Zr modification is an effective method for improving hot-cracking resistance and elevated-temperature mechanical properties during laser powder bed fusion(L-PBF)of traditional medium and high strength wrought aluminum...Zr modification is an effective method for improving hot-cracking resistance and elevated-temperature mechanical properties during laser powder bed fusion(L-PBF)of traditional medium and high strength wrought aluminum alloys.This study investigated the l-PBF processability and elevated-temperature mechanical properties of a Zr-modified 2024Al alloy.It was found that the hot-cracking susceptibility increased with the increased scanning speed,which was in reasonable agreement with the modified Rappaz-Drezet-Gremaud criterion.Furthermore,the primary L1_(2)-Al_(3)Zr precipitates,which acted as ef-ficient nucleation sites,precipitated at the fusion boundary of the melt pool,leading to the formation of a heterogeneous grain structure.The yield strength(YS)of the as-fabricated samples at 150,250,and 350℃was 363,210,and 48 MPa,respectively.Despite the slight decrease to 360 MPa of the YS when tested at 150℃,owing to the additional precipitate strengthening from the L1_(2)-Al_(3)Zr precipitates,the YS achieved yield strengths of 253 and 69 MPa,an increase of 20.5%and 30.4%,when tested at 250 and 350℃,respectively.The yield strengths in both the as-fabricated and T6-treated conditions tested at 150 and 250℃were comparable to those of casting Al-Cu-Mg-Ag alloys and superior to those of traditionally heat-resistant 2219-T6 and 2618-T6 of Al-Cu alloys.展开更多
The effect of pan-milling on morphological structure,processability and properties of PVC was studied throughSEM,FTIR,granulometer,GPC and mechanical properties test in the hope of gaining ease in operation,needless o...The effect of pan-milling on morphological structure,processability and properties of PVC was studied throughSEM,FTIR,granulometer,GPC and mechanical properties test in the hope of gaining ease in operation,needless ofplasticizers,a clean and efficient route for improving the processability of PVC through stress-induced reactions,fulfilling the idea of“plasticizing PVC by itself”.The experimental results show that during pan-milling at ambienttemperature,within 2-3 min,the microcrystalline structure of PVC becomes indistinct,the grain size of PVC is reducedfrom 130-160 μm to 1-50 μm the molecular weight of PVC is slightly decreased,the variation of molecular weightdistribution is indistinct,the plasticizing time and torque at balance drop a great deal from 71-132 s to 31-33 s and from18.2-22.1 Nm to 14.7-18.4 Nm,respectively,the processability of PVC is markedly improved,and the mechanicalproperties get enhanced too.展开更多
The purpose of this article is twofold.First,it explores the order of the development of nominal and verbal gender of Amharic,which is one of the Ethio-Semitic languages.Second,it provides empirical evidence for the t...The purpose of this article is twofold.First,it explores the order of the development of nominal and verbal gender of Amharic,which is one of the Ethio-Semitic languages.Second,it provides empirical evidence for the typological plausibility of processability theory(PT).In fact,PT has been tested in typologically different languages(e.g.,English,Italian,and Japan);however,it does not have any validation from Ethiopian languages in general and Ethio-Semitic languages in particular yet.Relevant data was collected from sixteen respondents via picture description tasks,short storytelling,interviews,story re-telling,and spot the difference tasks.Distributional analysis was conducted for the analysis,and the point of emergence of target structures was determined using the emergence criteria.Accordingly,the result shows that the development of gender assignment is compatible with processability theory’s predictions in that lexical procedure precedes phrasal procedure,which is followed by S-procedure.Moreover,the masculine gender emerged earlier than its feminine counterpart at all developmental stages.However,subject agreement markers in pro-drop context emerged at stage two preceding subject verb agreement.This finding is against processability theory’s claim that suggests subject agreement markers only emerge at stage four of the processability hierarchy disregarding their stages of development in pro-drop context in particular.展开更多
Metal-organic frameworks(MOFs) show great potential for various applications, but many of them suffer from the drawbacks of hydrolysis propensity and poor processability. Herein, we employ polymers of intrinsic microp...Metal-organic frameworks(MOFs) show great potential for various applications, but many of them suffer from the drawbacks of hydrolysis propensity and poor processability. Herein, we employ polymers of intrinsic microporosity(PIMs) with hydrophobic pores to decorate MOFs toward substantially improved water stability and shapeability. Through simple PIM-1 decoration, the sub-5 nm polymer layers can be uniformly deposited on MOF surfaces with almost no deterioration in porosity. Owing to the existence of superhydrophobic coating and the obstruction of water entrance into MOFs, the PIM-1 coated Cu BTC exhibits impressive water resistance and excellent pore preservation ability after exposure in water, even in acidic and alkaline solutions. Moreover, polymer decoration improves the processability of MOFs, while various MOF/PIM-1 bulk wafers and oil-water separators can be obtained straightforwardly.展开更多
There is usually a trade-off between the mechanical properties and processability of polymers because the mechanisms underlying these properties are mutually exclusive.Herein,we discovered that rationally designed cro...There is usually a trade-off between the mechanical properties and processability of polymers because the mechanisms underlying these properties are mutually exclusive.Herein,we discovered that rationally designed crosslinking can simultaneously enhance both the mechanical properties and processability of polymers.To achieve this,a dynamically dissociable crosslinker was designed using a reversible Diels-Alder reaction that forms a stable covalently crosslinked network from the linear polymer.During processing,the crosslinked network dissociates to release a small-molecule crosslinking agent,which increases the free volume of the polymer and weakens the non-covalent interactions between the molecular chains.Consequently,the polymer exhibits superior processing performance compared to its linear polymer counterpart.A polyurethane model was designed to demonstrate this strategy.After crosslinking,the strength and toughness of the polyurethane increased significantly compared to those of the linear polyurethane counterpart.Additionally,the solid-liquid transition temperature of the polyurethane decreased from 149℃ to 118℃,and the processing viscosity decreased by 48%.An application of this technology was demonstrated by producing fibers with the highest tensile strength(78.7 MPa)at the lowest processing temperature(125℃)reported for meltspun crosslinked fibers.展开更多
Ultra-high molecular weight polyethylene(UHMWPE,M_(w)>10^(6)g mol^(−1))has been prepared using slurryphase titanium permethylindenyl-phenoxy(PHENI^(*))catalysts.Four strategies have been investigated for improving ...Ultra-high molecular weight polyethylene(UHMWPE,M_(w)>10^(6)g mol^(−1))has been prepared using slurryphase titanium permethylindenyl-phenoxy(PHENI^(*))catalysts.Four strategies have been investigated for improving the melt processability of UHMWPE,which is the chief limiting factor to the applications of this high-performance polymer.1)Active site engineering was used to explore the entanglement density in the resulting polymer,with substantially disentangled PE identified through thermal and rheological characterisation.2)Hydrogen and ZnEt2 were employed as chain transfer agents to modulate the polyethylene molecular weight and distribution(MWD).A sequential reactivity protocol using ZnEt2 was able to produce bimodal UHMWPE with improved processability.3)MWD tuning was further investigated using multisite catalysts,with the reaction conditions and Ti:Zr ratio able to control MWD to essentially arbitrary shapes.The inclusion of low molecular weight fractions into UHMWPE improves the processability without compromising mechanical characteristics.4)Polymer-reinforced composite blends of UHMWPE with either HDPE or LDPE as a highly processable matrix were extruded and explored,with polymer miscibility and mechanical properties studied in detail.展开更多
Inorganic semiconductors are widely used in many fields such as information,energy,and electronics due to their rich functionalities.The chemical bonds in inorganic semiconductors are usually directional covalent bond...Inorganic semiconductors are widely used in many fields such as information,energy,and electronics due to their rich functionalities.The chemical bonds in inorganic semiconductors are usually directional covalent bonds,which inhibit the movement of dislocations.Thus,being different with metals and alloys,inorganic semiconductors are usually brittle at room temperature,with very small strain below 1%and poor machinability[1].Many metalworking techniques,such as the cold-forming processing,which is a crucial means for the cost-effective production of metal and alloy parts,cannot be applied to most inorganic semiconductors,greatly limiting their low-cost fabrication and applications in flexible electronics.展开更多
Processes supported by process-aware information systems are subject to continuous and often subtle changes due to evolving operational,organizational,or regulatory factors.These changes,referred to as incremental con...Processes supported by process-aware information systems are subject to continuous and often subtle changes due to evolving operational,organizational,or regulatory factors.These changes,referred to as incremental concept drift,gradually alter the behavior or structure of processes,making their detection and localization a challenging task.Traditional process mining techniques frequently assume process stationarity and are limited in their ability to detect such drift,particularly from a control-flow perspective.The objective of this research is to develop an interpretable and robust framework capable of detecting and localizing incremental concept drift in event logs,with a specific emphasis on the structural evolution of control-flow semantics in processes.We propose DriftXMiner,a control-flow-aware hybrid framework that combines statistical,machine learning,and process model analysis techniques.The approach comprises three key components:(1)Cumulative Drift Scanner that tracks directional statistical deviations to detect early drift signals;(2)a Temporal Clustering and Drift-Aware Forest Ensemble(DAFE)to capture distributional and classification-level changes in process behavior;and(3)Petri net-based process model reconstruction,which enables the precise localization of structural drift using transition deviation metrics and replay fitness scores.Experimental validation on the BPI Challenge 2017 event log demonstrates that DriftXMiner effectively identifies and localizes gradual and incremental process drift over time.The framework achieves a detection accuracy of 92.5%,a localization precision of 90.3%,and an F1-score of 0.91,outperforming competitive baselines such as CUSUM+Histograms and ADWIN+Alpha Miner.Visual analyses further confirm that identified drift points align with transitions in control-flow models and behavioral cluster structures.DriftXMiner offers a novel and interpretable solution for incremental concept drift detection and localization in dynamic,process-aware systems.By integrating statistical signal accumulation,temporal behavior profiling,and structural process mining,the framework enables finegrained drift explanation and supports adaptive process intelligence in evolving environments.Its modular architecture supports extension to streaming data and real-time monitoring contexts.展开更多
The aging process is an inexorable fact throughout our lives and is considered a major factor in develo ping neurological dysfunctions associated with cognitive,emotional,and motor impairments.Aging-associated neurode...The aging process is an inexorable fact throughout our lives and is considered a major factor in develo ping neurological dysfunctions associated with cognitive,emotional,and motor impairments.Aging-associated neurodegenerative diseases are characterized by the progressive loss of neuronal structure and function.展开更多
Unwarranted death of neurons is a major cause of neurodegenerative diseases.Since mature neurons are postmitotic and do not replicate,their death usually constitutes an irreversible step in pathology.A logical strateg...Unwarranted death of neurons is a major cause of neurodegenerative diseases.Since mature neurons are postmitotic and do not replicate,their death usually constitutes an irreversible step in pathology.A logical strategy to prevent neurodegeneration would then be to save all neurons that are still alive,i.e.protecting the ones that are still healthy as well as trying to rescue the ones that are damaged and in the process of dying.Regarding the latter,recent experiments have indicated that the possibility of reversing the cell death process and rescuing dying cells is more significant than previously anticipated.In many situations,the elimination of the cell death trigger alone enables dying cells to spontaneously repair their damage,recover,and survive.In this review,we explore the factors,which determine the fate of neurons engaged in the cell death process.A deeper insight into cell death mechanisms and the intrinsic capacity of cells to recover could pave the way for novel therapeutic approaches to neurodegenerative diseases.展开更多
Since Google introduced the concept of Knowledge Graphs(KGs)in 2012,their construction technologies have evolved into a comprehensive methodological framework encompassing knowledge acquisition,extraction,representati...Since Google introduced the concept of Knowledge Graphs(KGs)in 2012,their construction technologies have evolved into a comprehensive methodological framework encompassing knowledge acquisition,extraction,representation,modeling,fusion,computation,and storage.Within this framework,knowledge extraction,as the core component,directly determines KG quality.In military domains,traditional manual curation models face efficiency constraints due to data fragmentation,complex knowledge architectures,and confidentiality protocols.Meanwhile,crowdsourced ontology construction approaches from general domains prove non-transferable,while human-crafted ontologies struggle with generalization deficiencies.To address these challenges,this study proposes an OntologyAware LLM Methodology for Military Domain Knowledge Extraction(LLM-KE).This approach leverages the deep semantic comprehension capabilities of Large Language Models(LLMs)to simulate human experts’cognitive processes in crowdsourced ontology construction,enabling automated extraction of military textual knowledge.It concurrently enhances knowledge processing efficiency and improves KG completeness.Empirical analysis demonstrates that this method effectively resolves scalability and dynamic adaptation challenges in military KG construction,establishing a novel technological pathway for advancing military intelligence development.展开更多
Traffic at urban intersections frequently encounters unexpected obstructions,resulting in congestion due to uncooperative and priority-based driving behavior.This paper presents an optimal right-turn coordination syst...Traffic at urban intersections frequently encounters unexpected obstructions,resulting in congestion due to uncooperative and priority-based driving behavior.This paper presents an optimal right-turn coordination system for Connected and Automated Vehicles(CAVs)at single-lane intersections,particularly in the context of left-hand side driving on roads.The goal is to facilitate smooth right turns for certain vehicles without creating bottlenecks.We consider that all approaching vehicles share relevant information through vehicular communications.The Intersection Coordination Unit(ICU)processes this information and communicates the optimal crossing or turning times to the vehicles.The primary objective of this coordination is to minimize overall traffic delays,which also helps improve the fuel consumption of vehicles.By considering information from upcoming vehicles at the intersection,the coordination system solves an optimization problem to determine the best timing for executing right turns,ultimately minimizing the total delay for all vehicles.The proposed coordination system is evaluated at a typical urban intersection,and its performance is compared to traditional traffic systems.Numerical simulation results indicate that the proposed coordination system significantly enhances the average traffic speed and fuel consumption compared to the traditional traffic system in various scenarios.展开更多
Objective expertise evaluation of individuals,as a prerequisite stage for team formation,has been a long-term desideratum in large software development companies.With the rapid advancements in machine learning methods...Objective expertise evaluation of individuals,as a prerequisite stage for team formation,has been a long-term desideratum in large software development companies.With the rapid advancements in machine learning methods,based on reliable existing data stored in project management tools’datasets,automating this evaluation process becomes a natural step forward.In this context,our approach focuses on quantifying software developer expertise by using metadata from the task-tracking systems.For this,we mathematically formalize two categories of expertise:technology-specific expertise,which denotes the skills required for a particular technology,and general expertise,which encapsulates overall knowledge in the software industry.Afterward,we automatically classify the zones of expertise associated with each task a developer has worked on using Bidirectional Encoder Representations from Transformers(BERT)-like transformers to handle the unique characteristics of project tool datasets effectively.Finally,our method evaluates the proficiency of each software specialist across already completed projects from both technology-specific and general perspectives.The method was experimentally validated,yielding promising results.展开更多
The complexity of the seismicity pattern for the subduction zone along the oceanic plate triggered the outer rise events and revealed cyclic tectonic deformation conditions along the plate subduction zones.The outer r...The complexity of the seismicity pattern for the subduction zone along the oceanic plate triggered the outer rise events and revealed cyclic tectonic deformation conditions along the plate subduction zones.The outer rise earthquakes have been observed along the Sunda arc,following the estimated rupture area of the 2005 M_(W)8.6 Nias earthquakes.Here,we used kinematic waveform inversion(KIWI)to obtain the source parameters of the 14 May 2021 M_(W)6.6 event off the west coast of northern Sumatra and to define the fault plane that triggered this outer rise event.The KIWI algorithm allows two types of seismic source to be configured:the moment tensor model to describe the type of shear with six moment tensor components and the Eikonal model for the rupture of pure double-couple sources.This method was chosen for its flexibility to be applied for different sources of seismicity and also for the automated full-moment tensor solution with real-time monitoring.We used full waveform traces from 8 broadband seismic stations within 1000 km epicentral distances sourced from the Incorporated Research Institutions for Seismology(IRIS-IDA)and Geofon GFZ seismic record databases.The initial origin time and hypocenter values are obtained from the IRIS-IDA.The synthetic seismograms used in the inversion process are based on the existing regional green function database model and were accessed from the KIWI Tools Green's Function Database.The obtained scalar seismic moment value is 1.18×10^(19)N·m,equivalent to a moment magnitude M_(W)6.6.The source parameters are 140°,44°,and−99°for the strike,dip,and rake values at a centroid depth of 10.2 km,indicating that this event is a normal fault earthquake that occurred in the outer rise area.The outer rise events with normal faults typically occur at the shallow part of the plate,with nodal-plane dips predominantly in the range of 30°-60°on the weak oceanic lithosphere due to hydrothermal alteration.The stress regime around the plate subduction zone varies both temporally and spatially due to the cyclic influences of megathrust earthquakes.Tensional outer rise earthquakes tend to occur after the megathrust events.The relative timing of these events is not known due to the viscous relaxation of the down going slab and poroelastic response in the trench slope region.The occurrence of the 14 May 2021 earthquake shows the seismicity in the outer rise region in the strongly coupled Sunda arc subduction zone due to elastic bending stress within the duration of the seismic cycle.展开更多
Covert timing channels(CTC)exploit network resources to establish hidden communication pathways,posing signi cant risks to data security and policy compliance.erefore,detecting such hidden and dangerous threats remain...Covert timing channels(CTC)exploit network resources to establish hidden communication pathways,posing signi cant risks to data security and policy compliance.erefore,detecting such hidden and dangerous threats remains one of the security challenges. is paper proposes LinguTimeX,a new framework that combines natural language processing with arti cial intelligence,along with explainable Arti cial Intelligence(AI)not only to detect CTC but also to provide insights into the decision process.LinguTimeX performs multidimensional feature extraction by fusing linguistic attributes with temporal network patterns to identify covert channels precisely.LinguTimeX demonstrates strong e ectiveness in detecting CTC across multiple languages;namely English,Arabic,and Chinese.Speci cally,the LSTM and RNN models achieved F1 scores of 90%on the English dataset,89%on the Arabic dataset,and 88%on the Chinese dataset,showcasing their superior performance and ability to generalize across multiple languages. is highlights their robustness in detecting CTCs within security systems,regardless of the language or cultural context of the data.In contrast,the DeepForest model produced F1-scores ranging from 86%to 87%across the same datasets,further con rming its e ectiveness in CTC detection.Although other algorithms also showed reasonable accuracy,the LSTM and RNN models consistently outperformed them in multilingual settings,suggesting that deep learning models might be better suited for this particular problem.展开更多
In this study,an automated multimodal system for detecting,classifying,and dating fruit was developed using a two-stage YOLOv11 pipeline.In the first stage,the YOLOv11 detection model locates individual date fruits in...In this study,an automated multimodal system for detecting,classifying,and dating fruit was developed using a two-stage YOLOv11 pipeline.In the first stage,the YOLOv11 detection model locates individual date fruits in real time by drawing bounding boxes around them.These bounding boxes are subsequently passed to a YOLOv11 classification model,which analyzes cropped images and assigns class labels.An additional counting module automatically tallies the detected fruits,offering a near-instantaneous estimation of quantity.The experimental results suggest high precision and recall for detection,high classification accuracy(across 15 classes),and near-perfect counting in real time.This paper presents a multi-stage pipeline for date fruit detection,classification,and automated counting,employing YOLOv11-based models to achieve high accuracy while maintaining real-time throughput.The results demonstrated that the detection precision exceeded 90%,the classification accuracy approached 92%,and the counting module correlated closely with the manual tallies.These findings confirm the potential of reducing manual labour and enhancing operational efficiency in post-harvesting processes.Future studies will include dataset expansion,user-centric interfaces,and integration with harvesting robotics.展开更多
This study conducts an acquisition-based evaluation of four primary-school English textbook series used in China. The evaluation aims to determine whether the sequencing of grammatical structures in the series is comp...This study conducts an acquisition-based evaluation of four primary-school English textbook series used in China. The evaluation aims to determine whether the sequencing of grammatical structures in the series is compatible with the L2 learning sequence stipulated in Processability Theory (PT). The results show a partial agreement between the sequencing of structures as teaching objectives in the series and the PT-based processability hierarchy. The sequencing of structures in the initial stages is consistent with the learning sequence of L2 English stated in PT. However, several structures in the intermediate or high stages are taught in a deviant way against their sequencing in PT. The deviant grading of those structures is possibly associated with the theme-based guidelines adopted in the textbooks. It appears that concerns with the utility of grammatical structures in a given context take precedence over concerns for L2 development. A number of suggestions are offered to textbook writers in terms of the role of input, the learners, developmental readiness, and the issue of heterogeneity in L2 classrooms.展开更多
Neurodevelopmental processes represent a finely tuned interplay between genetic and environmental factors,shaping the dynamic landscape of the developing brain.A major component of the developing brain that enables th...Neurodevelopmental processes represent a finely tuned interplay between genetic and environmental factors,shaping the dynamic landscape of the developing brain.A major component of the developing brain that enables this dynamic is the white matter(WM),known to be affected in neurodevelopmental disorders(NDDs)(Rokach et al.,2024).WM formation is mediated by myelination,a multifactorial process driven by neuro-glia interactions dependent on proper neuronal functionality(Simons and Trajkovic,2006).Another key aspect of neurodevelopmental abnormalities involves neuronal dynamics and function,with recent advances significantly enhancing our understanding of both neuronal and glial mitochondrial function(Devine and Kittler,2018;Rojas-Charry et al.,2021).Energy homeostasis in neurons,attributed largely to mitochondrial function,is critical for proper functionality and interactions with oligodendrocytes(OLs),the cells forming myelin in the brain’s WM.We herein discuss the interplay between these processes and speculate on potential dysfunction in NDDs.展开更多
In the article titled“Inhibiting SHP2 reduces glycolysis,promotes microglial M1 polarization,and alleviates secondary inflammation following spinal cord injury in a mouse model,”published in Neural Regeneration Rese...In the article titled“Inhibiting SHP2 reduces glycolysis,promotes microglial M1 polarization,and alleviates secondary inflammation following spinal cord injury in a mouse model,”published in Neural Regeneration Research(Ding et al.,2025),the title was incorrectly presented due to an error during the language polishing process.展开更多
With the increasing complexity of industrial automation,planetary gearboxes play a vital role in largescale equipment transmission systems,directly impacting operational efficiency and safety.Traditional maintenance s...With the increasing complexity of industrial automation,planetary gearboxes play a vital role in largescale equipment transmission systems,directly impacting operational efficiency and safety.Traditional maintenance strategies often struggle to accurately predict the degradation process of equipment,leading to excessive maintenance costs or potential failure risks.However,existing prediction methods based on statistical models are difficult to adapt to nonlinear degradation processes.To address these challenges,this study proposes a novel condition-based maintenance framework for planetary gearboxes.A comprehensive full-lifecycle degradation experiment was conducted to collect raw vibration signals,which were then processed using a temporal convolutional network autoencoder with multi-scale perception capability to extract deep temporal degradation features,enabling the collaborative extraction of longperiod meshing frequencies and short-term impact features from the vibration signals.Kernel principal component analysis was employed to fuse and normalize these features,enhancing the characterization of degradation progression.A nonlinear Wiener process was used to model the degradation trajectory,with a threshold decay function introduced to dynamically adjust maintenance strategies,and model parameters optimized through maximum likelihood estimation.Meanwhile,the maintenance strategy was optimized to minimize costs per unit time,determining the optimal maintenance timing and preventive maintenance threshold.The comprehensive indicator of degradation trends extracted by this method reaches 0.756,which is 41.2%higher than that of traditional time-domain features;the dynamic threshold strategy reduces the maintenance cost per unit time to 55.56,which is 8.9%better than that of the static threshold optimization.Experimental results demonstrate significant reductions in maintenance costs while enhancing system reliability and safety.This study realizes the organic integration of deep learning and reliability theory in the maintenance of planetary gearboxes,provides an interpretable solution for the predictive maintenance of complex mechanical systems,and promotes the development of condition-based maintenance strategies for planetary gearboxes.展开更多
基金The work was financially supported by the National Key R&D Program of China(No.2016YFB1100100)the Research Fund of the State Key Laboratory of Solidification Processing(NPU),China(No.2020-TZ-02)+3 种基金the Advance Research Projects in the Field of Manned Spaceflight(No.040302)the Shanghai Aerospace Science and Technology Innovation Fund Project(No.SAST2018-066)This work was also supported by the“Fundamental Research Funds for the Central Universities”(No.G2021KY05104)the“Natural Science Basis Research Plan in Shaanxi Province of China”(No.2022JQ-479).We would like to thank Editage(www.editage.com)for En-glish language editing.
文摘Zr modification is an effective method for improving hot-cracking resistance and elevated-temperature mechanical properties during laser powder bed fusion(L-PBF)of traditional medium and high strength wrought aluminum alloys.This study investigated the l-PBF processability and elevated-temperature mechanical properties of a Zr-modified 2024Al alloy.It was found that the hot-cracking susceptibility increased with the increased scanning speed,which was in reasonable agreement with the modified Rappaz-Drezet-Gremaud criterion.Furthermore,the primary L1_(2)-Al_(3)Zr precipitates,which acted as ef-ficient nucleation sites,precipitated at the fusion boundary of the melt pool,leading to the formation of a heterogeneous grain structure.The yield strength(YS)of the as-fabricated samples at 150,250,and 350℃was 363,210,and 48 MPa,respectively.Despite the slight decrease to 360 MPa of the YS when tested at 150℃,owing to the additional precipitate strengthening from the L1_(2)-Al_(3)Zr precipitates,the YS achieved yield strengths of 253 and 69 MPa,an increase of 20.5%and 30.4%,when tested at 250 and 350℃,respectively.The yield strengths in both the as-fabricated and T6-treated conditions tested at 150 and 250℃were comparable to those of casting Al-Cu-Mg-Ag alloys and superior to those of traditionally heat-resistant 2219-T6 and 2618-T6 of Al-Cu alloys.
基金Subsidized by the Special Funds for Major State Basic Research Projects of China(Contract/grant number:199064809)
文摘The effect of pan-milling on morphological structure,processability and properties of PVC was studied throughSEM,FTIR,granulometer,GPC and mechanical properties test in the hope of gaining ease in operation,needless ofplasticizers,a clean and efficient route for improving the processability of PVC through stress-induced reactions,fulfilling the idea of“plasticizing PVC by itself”.The experimental results show that during pan-milling at ambienttemperature,within 2-3 min,the microcrystalline structure of PVC becomes indistinct,the grain size of PVC is reducedfrom 130-160 μm to 1-50 μm the molecular weight of PVC is slightly decreased,the variation of molecular weightdistribution is indistinct,the plasticizing time and torque at balance drop a great deal from 71-132 s to 31-33 s and from18.2-22.1 Nm to 14.7-18.4 Nm,respectively,the processability of PVC is markedly improved,and the mechanicalproperties get enhanced too.
文摘The purpose of this article is twofold.First,it explores the order of the development of nominal and verbal gender of Amharic,which is one of the Ethio-Semitic languages.Second,it provides empirical evidence for the typological plausibility of processability theory(PT).In fact,PT has been tested in typologically different languages(e.g.,English,Italian,and Japan);however,it does not have any validation from Ethiopian languages in general and Ethio-Semitic languages in particular yet.Relevant data was collected from sixteen respondents via picture description tasks,short storytelling,interviews,story re-telling,and spot the difference tasks.Distributional analysis was conducted for the analysis,and the point of emergence of target structures was determined using the emergence criteria.Accordingly,the result shows that the development of gender assignment is compatible with processability theory’s predictions in that lexical procedure precedes phrasal procedure,which is followed by S-procedure.Moreover,the masculine gender emerged earlier than its feminine counterpart at all developmental stages.However,subject agreement markers in pro-drop context emerged at stage two preceding subject verb agreement.This finding is against processability theory’s claim that suggests subject agreement markers only emerge at stage four of the processability hierarchy disregarding their stages of development in pro-drop context in particular.
基金financially supported by National Natural Science Foundation of China (No. 51708252)Guangdong Basic and Applied Basic Research Foundation (Nos. 2020B1515120036,2021A1515010187)。
文摘Metal-organic frameworks(MOFs) show great potential for various applications, but many of them suffer from the drawbacks of hydrolysis propensity and poor processability. Herein, we employ polymers of intrinsic microporosity(PIMs) with hydrophobic pores to decorate MOFs toward substantially improved water stability and shapeability. Through simple PIM-1 decoration, the sub-5 nm polymer layers can be uniformly deposited on MOF surfaces with almost no deterioration in porosity. Owing to the existence of superhydrophobic coating and the obstruction of water entrance into MOFs, the PIM-1 coated Cu BTC exhibits impressive water resistance and excellent pore preservation ability after exposure in water, even in acidic and alkaline solutions. Moreover, polymer decoration improves the processability of MOFs, while various MOF/PIM-1 bulk wafers and oil-water separators can be obtained straightforwardly.
基金supported by the National Key Research and Development Program of China(2021YFC2101800)the National Natural Science Foundation of China(52473004,52173117)+1 种基金the Science and Technology Commission of Shanghai Municipality(20DZ2254900)the Fundamental Research Funds for the Central Universities(CUSF-DH-T-2024005)。
文摘There is usually a trade-off between the mechanical properties and processability of polymers because the mechanisms underlying these properties are mutually exclusive.Herein,we discovered that rationally designed crosslinking can simultaneously enhance both the mechanical properties and processability of polymers.To achieve this,a dynamically dissociable crosslinker was designed using a reversible Diels-Alder reaction that forms a stable covalently crosslinked network from the linear polymer.During processing,the crosslinked network dissociates to release a small-molecule crosslinking agent,which increases the free volume of the polymer and weakens the non-covalent interactions between the molecular chains.Consequently,the polymer exhibits superior processing performance compared to its linear polymer counterpart.A polyurethane model was designed to demonstrate this strategy.After crosslinking,the strength and toughness of the polyurethane increased significantly compared to those of the linear polyurethane counterpart.Additionally,the solid-liquid transition temperature of the polyurethane decreased from 149℃ to 118℃,and the processing viscosity decreased by 48%.An application of this technology was demonstrated by producing fibers with the highest tensile strength(78.7 MPa)at the lowest processing temperature(125℃)reported for meltspun crosslinked fibers.
基金funding from the Engineering and Physical Sciences Research Council Impact Acceleration Account(EP/X525777/1).
文摘Ultra-high molecular weight polyethylene(UHMWPE,M_(w)>10^(6)g mol^(−1))has been prepared using slurryphase titanium permethylindenyl-phenoxy(PHENI^(*))catalysts.Four strategies have been investigated for improving the melt processability of UHMWPE,which is the chief limiting factor to the applications of this high-performance polymer.1)Active site engineering was used to explore the entanglement density in the resulting polymer,with substantially disentangled PE identified through thermal and rheological characterisation.2)Hydrogen and ZnEt2 were employed as chain transfer agents to modulate the polyethylene molecular weight and distribution(MWD).A sequential reactivity protocol using ZnEt2 was able to produce bimodal UHMWPE with improved processability.3)MWD tuning was further investigated using multisite catalysts,with the reaction conditions and Ti:Zr ratio able to control MWD to essentially arbitrary shapes.The inclusion of low molecular weight fractions into UHMWPE improves the processability without compromising mechanical characteristics.4)Polymer-reinforced composite blends of UHMWPE with either HDPE or LDPE as a highly processable matrix were extruded and explored,with polymer miscibility and mechanical properties studied in detail.
文摘Inorganic semiconductors are widely used in many fields such as information,energy,and electronics due to their rich functionalities.The chemical bonds in inorganic semiconductors are usually directional covalent bonds,which inhibit the movement of dislocations.Thus,being different with metals and alloys,inorganic semiconductors are usually brittle at room temperature,with very small strain below 1%and poor machinability[1].Many metalworking techniques,such as the cold-forming processing,which is a crucial means for the cost-effective production of metal and alloy parts,cannot be applied to most inorganic semiconductors,greatly limiting their low-cost fabrication and applications in flexible electronics.
文摘Processes supported by process-aware information systems are subject to continuous and often subtle changes due to evolving operational,organizational,or regulatory factors.These changes,referred to as incremental concept drift,gradually alter the behavior or structure of processes,making their detection and localization a challenging task.Traditional process mining techniques frequently assume process stationarity and are limited in their ability to detect such drift,particularly from a control-flow perspective.The objective of this research is to develop an interpretable and robust framework capable of detecting and localizing incremental concept drift in event logs,with a specific emphasis on the structural evolution of control-flow semantics in processes.We propose DriftXMiner,a control-flow-aware hybrid framework that combines statistical,machine learning,and process model analysis techniques.The approach comprises three key components:(1)Cumulative Drift Scanner that tracks directional statistical deviations to detect early drift signals;(2)a Temporal Clustering and Drift-Aware Forest Ensemble(DAFE)to capture distributional and classification-level changes in process behavior;and(3)Petri net-based process model reconstruction,which enables the precise localization of structural drift using transition deviation metrics and replay fitness scores.Experimental validation on the BPI Challenge 2017 event log demonstrates that DriftXMiner effectively identifies and localizes gradual and incremental process drift over time.The framework achieves a detection accuracy of 92.5%,a localization precision of 90.3%,and an F1-score of 0.91,outperforming competitive baselines such as CUSUM+Histograms and ADWIN+Alpha Miner.Visual analyses further confirm that identified drift points align with transitions in control-flow models and behavioral cluster structures.DriftXMiner offers a novel and interpretable solution for incremental concept drift detection and localization in dynamic,process-aware systems.By integrating statistical signal accumulation,temporal behavior profiling,and structural process mining,the framework enables finegrained drift explanation and supports adaptive process intelligence in evolving environments.Its modular architecture supports extension to streaming data and real-time monitoring contexts.
文摘The aging process is an inexorable fact throughout our lives and is considered a major factor in develo ping neurological dysfunctions associated with cognitive,emotional,and motor impairments.Aging-associated neurodegenerative diseases are characterized by the progressive loss of neuronal structure and function.
基金supported by the following foundations:“Stichting Oogfonds Nederland(No.2023-26)”the“Landelijke Stichting voor Blinden en Slechtzienden(No.2023-24)”that contributed through UitZicht,ZonMw grant(No.435005020)a grant of the Chinese Scholarship Council(No.201809110169)(to TGMFG,CPMR,and WY).
文摘Unwarranted death of neurons is a major cause of neurodegenerative diseases.Since mature neurons are postmitotic and do not replicate,their death usually constitutes an irreversible step in pathology.A logical strategy to prevent neurodegeneration would then be to save all neurons that are still alive,i.e.protecting the ones that are still healthy as well as trying to rescue the ones that are damaged and in the process of dying.Regarding the latter,recent experiments have indicated that the possibility of reversing the cell death process and rescuing dying cells is more significant than previously anticipated.In many situations,the elimination of the cell death trigger alone enables dying cells to spontaneously repair their damage,recover,and survive.In this review,we explore the factors,which determine the fate of neurons engaged in the cell death process.A deeper insight into cell death mechanisms and the intrinsic capacity of cells to recover could pave the way for novel therapeutic approaches to neurodegenerative diseases.
文摘Since Google introduced the concept of Knowledge Graphs(KGs)in 2012,their construction technologies have evolved into a comprehensive methodological framework encompassing knowledge acquisition,extraction,representation,modeling,fusion,computation,and storage.Within this framework,knowledge extraction,as the core component,directly determines KG quality.In military domains,traditional manual curation models face efficiency constraints due to data fragmentation,complex knowledge architectures,and confidentiality protocols.Meanwhile,crowdsourced ontology construction approaches from general domains prove non-transferable,while human-crafted ontologies struggle with generalization deficiencies.To address these challenges,this study proposes an OntologyAware LLM Methodology for Military Domain Knowledge Extraction(LLM-KE).This approach leverages the deep semantic comprehension capabilities of Large Language Models(LLMs)to simulate human experts’cognitive processes in crowdsourced ontology construction,enabling automated extraction of military textual knowledge.It concurrently enhances knowledge processing efficiency and improves KG completeness.Empirical analysis demonstrates that this method effectively resolves scalability and dynamic adaptation challenges in military KG construction,establishing a novel technological pathway for advancing military intelligence development.
基金supported by the Japan Society for the Promotion of Science(JSPS)Grants-in-Aid for Scientific Research(C)23K03898.
文摘Traffic at urban intersections frequently encounters unexpected obstructions,resulting in congestion due to uncooperative and priority-based driving behavior.This paper presents an optimal right-turn coordination system for Connected and Automated Vehicles(CAVs)at single-lane intersections,particularly in the context of left-hand side driving on roads.The goal is to facilitate smooth right turns for certain vehicles without creating bottlenecks.We consider that all approaching vehicles share relevant information through vehicular communications.The Intersection Coordination Unit(ICU)processes this information and communicates the optimal crossing or turning times to the vehicles.The primary objective of this coordination is to minimize overall traffic delays,which also helps improve the fuel consumption of vehicles.By considering information from upcoming vehicles at the intersection,the coordination system solves an optimization problem to determine the best timing for executing right turns,ultimately minimizing the total delay for all vehicles.The proposed coordination system is evaluated at a typical urban intersection,and its performance is compared to traditional traffic systems.Numerical simulation results indicate that the proposed coordination system significantly enhances the average traffic speed and fuel consumption compared to the traditional traffic system in various scenarios.
基金supported by the project“Romanian Hub for Artificial Intelligence-HRIA”,Smart Growth,Digitization and Financial Instruments Program,2021–2027,MySMIS No.334906.
文摘Objective expertise evaluation of individuals,as a prerequisite stage for team formation,has been a long-term desideratum in large software development companies.With the rapid advancements in machine learning methods,based on reliable existing data stored in project management tools’datasets,automating this evaluation process becomes a natural step forward.In this context,our approach focuses on quantifying software developer expertise by using metadata from the task-tracking systems.For this,we mathematically formalize two categories of expertise:technology-specific expertise,which denotes the skills required for a particular technology,and general expertise,which encapsulates overall knowledge in the software industry.Afterward,we automatically classify the zones of expertise associated with each task a developer has worked on using Bidirectional Encoder Representations from Transformers(BERT)-like transformers to handle the unique characteristics of project tool datasets effectively.Finally,our method evaluates the proficiency of each software specialist across already completed projects from both technology-specific and general perspectives.The method was experimentally validated,yielding promising results.
基金supported by the National Natural Science Foundation of China(Grant No.42130312)。
文摘The complexity of the seismicity pattern for the subduction zone along the oceanic plate triggered the outer rise events and revealed cyclic tectonic deformation conditions along the plate subduction zones.The outer rise earthquakes have been observed along the Sunda arc,following the estimated rupture area of the 2005 M_(W)8.6 Nias earthquakes.Here,we used kinematic waveform inversion(KIWI)to obtain the source parameters of the 14 May 2021 M_(W)6.6 event off the west coast of northern Sumatra and to define the fault plane that triggered this outer rise event.The KIWI algorithm allows two types of seismic source to be configured:the moment tensor model to describe the type of shear with six moment tensor components and the Eikonal model for the rupture of pure double-couple sources.This method was chosen for its flexibility to be applied for different sources of seismicity and also for the automated full-moment tensor solution with real-time monitoring.We used full waveform traces from 8 broadband seismic stations within 1000 km epicentral distances sourced from the Incorporated Research Institutions for Seismology(IRIS-IDA)and Geofon GFZ seismic record databases.The initial origin time and hypocenter values are obtained from the IRIS-IDA.The synthetic seismograms used in the inversion process are based on the existing regional green function database model and were accessed from the KIWI Tools Green's Function Database.The obtained scalar seismic moment value is 1.18×10^(19)N·m,equivalent to a moment magnitude M_(W)6.6.The source parameters are 140°,44°,and−99°for the strike,dip,and rake values at a centroid depth of 10.2 km,indicating that this event is a normal fault earthquake that occurred in the outer rise area.The outer rise events with normal faults typically occur at the shallow part of the plate,with nodal-plane dips predominantly in the range of 30°-60°on the weak oceanic lithosphere due to hydrothermal alteration.The stress regime around the plate subduction zone varies both temporally and spatially due to the cyclic influences of megathrust earthquakes.Tensional outer rise earthquakes tend to occur after the megathrust events.The relative timing of these events is not known due to the viscous relaxation of the down going slab and poroelastic response in the trench slope region.The occurrence of the 14 May 2021 earthquake shows the seismicity in the outer rise region in the strongly coupled Sunda arc subduction zone due to elastic bending stress within the duration of the seismic cycle.
基金This study is financed by the European Union-NextGenerationEU,through the National Recovery and Resilience Plan of the Republic of Bulgaria,Project No.BG-RRP-2.013-0001.
文摘Covert timing channels(CTC)exploit network resources to establish hidden communication pathways,posing signi cant risks to data security and policy compliance.erefore,detecting such hidden and dangerous threats remains one of the security challenges. is paper proposes LinguTimeX,a new framework that combines natural language processing with arti cial intelligence,along with explainable Arti cial Intelligence(AI)not only to detect CTC but also to provide insights into the decision process.LinguTimeX performs multidimensional feature extraction by fusing linguistic attributes with temporal network patterns to identify covert channels precisely.LinguTimeX demonstrates strong e ectiveness in detecting CTC across multiple languages;namely English,Arabic,and Chinese.Speci cally,the LSTM and RNN models achieved F1 scores of 90%on the English dataset,89%on the Arabic dataset,and 88%on the Chinese dataset,showcasing their superior performance and ability to generalize across multiple languages. is highlights their robustness in detecting CTCs within security systems,regardless of the language or cultural context of the data.In contrast,the DeepForest model produced F1-scores ranging from 86%to 87%across the same datasets,further con rming its e ectiveness in CTC detection.Although other algorithms also showed reasonable accuracy,the LSTM and RNN models consistently outperformed them in multilingual settings,suggesting that deep learning models might be better suited for this particular problem.
基金supported by the Deanship of Scientific Research,Vice Presidency for Graduate Studies and Scientific Research,King Faisal University,Saudi Arabia,Grant No.KFU250098.
文摘In this study,an automated multimodal system for detecting,classifying,and dating fruit was developed using a two-stage YOLOv11 pipeline.In the first stage,the YOLOv11 detection model locates individual date fruits in real time by drawing bounding boxes around them.These bounding boxes are subsequently passed to a YOLOv11 classification model,which analyzes cropped images and assigns class labels.An additional counting module automatically tallies the detected fruits,offering a near-instantaneous estimation of quantity.The experimental results suggest high precision and recall for detection,high classification accuracy(across 15 classes),and near-perfect counting in real time.This paper presents a multi-stage pipeline for date fruit detection,classification,and automated counting,employing YOLOv11-based models to achieve high accuracy while maintaining real-time throughput.The results demonstrated that the detection precision exceeded 90%,the classification accuracy approached 92%,and the counting module correlated closely with the manual tallies.These findings confirm the potential of reducing manual labour and enhancing operational efficiency in post-harvesting processes.Future studies will include dataset expansion,user-centric interfaces,and integration with harvesting robotics.
基金supported by the Fundamental Research Funds for the Central Universities(WUT:2018IVA078)the Teaching Research Funds of Wuhan University of Technology(w2018130)
文摘This study conducts an acquisition-based evaluation of four primary-school English textbook series used in China. The evaluation aims to determine whether the sequencing of grammatical structures in the series is compatible with the L2 learning sequence stipulated in Processability Theory (PT). The results show a partial agreement between the sequencing of structures as teaching objectives in the series and the PT-based processability hierarchy. The sequencing of structures in the initial stages is consistent with the learning sequence of L2 English stated in PT. However, several structures in the intermediate or high stages are taught in a deviant way against their sequencing in PT. The deviant grading of those structures is possibly associated with the theme-based guidelines adopted in the textbooks. It appears that concerns with the utility of grammatical structures in a given context take precedence over concerns for L2 development. A number of suggestions are offered to textbook writers in terms of the role of input, the learners, developmental readiness, and the issue of heterogeneity in L2 classrooms.
文摘Neurodevelopmental processes represent a finely tuned interplay between genetic and environmental factors,shaping the dynamic landscape of the developing brain.A major component of the developing brain that enables this dynamic is the white matter(WM),known to be affected in neurodevelopmental disorders(NDDs)(Rokach et al.,2024).WM formation is mediated by myelination,a multifactorial process driven by neuro-glia interactions dependent on proper neuronal functionality(Simons and Trajkovic,2006).Another key aspect of neurodevelopmental abnormalities involves neuronal dynamics and function,with recent advances significantly enhancing our understanding of both neuronal and glial mitochondrial function(Devine and Kittler,2018;Rojas-Charry et al.,2021).Energy homeostasis in neurons,attributed largely to mitochondrial function,is critical for proper functionality and interactions with oligodendrocytes(OLs),the cells forming myelin in the brain’s WM.We herein discuss the interplay between these processes and speculate on potential dysfunction in NDDs.
文摘In the article titled“Inhibiting SHP2 reduces glycolysis,promotes microglial M1 polarization,and alleviates secondary inflammation following spinal cord injury in a mouse model,”published in Neural Regeneration Research(Ding et al.,2025),the title was incorrectly presented due to an error during the language polishing process.
基金funded by scientific research projects under Grant JY2024B011.
文摘With the increasing complexity of industrial automation,planetary gearboxes play a vital role in largescale equipment transmission systems,directly impacting operational efficiency and safety.Traditional maintenance strategies often struggle to accurately predict the degradation process of equipment,leading to excessive maintenance costs or potential failure risks.However,existing prediction methods based on statistical models are difficult to adapt to nonlinear degradation processes.To address these challenges,this study proposes a novel condition-based maintenance framework for planetary gearboxes.A comprehensive full-lifecycle degradation experiment was conducted to collect raw vibration signals,which were then processed using a temporal convolutional network autoencoder with multi-scale perception capability to extract deep temporal degradation features,enabling the collaborative extraction of longperiod meshing frequencies and short-term impact features from the vibration signals.Kernel principal component analysis was employed to fuse and normalize these features,enhancing the characterization of degradation progression.A nonlinear Wiener process was used to model the degradation trajectory,with a threshold decay function introduced to dynamically adjust maintenance strategies,and model parameters optimized through maximum likelihood estimation.Meanwhile,the maintenance strategy was optimized to minimize costs per unit time,determining the optimal maintenance timing and preventive maintenance threshold.The comprehensive indicator of degradation trends extracted by this method reaches 0.756,which is 41.2%higher than that of traditional time-domain features;the dynamic threshold strategy reduces the maintenance cost per unit time to 55.56,which is 8.9%better than that of the static threshold optimization.Experimental results demonstrate significant reductions in maintenance costs while enhancing system reliability and safety.This study realizes the organic integration of deep learning and reliability theory in the maintenance of planetary gearboxes,provides an interpretable solution for the predictive maintenance of complex mechanical systems,and promotes the development of condition-based maintenance strategies for planetary gearboxes.