora cavernosa of rats in the trial group. Fluorescence microscopy indicated that many of the transplanted EPCs in the trial group survived, differentiated into endothelial cells and integrated into the sites of neovascularisation. Based on the results of this study, we conclude that transplantation of VEGF165-transfected EPCs into the corpora cavernosa of rats with diabetic ED restores erectile function. 展开更多
关键词 cell transplantation diabetes mellitus endothelial progenitor cells erectile dysfunction gene expression vascularendothelial growth factor
在线阅读 下载PDF
Vascular dysfunction in diabetes: The endothelial progenitor cells as new therapeutic strategy 被引量:14
17
作者 Adriana Georgescu 《World Journal of Diabetes》 SCIE CAS 2011年第6期92-97,共6页
The vascular endothelium is a critical determinant of dia- betes-associated vascular complications, and improving endothelial function is an important target for therapy. Diabetes mellitus contributes to endothelial c... The vascular endothelium is a critical determinant of dia- betes-associated vascular complications, and improving endothelial function is an important target for therapy. Diabetes mellitus contributes to endothelial cell injury and dysfunction. Endothelial progenitor cells (EPCs) play a critical role in maintaining endothelial function and might affect the progression of vascular disease. EPCs are essential to blood vessel formation, can differentiate into mature endothelial cells, and promote the repair of damaged endothelium. In diabetes, the circulating EPC count is low and their functionality is impaired. The me- chanisms that underlie this reduced count and impaired functionality are poorly understood. Knowledge of the status of EPCs is critical for assessing the health of the vascular system, and interventions that increase the number of EPCs and restore their angiogenic activity in diabetes may prove to be particularly beneficial. The pre-sent review outlines current thinking on EPCs' therapeutic potential in endothelial dysfunction in diabetes, as well as evidence-based perspectives regarding their use for vascular regenerative medicine. 展开更多
关键词 DIABETES MELLITUS Vascular DYSFUNCTION ENDOTHELIAL progenitor cells
暂未订购
Circulating endothelial and progenitor cells:Evidence from acute and long-term exercise effects 被引量:18
18
作者 Matina Koutroumpi Stavros Dimopoulos +2 位作者 Katherini Psarra Theodoros Kyprianou Serafim Nanas 《World Journal of Cardiology》 CAS 2012年第12期312-326,共15页
Circulating bone-marrow-derived cells,named endothelial progenitor cells(EPCs),are capable of maintaining,generating,and replacing terminally differentiated cells within their own specific tissue as a consequence of p... Circulating bone-marrow-derived cells,named endothelial progenitor cells(EPCs),are capable of maintaining,generating,and replacing terminally differentiated cells within their own specific tissue as a consequence of physiological cell turnover or tissue damage due to injury.Endothelium maintenance and restoration of normal endothelial cell function is guaranteed by a complex physiological procedure in which EPCs play a significant role.Decreased number of peripheral blood EPCs has been associated with endothelial dysfunction and high cardiovascular risk.In this review,we initially report current knowledge with regard to the role of EPCs in healthy subjects and the clinical value of EPCs in different disease populations such as arterial hypertension,obstructive sleep-apnea syndrome,obesity,diabetes mellitus,peripheral arterial disease,coronary artery disease,pulmonary hypertension,and heart failure.Recent studies have introduced the novel concept that physical activity,either performed as a single exercise session or performed as part of an exercise training program,results in a significant increase of circulating EPCs.In the second part of this review we provide preliminary evidence from recent studies investigating the effects of acute and long-term exercise in healthy subjects and athletes as well as in disease populations. 展开更多
关键词 CIRCULATING ENDOTHELIAL CELLS CIRCULATING progenitor CELLS EXERCISE CARDIOVASCULAR disease
暂未订购
Yiguanjian decoction enhances fetal liver stem/progenitor cell-mediated repair of liver cirrhosis through regulation of macrophage activation state 被引量:12
19
作者 Ying Xu Wei-Wei Fan +7 位作者 Wen Xu Shi-Li Jiang Gao-Feng Chen Cheng Liu Jia-Mei Chen Hua Zhang Ping Liu Yong-Ping Mu 《World Journal of Gastroenterology》 SCIE CAS 2018年第42期4759-4772,共14页
AIM To investigate whether Yiguanjian decoction(YGJ) has an anti-liver cirrhotic effect and whether it regulates hepatic stem cell differentiation.METHODS A rat model of liver cirrhosis was established via subcutaneou... AIM To investigate whether Yiguanjian decoction(YGJ) has an anti-liver cirrhotic effect and whether it regulates hepatic stem cell differentiation.METHODS A rat model of liver cirrhosis was established via subcutaneous injection of carbon tetrachloride(CCl4) for8 wk. From the beginning of the ninth week, the rats received 2-acetylaminofluorene(2-AAF) by oral gavage and a DLK-1+ fetal liver stem/progenitor cell(FLSPC)transplant or an FLSPC transplant in combination with YGJ treatment for 4 wk. In vitro, lipopolysaccharide(LPS)-activated macrophages were co-cultured with WB-F344 cells, and the differentiation of WB-F344 cells was observed in the presence and absence of YGJ treatment.RESULTS FLSPC transplantation improved liver function and histopathology, and inhibited the activation of the noncanonical Wnt signaling pathway, while activating the canonical Wnt signaling pathway. YGJ enhanced the therapeutic effects of FLSPCs and also promoted the liver regeneration differentiation of FLSPCs into hepatocytes.In vitro, LPS-activated macrophages promoted the differentiation of WB-F344 cells into myofibroblasts, and the canonical Wnt signaling was inhibited while the noncanonical Wnt signaling was activated in WB-F344 cells.YGJ suppressed the activation of macrophages and then inhibited non-canonical Wnt signaling and promoted canonical Wnt signaling.CONCLUSION YGJ enhances FLSPC-mediated repair of liver cirrhosis through regulation of macrophage activation state, and YGJ in combination with stem cell transplantation may be a suitable treatment for end-stage liver cirrhosis. 展开更多
关键词 CIRRHOSIS Hepatic progenitor cells Wnt signaling pathway MACROPHAGE 2-acetylaminofluorene Carbon TETRACHLORIDE Yiguanjian DECOCTION
暂未订购
Endothelial progenitor cells, potential biomarkers for diagnosis and prognosis of ischemic stroke: protocol for an observational case-control study 被引量:11
20
作者 Kamini Rakkar Othman Othman +2 位作者 Nikola Sprigg Philip Bath Ulvi Bayraktutan 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第7期1300-1307,共8页
Ischemic stroke is a devastating,life altering event which can severely reduce patient quality of life.Despite years of research there have been minimal therapeutic advances.Endothelial progenitor cells(EPCs),stem cel... Ischemic stroke is a devastating,life altering event which can severely reduce patient quality of life.Despite years of research there have been minimal therapeutic advances.Endothelial progenitor cells(EPCs),stem cells involved in both vasculogenesis and angiogenesis,may be a potential therapeutic target.After a stroke,EPCs migrate to the site of ischemic injury to repair cerebrovascular damage,and their numbers and functional capacity may determine patients'outcome.This study aims to determine whether the number of circulating EPCs and their functional aspects may be used as biomarkers to identify the type(cortical or lacunar)and/or severity of ischemic stroke.The study will also investigate if there are any differences in these characteristics between healthy volunteers over and under 65 years of age.100 stroke patients(50 lacunar and 50 cortical strokes)will be recruited in this prospective,observational case-controlled study.Blood samples will be taken from stroke patients at baseline(within 48 hours of stroke)and days 7,30 and90.EPCs will be counted with flow cytometry.The plasma levels of pro-and anti-angiogenic factors and inflammatory cytokines will also be determined.Outgrowth endothelial cells will be cultured to be used in tube formation,migration and proliferation functional assays.Primary outcome is disability or dependence on day 90 after stroke,assessed by the modified Rankin Scale.Secondary outcomes are changes in circulating EPC numbers and/or functional capacity between patient and healthy volunteers,between patient subgroups and between elderly and young healthy volunteers.Recruitment started in February 2017,167 participants have been recruited.Recruitment will end in November 2019.West Midlands-Coventry&Warwickshire Research Ethics Committee approved this study(REC number:16/WM/0304)on September8,2016.Protocol version:2.0.The Bayraktutan Dunhill Medical Trust EPC Study was registered in ClinicalTrials.gov(NCT02980354)on November 15,2016.This study will determine whether the number of EPCs can be used as a prognostic or diagnostic marker for ischemic strokes and is a step towards discovering if transplantation of EPCs may aid patient recovery. 展开更多
关键词 ageing biomarkers cortical stroke endothelial progenitor cells ischemic stroke lacunar stroke observational study stem cells
暂未订购
上一页 1 2 204 下一页 到第
使用帮助 返回顶部