Constraint satisfaction problems(CSPs)are a class of problems that are ubiquitous in science and engineering.They feature a collection of constraints specified over subsets of variables.A CSP can be solved either dire...Constraint satisfaction problems(CSPs)are a class of problems that are ubiquitous in science and engineering.They feature a collection of constraints specified over subsets of variables.A CSP can be solved either directly or by reducing it to other problems.This paper introduces the Julia ecosystem for solving and analyzing CSPs with a focus on the programming practices.We introduce some important CSPs and show how these problems are reduced to each other.We also show how to transform CSPs into tensor networks,how to optimize the tensor network contraction orders,and how to extract the solution space properties by contracting the tensor networks with generic element types.Examples are given,which include computing the entropy constant,analyzing the overlap gap property,and the reduction between CSPs.展开更多
In this paper,the physics informed neural network(PINN)deep learning method is applied to solve two-dimensional nonlocal equations,including the partial reverse space y-nonlocal Mel'nikov equation,the partial reve...In this paper,the physics informed neural network(PINN)deep learning method is applied to solve two-dimensional nonlocal equations,including the partial reverse space y-nonlocal Mel'nikov equation,the partial reverse space-time nonlocal Mel'nikov equation and the nonlocal twodimensional nonlinear Schr?dinger(NLS)equation.By the PINN method,we successfully derive a data-driven two soliton solution,lump solution and rogue wave solution.Numerical simulation results indicate that the error range between the data-driven solution and the exact solution is relatively small,which verifies the effectiveness of the PINN deep learning method for solving high dimensional nonlocal equations.Moreover,the parameter discovery of the partial reverse space-time nonlocal Mel'nikov equation is analysed in terms of its soliton solution for the first time.展开更多
The knapsack problem is a classical combinatorial optimization problem widely encountered in areas such as logistics,resource allocation,and portfolio optimization.Traditional methods,including dynamic program-ming(DP...The knapsack problem is a classical combinatorial optimization problem widely encountered in areas such as logistics,resource allocation,and portfolio optimization.Traditional methods,including dynamic program-ming(DP)and greedy algorithms,have been effective in solving small problem instances but often struggle with scalability and efficiency as the problem size increases.DP,for instance,has exponential time complexity and can become computationally prohibitive for large problem instances.On the other hand,greedy algorithms offer faster solutions but may not always yield the optimal results,especially when the problem involves complex constraints or large numbers of items.This paper introduces a novel reinforcement learning(RL)approach to solve the knapsack problem by enhancing the state representation within the learning environment.We propose a representation where item weights and volumes are expressed as ratios relative to the knapsack’s capacity,and item values are normalized to represent their percentage of the total value across all items.This novel state modification leads to a 5%improvement in accuracy compared to the state-of-the-art RL-based algorithms,while significantly reducing execution time.Our RL-based method outperforms DP by over 9000 times in terms of speed,making it highly scalable for larger problem instances.Furthermore,we improve the performance of the RL model by incorporating Noisy layers into the neural network architecture.The addition of Noisy layers enhances the exploration capabilities of the agent,resulting in an additional accuracy boost of 0.2%–0.5%.The results demonstrate that our approach not only outperforms existing RL techniques,such as the Transformer model in terms of accuracy,but also provides a substantial improvement than DP in computational efficiency.This combination of enhanced accuracy and speed presents a promising solution for tackling large-scale optimization problems in real-world applications,where both precision and time are critical factors.展开更多
Enforcing initial and boundary conditions(I/BCs)poses challenges in physics-informed neural networks(PINNs).Several PINN studies have gained significant achievements in developing techniques for imposing BCs in static...Enforcing initial and boundary conditions(I/BCs)poses challenges in physics-informed neural networks(PINNs).Several PINN studies have gained significant achievements in developing techniques for imposing BCs in static problems;however,the simultaneous enforcement of I/BCs in dynamic problems remains challenging.To overcome this limitation,a novel approach called decoupled physics-informed neural network(d PINN)is proposed in this work.The d PINN operates based on the core idea of converting a partial differential equation(PDE)to a system of ordinary differential equations(ODEs)via the space-time decoupled formulation.To this end,the latent solution is expressed in the form of a linear combination of approximation functions and coefficients,where approximation functions are admissible and coefficients are unknowns of time that must be solved.Subsequently,the system of ODEs is obtained by implementing the weighted-residual form of the original PDE over the spatial domain.A multi-network structure is used to parameterize the set of coefficient functions,and the loss function of d PINN is established based on minimizing the residuals of the gained ODEs.In this scheme,the decoupled formulation leads to the independent handling of I/BCs.Accordingly,the BCs are automatically satisfied based on suitable selections of admissible functions.Meanwhile,the original ICs are replaced by the Galerkin form of the ICs concerning unknown coefficients,and the neural network(NN)outputs are modified to satisfy the gained ICs.Several benchmark problems involving different types of PDEs and I/BCs are used to demonstrate the superior performance of d PINN compared with regular PINN in terms of solution accuracy and computational cost.展开更多
The Vehicle Routing Problem with Time Windows(VRPTW)presents a significant challenge in combinatorial optimization,especially under real-world uncertainties such as variable travel times,service durations,and dynamic ...The Vehicle Routing Problem with Time Windows(VRPTW)presents a significant challenge in combinatorial optimization,especially under real-world uncertainties such as variable travel times,service durations,and dynamic customer demands.These uncertainties make traditional deterministic models inadequate,often leading to suboptimal or infeasible solutions.To address these challenges,this work proposes an adaptive hybrid metaheuristic that integrates Genetic Algorithms(GA)with Local Search(LS),while incorporating stochastic uncertainty modeling through probabilistic travel times.The proposed algorithm dynamically adjusts parameters—such as mutation rate and local search probability—based on real-time search performance.This adaptivity enhances the algorithm’s ability to balance exploration and exploitation during the optimization process.Travel time uncertainties are modeled using Gaussian noise,and solution robustness is evaluated through scenario-based simulations.We test our method on a set of benchmark problems from Solomon’s instance suite,comparing its performance under deterministic and stochastic conditions.Results show that the proposed hybrid approach achieves up to a 9%reduction in expected total travel time and a 40% reduction in time window violations compared to baseline methods,including classical GA and non-adaptive hybrids.Additionally,the algorithm demonstrates strong robustness,with lower solution variance across uncertainty scenarios,and converges faster than competing approaches.These findings highlight the method’s suitability for practical logistics applications such as last-mile delivery and real-time transportation planning,where uncertainty and service-level constraints are critical.The flexibility and effectiveness of the proposed framework make it a promising candidate for deployment in dynamic,uncertainty-aware supply chain environments.展开更多
BACKGROUND The use of a problem-solving model guided by stimulus-organism-response(SOR)theory for women with postpartum depression after cesarean delivery may inform nursing interventions for women with postpartum dep...BACKGROUND The use of a problem-solving model guided by stimulus-organism-response(SOR)theory for women with postpartum depression after cesarean delivery may inform nursing interventions for women with postpartum depression.AIM To explore the state of mind and coping style of women with depression after cesarean delivery guided by SOR theory.METHODS Eighty postpartum depressed women with cesarean delivery admitted to the hospital between January 2022 and October 2023 were selected and divided into two groups of 40 cases each,according to the random number table method.In the control group,the observation group adopted the problem-solving nursing model under SOR theory.The two groups were consecutively intervened for 12 weeks,and the state of mind,coping styles,and degree of post-partum depression were analyzed at the end of the intervention.RESULTS The Edinburgh Postnatal Depression Scale and Hamilton Depression Scale-24-item scores of the observation group were lower than in the control group after care,and the level of improvement in the state of mind was higher than that of the control group(P<0.05).The level of coping with illness in the observation group after care(26.48±3.35)was higher than that in the control group(21.73±3.20),and the level of avoidance(12.04±2.68)and submission(8.14±1.15)was lower than that in the control group(15.75±2.69 and 9.95±1.20),with significant differences(P<0.05).CONCLUSION Adopting the problem-solving nursing model using SOR theory for postpartum depressed mothers after cesarean delivery reduced maternal depression,improved their state of mind,and coping level with illness.展开更多
A physics-informed neural network(PINN)is a powerful tool for solving differential equations in solid and fluid mechanics.However,it suffers from singularly perturbed boundary-layer problems in which there exist sharp...A physics-informed neural network(PINN)is a powerful tool for solving differential equations in solid and fluid mechanics.However,it suffers from singularly perturbed boundary-layer problems in which there exist sharp changes caused by a small perturbation parameter multiplying the highest-order derivatives.In this paper,we introduce Chien's composite expansion method into PINNs,and propose a novel architecture for the PINNs,namely,the Chien-PINN(C-PINN)method.This novel PINN method is validated by singularly perturbed differential equations,and successfully solves the wellknown thin plate bending problems.In particular,no cumbersome matching conditions are needed for the C-PINN method,compared with the previous studies based on matched asymptotic expansions.展开更多
Traveling salesman problem(TSP)is a classic non-deterministic polynomial-hard optimization prob-lem.Based on the characteristics of self-organizing mapping(SOM)network,this paper proposes an improved SOM network from ...Traveling salesman problem(TSP)is a classic non-deterministic polynomial-hard optimization prob-lem.Based on the characteristics of self-organizing mapping(SOM)network,this paper proposes an improved SOM network from the perspectives of network update strategy,initialization method,and parameter selection.This paper compares the performance of the proposed algorithms with the performance of existing SOM network algorithms on the TSP and compares them with several heuristic algorithms.Simulations show that compared with existing SOM networks,the improved SOM network proposed in this paper improves the convergence rate and algorithm accuracy.Compared with iterated local search and heuristic algorithms,the improved SOM net-work algorithms proposed in this paper have the advantage of fast calculation speed on medium-scale TSP.展开更多
Real-world engineering design problems with complex objective functions under some constraints are relatively difficult problems to solve.Such design problems are widely experienced in many engineering fields,such as ...Real-world engineering design problems with complex objective functions under some constraints are relatively difficult problems to solve.Such design problems are widely experienced in many engineering fields,such as industry,automotive,construction,machinery,and interdisciplinary research.However,there are established optimization techniques that have shown effectiveness in addressing these types of issues.This research paper gives a comparative study of the implementation of seventeen new metaheuristic methods in order to optimize twelve distinct engineering design issues.The algorithms used in the study are listed as:transient search optimization(TSO),equilibrium optimizer(EO),grey wolf optimizer(GWO),moth-flame optimization(MFO),whale optimization algorithm(WOA),slimemould algorithm(SMA),harris hawks optimization(HHO),chimp optimization algorithm(COA),coot optimization algorithm(COOT),multi-verse optimization(MVO),arithmetic optimization algorithm(AOA),aquila optimizer(AO),sine cosine algorithm(SCA),smell agent optimization(SAO),and seagull optimization algorithm(SOA),pelican optimization algorithm(POA),and coati optimization algorithm(CA).As far as we know,there is no comparative analysis of recent and popular methods against the concrete conditions of real-world engineering problems.Hence,a remarkable research guideline is presented in the study for researchersworking in the fields of engineering and artificial intelligence,especiallywhen applying the optimization methods that have emerged recently.Future research can rely on this work for a literature search on comparisons of metaheuristic optimization methods in real-world problems under similar conditions.展开更多
The presence of non-gray radiative properties in a reheating furnace’s medium that absorbs,emits,and involves non-gray creates more complex radiative heat transfer problems.Furthermore,it adds difficulty to solving t...The presence of non-gray radiative properties in a reheating furnace’s medium that absorbs,emits,and involves non-gray creates more complex radiative heat transfer problems.Furthermore,it adds difficulty to solving the coupled conduction,convection,and radiation problem,leading to suboptimal efficiency that fails to meet real-time control demands.To overcome this difficulty,comparable gray radiative properties of non-gray media are proposed and estimated by solving an inverse problem.However,the required iteration numbers by using a least-squares method are too many and resulted in a very low inverse efficiency.It is necessary to present an efficient method for the equivalence.The Levenberg-Marquardt algorithm is utilized to solve the inverse problem of coupled heat transfer,and the gray-equivalent radiative characteristics are successfully recovered.It is our intention that the issue of low inverse efficiency,which has been observed when the least-squares method is employed,will be resolved.To enhance the performance of the Levenberg-Marquardt algorithm,a modification is implemented for determining the damping factor.Detailed investigations are also conducted to evaluate its accuracy,stability of convergence,efficiency,and robustness of the algorithm.Subsequently,a comparison is made between the results achieved using each method.展开更多
This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solve...This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solved from a nonhomogeneous linear system obtained by reducing the number of eigen-equation one less,where one of the nonzero components of the eigenvector is normalized to the unit and moves the column containing that component to the right-hand side as a nonzero input vector.1D and 2D golden section search algorithms are employed to minimize the merit functions to locate real and complex eigenvalues.Simultaneously,the real and complex eigenvectors can be computed very accurately.A simpler approach to the nonlinear eigenvalue problems is proposed,which implements a normalization condition for the uniqueness of the eigenvector into the eigenequation directly.The real eigenvalues can be computed by the fictitious time integration method(FTIM),which saves computational costs compared to the one-dimensional golden section search algorithm(1D GSSA).The simpler method is also combined with the Newton iterationmethod,which is convergent very fast.All the proposed methods are easily programmed to compute the eigenvalue and eigenvector with high accuracy and efficiency.展开更多
To solve the Laplacian problems,we adopt a meshless method with the multiquadric radial basis function(MQRBF)as a basis whose center is distributed inside a circle with a fictitious radius.A maximal projection techniq...To solve the Laplacian problems,we adopt a meshless method with the multiquadric radial basis function(MQRBF)as a basis whose center is distributed inside a circle with a fictitious radius.A maximal projection technique is developed to identify the optimal shape factor and fictitious radius by minimizing a merit function.A sample function is interpolated by theMQ-RBF to provide a trial coefficient vector to compute the merit function.We can quickly determine the optimal values of the parameters within a preferred rage using the golden section search algorithm.The novel method provides the optimal values of parameters and,hence,an optimal MQ-RBF;the performance of the method is validated in numerical examples.Moreover,nonharmonic problems are transformed to the Poisson equation endowed with a homogeneous boundary condition;this can overcome the problem of these problems being ill-posed.The optimal MQ-RBF is extremely accurate.We further propose a novel optimal polynomial method to solve the nonharmonic problems,which achieves high precision up to an order of 10^(−11).展开更多
In this paper,a two-step iteration method is established which can be viewed as a generalization of the existing modulus-based methods for vertical linear complementarity problems given by He and Vong(Appl.Math.Lett.1...In this paper,a two-step iteration method is established which can be viewed as a generalization of the existing modulus-based methods for vertical linear complementarity problems given by He and Vong(Appl.Math.Lett.134:108344,2022).The convergence analysis of the proposed method is established,which can improve the existing results.Numerical examples show that the proposed method is efficient with the two-step technique.展开更多
In practical engineering,multi-objective optimization often encounters situations where multiple Pareto sets(PS)in the decision space correspond to the same Pareto front(PF)in the objective space,known as Multi-Modal ...In practical engineering,multi-objective optimization often encounters situations where multiple Pareto sets(PS)in the decision space correspond to the same Pareto front(PF)in the objective space,known as Multi-Modal Multi-Objective Optimization Problems(MMOP).Locating multiple equivalent global PSs poses a significant challenge in real-world applications,especially considering the existence of local PSs.Effectively identifying and locating both global and local PSs is a major challenge.To tackle this issue,we introduce an immune-inspired reproduction strategy designed to produce more offspring in less crowded,promising regions and regulate the number of offspring in areas that have been thoroughly explored.This approach achieves a balanced trade-off between exploration and exploitation.Furthermore,we present an interval allocation strategy that adaptively assigns fitness levels to each antibody.This strategy ensures a broader survival margin for solutions in their initial stages and progressively amplifies the differences in individual fitness values as the population matures,thus fostering better population convergence.Additionally,we incorporate a multi-population mechanism that precisely manages each subpopulation through the interval allocation strategy,ensuring the preservation of both global and local PSs.Experimental results on 21 test problems,encompassing both global and local PSs,are compared with eight state-of-the-art multimodal multi-objective optimization algorithms.The results demonstrate the effectiveness of our proposed algorithm in simultaneously identifying global Pareto sets and locally high-quality PSs.展开更多
Transient heat conduction problems widely exist in engineering.In previous work on the peridynamic differential operator(PDDO)method for solving such problems,both time and spatial derivatives were discretized using t...Transient heat conduction problems widely exist in engineering.In previous work on the peridynamic differential operator(PDDO)method for solving such problems,both time and spatial derivatives were discretized using the PDDO method,resulting in increased complexity and programming difficulty.In this work,the forward difference formula,the backward difference formula,and the centered difference formula are used to discretize the time derivative,while the PDDO method is used to discretize the spatial derivative.Three new schemes for solving transient heat conduction equations have been developed,namely,the forward-in-time and PDDO in space(FT-PDDO)scheme,the backward-in-time and PDDO in space(BT-PDDO)scheme,and the central-in-time and PDDO in space(CT-PDDO)scheme.The stability and convergence of these schemes are analyzed using the Fourier method and Taylor’s theorem.Results show that the FT-PDDO scheme is conditionally stable,whereas the BT-PDDO and CT-PDDO schemes are unconditionally stable.The stability conditions for the FT-PDDO scheme are less stringent than those of the explicit finite element method and explicit finite difference method.The convergence rate in space for these three methods is two.These constructed schemes are applied to solve one-dimensional and two-dimensional transient heat conduction problems.The accuracy and validity of the schemes are verified by comparison with analytical solutions.展开更多
The boundary element method(BEM)is a popular method for solving acoustic wave propagation problems,especially those in exterior domains,owing to its ease in handling radiation conditions at infinity.However,BEM models...The boundary element method(BEM)is a popular method for solving acoustic wave propagation problems,especially those in exterior domains,owing to its ease in handling radiation conditions at infinity.However,BEM models must meet the requirement of 6–10 elements per wavelength,using the conventional constant,linear,or quadratic elements.Therefore,a large storage size of memory and long solution time are often needed in solving higher-frequency problems.In this work,we propose two new types of enriched elements based on conventional constant boundary elements to improve the computational efficiency of the 2D acoustic BEM.The first one uses a plane wave expansion,which can be used to model scattering problems.The second one uses a special plane wave expansion,which can be used tomodel radiation problems.Five examples are investigated to showthe advantages of the enriched elements.Compared with the conventional constant elements,the new enriched elements can deliver results with the same accuracy and in less computational time.This improvement in the computational efficiency is more evident at higher frequencies(with the nondimensional wave numbers exceeding 100).The paper concludes with the potential of our proposed enriched elements and plans for their further improvement.展开更多
In this paper, we design high-order Runge-Kutta discontinuous Galerkin (RKDG) methods with multi-resolution weighted essentially non-oscillatory (multi-resolution WENO) limiters to compute compressible steady-state pr...In this paper, we design high-order Runge-Kutta discontinuous Galerkin (RKDG) methods with multi-resolution weighted essentially non-oscillatory (multi-resolution WENO) limiters to compute compressible steady-state problems on triangular meshes. A troubled cell indicator extended from structured meshes to unstructured meshes is constructed to identify triangular cells in which the application of the limiting procedures is required. In such troubled cells, the multi-resolution WENO limiting methods are used to the hierarchical L^(2) projection polynomial sequence of the DG solution. Through using the RKDG methods with multi-resolution WENO limiters, the optimal high-order accuracy can be gradually reduced to first-order in the triangular troubled cells, so that the shock wave oscillations can be well suppressed. In steady-state simulations on triangular meshes, the numerical residual converges to near machine zero. The proposed spatial reconstruction methods enhance the robustness of classical DG methods on triangular meshes. The good results of these RKDG methods with multi-resolution WENO limiters are verified by a series of two-dimensional steady-state problems.展开更多
The generalized travelling salesman problem(GTSP),a generalization of the well-known travelling salesman problem(TSP),is considered for our study.Since the GTSP is NP-hard and very complex,finding exact solutions is h...The generalized travelling salesman problem(GTSP),a generalization of the well-known travelling salesman problem(TSP),is considered for our study.Since the GTSP is NP-hard and very complex,finding exact solutions is highly expensive,we will develop genetic algorithms(GAs)to obtain heuristic solutions to the problem.In GAs,as the crossover is a very important process,the crossovermethods proposed for the traditional TSP could be adapted for the GTSP.The sequential constructive crossover(SCX)and three other operators are adapted to use in GAs to solve the GTSP.The effectiveness of GA using SCX is verified on some GTSP Library(GTSPLIB)instances first and then compared against GAs using the other crossover methods.The computational results show the success of the GA using SCX for this problem.Our proposed GA using SCX,and swap mutation could find average solutions whose average percentage of excesses fromthe best-known solutions is between 0.00 and 14.07 for our investigated instances.展开更多
The Unit Commitment Problem(UCP)corresponds to the planning of power generation schedules.The objective of the fuel-based unit commitment problem is to determine the optimal schedule of power generators needed to meet...The Unit Commitment Problem(UCP)corresponds to the planning of power generation schedules.The objective of the fuel-based unit commitment problem is to determine the optimal schedule of power generators needed to meet the power demand,which also minimizes the total operating cost while adhering to different constraints such as power generation limits,unit startup,and shutdown times.In this paper,four different binary variants of the Bald Eagle Search(BES)algorithm,were introduced,which used two variants using S-shape,U-shape,and V-shape transfer functions.In addition,the best-performing variant(using an S-shape transfer function)was selected and improved further by incorporating two binary operators:swap-window and window-mutation.This variation is labeled Improved Binary Bald Eagle Search(IBBESS2).All five variants of the proposed algorithm were successfully adopted to solve the fuel-based unit commitment problem using seven test cases of 4-,10-,20-,40-,60-,80-,and 100-unit.For comparative evaluation,34 comparative methods from existing literature were compared,in which IBBESS2 achieved competitive scores against other optimization techniques.In other words,the proposed IBBESS2 performs better than all other competitors by achieving the best average scores in 20-,40-,60-,80-,and 100-unit problems.Furthermore,IBBESS2 demonstrated quicker convergence to an optimal solution than other algorithms,especially in large-scale unit commitment problems.The Friedman statistical test further validates the results,where the proposed IBBESS2 is ranked the best.In conclusion,the proposed IBBESS2 can be considered a powerful method for solving large-scale UCP and other related problems.展开更多
Algorithms are the primary component of Artificial Intelligence(AI).The algorithm is the process in AI that imitates the human mind to solve problems.Currently evaluating the performance of AI is achieved by evaluatin...Algorithms are the primary component of Artificial Intelligence(AI).The algorithm is the process in AI that imitates the human mind to solve problems.Currently evaluating the performance of AI is achieved by evaluating AI algorithms by metric scores on data sets.However the evaluation of algorithms in AI is challenging because the evaluation of the same type of algorithm has many data sets and evaluation metrics.Different algorithms may have individual strengths and weaknesses in evaluation metric scores on separate data sets,lacking the credibility and validity of the evaluation.Moreover,evaluation of algorithms requires repeated experiments on different data sets,reducing the attention of researchers to the research of the algorithms itself.Crucially,this approach to evaluating comparative metric scores does not take into account the algorithm’s ability to solve problems.And the classical algorithm evaluation of time and space complexity is not suitable for evaluating AI algorithms.Because classical algorithms input is infinite numbers,whereas AI algorithms input is a data set,which is limited and multifarious.According to the AI algorithm evaluation without response to the problem solving capability,this paper summarizes the features of AI algorithm evaluation and proposes an AI evaluation method that incorporates the problem-solving capabilities of algorithms.展开更多
基金funded by the National Key R&D Program of China(Grant No.2024YFE0102500)the National Natural Science Foundation of China(Grant No.12404568)+1 种基金the Guangzhou Municipal Science and Technology Project(Grant No.2023A03J00904)the Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area,China and the Undergraduate Research Project from HKUST(Guangzhou).
文摘Constraint satisfaction problems(CSPs)are a class of problems that are ubiquitous in science and engineering.They feature a collection of constraints specified over subsets of variables.A CSP can be solved either directly or by reducing it to other problems.This paper introduces the Julia ecosystem for solving and analyzing CSPs with a focus on the programming practices.We introduce some important CSPs and show how these problems are reduced to each other.We also show how to transform CSPs into tensor networks,how to optimize the tensor network contraction orders,and how to extract the solution space properties by contracting the tensor networks with generic element types.Examples are given,which include computing the entropy constant,analyzing the overlap gap property,and the reduction between CSPs.
文摘In this paper,the physics informed neural network(PINN)deep learning method is applied to solve two-dimensional nonlocal equations,including the partial reverse space y-nonlocal Mel'nikov equation,the partial reverse space-time nonlocal Mel'nikov equation and the nonlocal twodimensional nonlinear Schr?dinger(NLS)equation.By the PINN method,we successfully derive a data-driven two soliton solution,lump solution and rogue wave solution.Numerical simulation results indicate that the error range between the data-driven solution and the exact solution is relatively small,which verifies the effectiveness of the PINN deep learning method for solving high dimensional nonlocal equations.Moreover,the parameter discovery of the partial reverse space-time nonlocal Mel'nikov equation is analysed in terms of its soliton solution for the first time.
基金supported in part by the Research Start-Up Funds of South-Central Minzu University under Grants YZZ23002,YZY23001,and YZZ18006in part by the Hubei Provincial Natural Science Foundation of China under Grants 2024AFB842 and 2023AFB202+3 种基金in part by the Knowledge Innovation Program of Wuhan Basic Research underGrant 2023010201010151in part by the Spring Sunshine Program of Ministry of Education of the People’s Republic of China under Grant HZKY20220331in part by the Funds for Academic Innovation Teams and Research Platformof South-CentralMinzu University Grant Number:XT224003,PTZ24001in part by the Career Development Fund(CDF)of the Agency for Science,Technology and Research(A*STAR)(Grant Number:C233312007).
文摘The knapsack problem is a classical combinatorial optimization problem widely encountered in areas such as logistics,resource allocation,and portfolio optimization.Traditional methods,including dynamic program-ming(DP)and greedy algorithms,have been effective in solving small problem instances but often struggle with scalability and efficiency as the problem size increases.DP,for instance,has exponential time complexity and can become computationally prohibitive for large problem instances.On the other hand,greedy algorithms offer faster solutions but may not always yield the optimal results,especially when the problem involves complex constraints or large numbers of items.This paper introduces a novel reinforcement learning(RL)approach to solve the knapsack problem by enhancing the state representation within the learning environment.We propose a representation where item weights and volumes are expressed as ratios relative to the knapsack’s capacity,and item values are normalized to represent their percentage of the total value across all items.This novel state modification leads to a 5%improvement in accuracy compared to the state-of-the-art RL-based algorithms,while significantly reducing execution time.Our RL-based method outperforms DP by over 9000 times in terms of speed,making it highly scalable for larger problem instances.Furthermore,we improve the performance of the RL model by incorporating Noisy layers into the neural network architecture.The addition of Noisy layers enhances the exploration capabilities of the agent,resulting in an additional accuracy boost of 0.2%–0.5%.The results demonstrate that our approach not only outperforms existing RL techniques,such as the Transformer model in terms of accuracy,but also provides a substantial improvement than DP in computational efficiency.This combination of enhanced accuracy and speed presents a promising solution for tackling large-scale optimization problems in real-world applications,where both precision and time are critical factors.
基金Project supported by the Basic Science Research Program through the National Research Foundation(NRF)of Korea funded by the Ministry of Science and ICT(No.RS-2024-00337001)。
文摘Enforcing initial and boundary conditions(I/BCs)poses challenges in physics-informed neural networks(PINNs).Several PINN studies have gained significant achievements in developing techniques for imposing BCs in static problems;however,the simultaneous enforcement of I/BCs in dynamic problems remains challenging.To overcome this limitation,a novel approach called decoupled physics-informed neural network(d PINN)is proposed in this work.The d PINN operates based on the core idea of converting a partial differential equation(PDE)to a system of ordinary differential equations(ODEs)via the space-time decoupled formulation.To this end,the latent solution is expressed in the form of a linear combination of approximation functions and coefficients,where approximation functions are admissible and coefficients are unknowns of time that must be solved.Subsequently,the system of ODEs is obtained by implementing the weighted-residual form of the original PDE over the spatial domain.A multi-network structure is used to parameterize the set of coefficient functions,and the loss function of d PINN is established based on minimizing the residuals of the gained ODEs.In this scheme,the decoupled formulation leads to the independent handling of I/BCs.Accordingly,the BCs are automatically satisfied based on suitable selections of admissible functions.Meanwhile,the original ICs are replaced by the Galerkin form of the ICs concerning unknown coefficients,and the neural network(NN)outputs are modified to satisfy the gained ICs.Several benchmark problems involving different types of PDEs and I/BCs are used to demonstrate the superior performance of d PINN compared with regular PINN in terms of solution accuracy and computational cost.
文摘The Vehicle Routing Problem with Time Windows(VRPTW)presents a significant challenge in combinatorial optimization,especially under real-world uncertainties such as variable travel times,service durations,and dynamic customer demands.These uncertainties make traditional deterministic models inadequate,often leading to suboptimal or infeasible solutions.To address these challenges,this work proposes an adaptive hybrid metaheuristic that integrates Genetic Algorithms(GA)with Local Search(LS),while incorporating stochastic uncertainty modeling through probabilistic travel times.The proposed algorithm dynamically adjusts parameters—such as mutation rate and local search probability—based on real-time search performance.This adaptivity enhances the algorithm’s ability to balance exploration and exploitation during the optimization process.Travel time uncertainties are modeled using Gaussian noise,and solution robustness is evaluated through scenario-based simulations.We test our method on a set of benchmark problems from Solomon’s instance suite,comparing its performance under deterministic and stochastic conditions.Results show that the proposed hybrid approach achieves up to a 9%reduction in expected total travel time and a 40% reduction in time window violations compared to baseline methods,including classical GA and non-adaptive hybrids.Additionally,the algorithm demonstrates strong robustness,with lower solution variance across uncertainty scenarios,and converges faster than competing approaches.These findings highlight the method’s suitability for practical logistics applications such as last-mile delivery and real-time transportation planning,where uncertainty and service-level constraints are critical.The flexibility and effectiveness of the proposed framework make it a promising candidate for deployment in dynamic,uncertainty-aware supply chain environments.
文摘BACKGROUND The use of a problem-solving model guided by stimulus-organism-response(SOR)theory for women with postpartum depression after cesarean delivery may inform nursing interventions for women with postpartum depression.AIM To explore the state of mind and coping style of women with depression after cesarean delivery guided by SOR theory.METHODS Eighty postpartum depressed women with cesarean delivery admitted to the hospital between January 2022 and October 2023 were selected and divided into two groups of 40 cases each,according to the random number table method.In the control group,the observation group adopted the problem-solving nursing model under SOR theory.The two groups were consecutively intervened for 12 weeks,and the state of mind,coping styles,and degree of post-partum depression were analyzed at the end of the intervention.RESULTS The Edinburgh Postnatal Depression Scale and Hamilton Depression Scale-24-item scores of the observation group were lower than in the control group after care,and the level of improvement in the state of mind was higher than that of the control group(P<0.05).The level of coping with illness in the observation group after care(26.48±3.35)was higher than that in the control group(21.73±3.20),and the level of avoidance(12.04±2.68)and submission(8.14±1.15)was lower than that in the control group(15.75±2.69 and 9.95±1.20),with significant differences(P<0.05).CONCLUSION Adopting the problem-solving nursing model using SOR theory for postpartum depressed mothers after cesarean delivery reduced maternal depression,improved their state of mind,and coping level with illness.
基金Project supported by the National Natural Science Foundation of China Basic Science Center Program for“Multiscale Problems in Nonlinear Mechanics”(No.11988102)the National Natural Science Foundation of China(No.12202451)。
文摘A physics-informed neural network(PINN)is a powerful tool for solving differential equations in solid and fluid mechanics.However,it suffers from singularly perturbed boundary-layer problems in which there exist sharp changes caused by a small perturbation parameter multiplying the highest-order derivatives.In this paper,we introduce Chien's composite expansion method into PINNs,and propose a novel architecture for the PINNs,namely,the Chien-PINN(C-PINN)method.This novel PINN method is validated by singularly perturbed differential equations,and successfully solves the wellknown thin plate bending problems.In particular,no cumbersome matching conditions are needed for the C-PINN method,compared with the previous studies based on matched asymptotic expansions.
基金the National Natural Science Foundation of China (No.61627810)the National Science and Technology Major Program of China (No.2018YFB1305003)the National Defense Science and Technology Outstanding Youth Science Foundation (No.2017-JCJQ-ZQ-031)。
文摘Traveling salesman problem(TSP)is a classic non-deterministic polynomial-hard optimization prob-lem.Based on the characteristics of self-organizing mapping(SOM)network,this paper proposes an improved SOM network from the perspectives of network update strategy,initialization method,and parameter selection.This paper compares the performance of the proposed algorithms with the performance of existing SOM network algorithms on the TSP and compares them with several heuristic algorithms.Simulations show that compared with existing SOM networks,the improved SOM network proposed in this paper improves the convergence rate and algorithm accuracy.Compared with iterated local search and heuristic algorithms,the improved SOM net-work algorithms proposed in this paper have the advantage of fast calculation speed on medium-scale TSP.
文摘Real-world engineering design problems with complex objective functions under some constraints are relatively difficult problems to solve.Such design problems are widely experienced in many engineering fields,such as industry,automotive,construction,machinery,and interdisciplinary research.However,there are established optimization techniques that have shown effectiveness in addressing these types of issues.This research paper gives a comparative study of the implementation of seventeen new metaheuristic methods in order to optimize twelve distinct engineering design issues.The algorithms used in the study are listed as:transient search optimization(TSO),equilibrium optimizer(EO),grey wolf optimizer(GWO),moth-flame optimization(MFO),whale optimization algorithm(WOA),slimemould algorithm(SMA),harris hawks optimization(HHO),chimp optimization algorithm(COA),coot optimization algorithm(COOT),multi-verse optimization(MVO),arithmetic optimization algorithm(AOA),aquila optimizer(AO),sine cosine algorithm(SCA),smell agent optimization(SAO),and seagull optimization algorithm(SOA),pelican optimization algorithm(POA),and coati optimization algorithm(CA).As far as we know,there is no comparative analysis of recent and popular methods against the concrete conditions of real-world engineering problems.Hence,a remarkable research guideline is presented in the study for researchersworking in the fields of engineering and artificial intelligence,especiallywhen applying the optimization methods that have emerged recently.Future research can rely on this work for a literature search on comparisons of metaheuristic optimization methods in real-world problems under similar conditions.
基金supported by the Na⁃tional Natural Science Foundation of China(No.12172078)the Fundamental Research Funds for the Central Univer⁃sities(No.DUT24MS007).
文摘The presence of non-gray radiative properties in a reheating furnace’s medium that absorbs,emits,and involves non-gray creates more complex radiative heat transfer problems.Furthermore,it adds difficulty to solving the coupled conduction,convection,and radiation problem,leading to suboptimal efficiency that fails to meet real-time control demands.To overcome this difficulty,comparable gray radiative properties of non-gray media are proposed and estimated by solving an inverse problem.However,the required iteration numbers by using a least-squares method are too many and resulted in a very low inverse efficiency.It is necessary to present an efficient method for the equivalence.The Levenberg-Marquardt algorithm is utilized to solve the inverse problem of coupled heat transfer,and the gray-equivalent radiative characteristics are successfully recovered.It is our intention that the issue of low inverse efficiency,which has been observed when the least-squares method is employed,will be resolved.To enhance the performance of the Levenberg-Marquardt algorithm,a modification is implemented for determining the damping factor.Detailed investigations are also conducted to evaluate its accuracy,stability of convergence,efficiency,and robustness of the algorithm.Subsequently,a comparison is made between the results achieved using each method.
基金the National Science and Tech-nology Council,Taiwan for their financial support(Grant Number NSTC 111-2221-E-019-048).
文摘This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solved from a nonhomogeneous linear system obtained by reducing the number of eigen-equation one less,where one of the nonzero components of the eigenvector is normalized to the unit and moves the column containing that component to the right-hand side as a nonzero input vector.1D and 2D golden section search algorithms are employed to minimize the merit functions to locate real and complex eigenvalues.Simultaneously,the real and complex eigenvectors can be computed very accurately.A simpler approach to the nonlinear eigenvalue problems is proposed,which implements a normalization condition for the uniqueness of the eigenvector into the eigenequation directly.The real eigenvalues can be computed by the fictitious time integration method(FTIM),which saves computational costs compared to the one-dimensional golden section search algorithm(1D GSSA).The simpler method is also combined with the Newton iterationmethod,which is convergent very fast.All the proposed methods are easily programmed to compute the eigenvalue and eigenvector with high accuracy and efficiency.
基金supported by the the National Science and Technology Council(Grant Number:NSTC 112-2221-E239-022).
文摘To solve the Laplacian problems,we adopt a meshless method with the multiquadric radial basis function(MQRBF)as a basis whose center is distributed inside a circle with a fictitious radius.A maximal projection technique is developed to identify the optimal shape factor and fictitious radius by minimizing a merit function.A sample function is interpolated by theMQ-RBF to provide a trial coefficient vector to compute the merit function.We can quickly determine the optimal values of the parameters within a preferred rage using the golden section search algorithm.The novel method provides the optimal values of parameters and,hence,an optimal MQ-RBF;the performance of the method is validated in numerical examples.Moreover,nonharmonic problems are transformed to the Poisson equation endowed with a homogeneous boundary condition;this can overcome the problem of these problems being ill-posed.The optimal MQ-RBF is extremely accurate.We further propose a novel optimal polynomial method to solve the nonharmonic problems,which achieves high precision up to an order of 10^(−11).
基金supported by the Scientific Computing Research Innovation Team of Guangdong Province(no.2021KCXTD052)the Science and Technology Development Fund,Macao SAR(no.0096/2022/A,0151/2022/A)+3 种基金University of Macao(no.MYRG2020-00035-FST,MYRG2022-00076-FST)the Guangdong Key Construction Discipline Research Capacity Enhancement Project(no.2022ZDJS049)Technology Planning Project of Shaoguan(no.210716094530390)the ScienceFoundation of Shaoguan University(no.SZ2020KJ01).
文摘In this paper,a two-step iteration method is established which can be viewed as a generalization of the existing modulus-based methods for vertical linear complementarity problems given by He and Vong(Appl.Math.Lett.134:108344,2022).The convergence analysis of the proposed method is established,which can improve the existing results.Numerical examples show that the proposed method is efficient with the two-step technique.
基金supported in part by the Science and Technology Project of Yunnan Tobacco Industrial Company under Grant JB2022YL02in part by the Natural Science Foundation of Henan Province of China under Grant 242300421413in part by the Henan Province Science and Technology Research Projects under Grants 242102110334 and 242102110375.
文摘In practical engineering,multi-objective optimization often encounters situations where multiple Pareto sets(PS)in the decision space correspond to the same Pareto front(PF)in the objective space,known as Multi-Modal Multi-Objective Optimization Problems(MMOP).Locating multiple equivalent global PSs poses a significant challenge in real-world applications,especially considering the existence of local PSs.Effectively identifying and locating both global and local PSs is a major challenge.To tackle this issue,we introduce an immune-inspired reproduction strategy designed to produce more offspring in less crowded,promising regions and regulate the number of offspring in areas that have been thoroughly explored.This approach achieves a balanced trade-off between exploration and exploitation.Furthermore,we present an interval allocation strategy that adaptively assigns fitness levels to each antibody.This strategy ensures a broader survival margin for solutions in their initial stages and progressively amplifies the differences in individual fitness values as the population matures,thus fostering better population convergence.Additionally,we incorporate a multi-population mechanism that precisely manages each subpopulation through the interval allocation strategy,ensuring the preservation of both global and local PSs.Experimental results on 21 test problems,encompassing both global and local PSs,are compared with eight state-of-the-art multimodal multi-objective optimization algorithms.The results demonstrate the effectiveness of our proposed algorithm in simultaneously identifying global Pareto sets and locally high-quality PSs.
基金This work was financially supported by the Key Science and Technology Project of Longmen Laboratory(No.LMYLKT-001)Innovation and Entrepreneurship Training Program for College Students of Henan Province(No.202310464050)。
文摘Transient heat conduction problems widely exist in engineering.In previous work on the peridynamic differential operator(PDDO)method for solving such problems,both time and spatial derivatives were discretized using the PDDO method,resulting in increased complexity and programming difficulty.In this work,the forward difference formula,the backward difference formula,and the centered difference formula are used to discretize the time derivative,while the PDDO method is used to discretize the spatial derivative.Three new schemes for solving transient heat conduction equations have been developed,namely,the forward-in-time and PDDO in space(FT-PDDO)scheme,the backward-in-time and PDDO in space(BT-PDDO)scheme,and the central-in-time and PDDO in space(CT-PDDO)scheme.The stability and convergence of these schemes are analyzed using the Fourier method and Taylor’s theorem.Results show that the FT-PDDO scheme is conditionally stable,whereas the BT-PDDO and CT-PDDO schemes are unconditionally stable.The stability conditions for the FT-PDDO scheme are less stringent than those of the explicit finite element method and explicit finite difference method.The convergence rate in space for these three methods is two.These constructed schemes are applied to solve one-dimensional and two-dimensional transient heat conduction problems.The accuracy and validity of the schemes are verified by comparison with analytical solutions.
基金the National Natural Science Foundation of China(https://www.nsfc.gov.cn/,Project No.11972179)the Natural Science Foundation of Guangdong Province(http://gdstc.gd.gov.cn/,No.2020A1515010685)the Department of Education of Guangdong Province(http://edu.gd.gov.cn/,No.2020ZDZX2008).
文摘The boundary element method(BEM)is a popular method for solving acoustic wave propagation problems,especially those in exterior domains,owing to its ease in handling radiation conditions at infinity.However,BEM models must meet the requirement of 6–10 elements per wavelength,using the conventional constant,linear,or quadratic elements.Therefore,a large storage size of memory and long solution time are often needed in solving higher-frequency problems.In this work,we propose two new types of enriched elements based on conventional constant boundary elements to improve the computational efficiency of the 2D acoustic BEM.The first one uses a plane wave expansion,which can be used to model scattering problems.The second one uses a special plane wave expansion,which can be used tomodel radiation problems.Five examples are investigated to showthe advantages of the enriched elements.Compared with the conventional constant elements,the new enriched elements can deliver results with the same accuracy and in less computational time.This improvement in the computational efficiency is more evident at higher frequencies(with the nondimensional wave numbers exceeding 100).The paper concludes with the potential of our proposed enriched elements and plans for their further improvement.
基金supported by the NSFC Grant No.11872210 and Grant No.MCMS-I-0120G01Chi-Wang Shu:Research is supported by the AFOSR Grant FA9550-20-1-0055 and the NSF Grant DMS-2010107Jianxian Qiu:Research is supported by the NSFC Grant No.12071392.
文摘In this paper, we design high-order Runge-Kutta discontinuous Galerkin (RKDG) methods with multi-resolution weighted essentially non-oscillatory (multi-resolution WENO) limiters to compute compressible steady-state problems on triangular meshes. A troubled cell indicator extended from structured meshes to unstructured meshes is constructed to identify triangular cells in which the application of the limiting procedures is required. In such troubled cells, the multi-resolution WENO limiting methods are used to the hierarchical L^(2) projection polynomial sequence of the DG solution. Through using the RKDG methods with multi-resolution WENO limiters, the optimal high-order accuracy can be gradually reduced to first-order in the triangular troubled cells, so that the shock wave oscillations can be well suppressed. In steady-state simulations on triangular meshes, the numerical residual converges to near machine zero. The proposed spatial reconstruction methods enhance the robustness of classical DG methods on triangular meshes. The good results of these RKDG methods with multi-resolution WENO limiters are verified by a series of two-dimensional steady-state problems.
基金the Deanship of Scientific Research,Imam Mohammad Ibn Saud Islamic University(IMSIU),Saudi Arabia,for funding this research work through Grant No.(221412020).
文摘The generalized travelling salesman problem(GTSP),a generalization of the well-known travelling salesman problem(TSP),is considered for our study.Since the GTSP is NP-hard and very complex,finding exact solutions is highly expensive,we will develop genetic algorithms(GAs)to obtain heuristic solutions to the problem.In GAs,as the crossover is a very important process,the crossovermethods proposed for the traditional TSP could be adapted for the GTSP.The sequential constructive crossover(SCX)and three other operators are adapted to use in GAs to solve the GTSP.The effectiveness of GA using SCX is verified on some GTSP Library(GTSPLIB)instances first and then compared against GAs using the other crossover methods.The computational results show the success of the GA using SCX for this problem.Our proposed GA using SCX,and swap mutation could find average solutions whose average percentage of excesses fromthe best-known solutions is between 0.00 and 14.07 for our investigated instances.
文摘The Unit Commitment Problem(UCP)corresponds to the planning of power generation schedules.The objective of the fuel-based unit commitment problem is to determine the optimal schedule of power generators needed to meet the power demand,which also minimizes the total operating cost while adhering to different constraints such as power generation limits,unit startup,and shutdown times.In this paper,four different binary variants of the Bald Eagle Search(BES)algorithm,were introduced,which used two variants using S-shape,U-shape,and V-shape transfer functions.In addition,the best-performing variant(using an S-shape transfer function)was selected and improved further by incorporating two binary operators:swap-window and window-mutation.This variation is labeled Improved Binary Bald Eagle Search(IBBESS2).All five variants of the proposed algorithm were successfully adopted to solve the fuel-based unit commitment problem using seven test cases of 4-,10-,20-,40-,60-,80-,and 100-unit.For comparative evaluation,34 comparative methods from existing literature were compared,in which IBBESS2 achieved competitive scores against other optimization techniques.In other words,the proposed IBBESS2 performs better than all other competitors by achieving the best average scores in 20-,40-,60-,80-,and 100-unit problems.Furthermore,IBBESS2 demonstrated quicker convergence to an optimal solution than other algorithms,especially in large-scale unit commitment problems.The Friedman statistical test further validates the results,where the proposed IBBESS2 is ranked the best.In conclusion,the proposed IBBESS2 can be considered a powerful method for solving large-scale UCP and other related problems.
基金funded by the General Program of the National Natural Science Foundation of China grant number[62277022].
文摘Algorithms are the primary component of Artificial Intelligence(AI).The algorithm is the process in AI that imitates the human mind to solve problems.Currently evaluating the performance of AI is achieved by evaluating AI algorithms by metric scores on data sets.However the evaluation of algorithms in AI is challenging because the evaluation of the same type of algorithm has many data sets and evaluation metrics.Different algorithms may have individual strengths and weaknesses in evaluation metric scores on separate data sets,lacking the credibility and validity of the evaluation.Moreover,evaluation of algorithms requires repeated experiments on different data sets,reducing the attention of researchers to the research of the algorithms itself.Crucially,this approach to evaluating comparative metric scores does not take into account the algorithm’s ability to solve problems.And the classical algorithm evaluation of time and space complexity is not suitable for evaluating AI algorithms.Because classical algorithms input is infinite numbers,whereas AI algorithms input is a data set,which is limited and multifarious.According to the AI algorithm evaluation without response to the problem solving capability,this paper summarizes the features of AI algorithm evaluation and proposes an AI evaluation method that incorporates the problem-solving capabilities of algorithms.