期刊文献+
共找到366,050篇文章
< 1 2 250 >
每页显示 20 50 100
基于Pro/Engineering的特征映射器的开发 被引量:5
1
作者 王志坚 王彦 +1 位作者 何汉武 郑德涛 《计算机工程》 CAS CSCD 北大核心 2000年第8期24-26,共3页
针对特征映射方法的不足,提出了分层、分类实施特征映射的策略。以此为基础,运用Pro/Develop为工具,在Pro/Engineering软件平台上开发一个特征映射器,该特征映射器可以实现零件的形状特征、尺寸特征、几... 针对特征映射方法的不足,提出了分层、分类实施特征映射的策略。以此为基础,运用Pro/Develop为工具,在Pro/Engineering软件平台上开发一个特征映射器,该特征映射器可以实现零件的形状特征、尺寸特征、几何公差特征由设计域向制造域的映射,能够满足CAD/CAPP集成的信息需求。 展开更多
关键词 pro/engineering 特征映射器 机械设计 CAD
在线阅读 下载PDF
Pro/Engineering软件在“工程制图”课程教学中的应用 被引量:1
2
作者 王峥 《中国林业教育》 2014年第6期72-75,共4页
空间思维能力的培养是学生学习"工程制图"课程成败的关键。将三维设计软件Pro/Engineering引入"工程制图"课程教学中,可以帮助学生认识立体的构成及特点,认识视图与立体的关系,提高学生的空间想象力。教学实践证明,... 空间思维能力的培养是学生学习"工程制图"课程成败的关键。将三维设计软件Pro/Engineering引入"工程制图"课程教学中,可以帮助学生认识立体的构成及特点,认识视图与立体的关系,提高学生的空间想象力。教学实践证明,将Pro/Engineering三维设计软件引入到"工程制图"课程的教学中,可以提高教学质量,是切实可行的教学辅助手段。 展开更多
关键词 工程制图 pro/engineering软件 三维建模 空间思维
在线阅读 下载PDF
“Pro/Engineering建模”技巧在工业设计中的作用
3
作者 彭泽湘 《湖南工业职业技术学院学报》 2003年第2期14-15,37,共3页
在工业设计行业和设计教育机构中 ,Pro/EN GINEER( Pro/E)软件的使用日益普及。 Pro/E的造型建模功能 ,影响设计师的“设计思维”,Pro/E建模在“设计思维”中的作用也显得日益重要 ,Pro/E建模在“设计思维”
关键词 工业设计 设计思维 设计教育 pro/engineering 建模 pro/E软件 造型设计 设计师 能力培养
在线阅读 下载PDF
Food Engineering Principle课程校企协同教学的创新探索
4
作者 周然 蔡紫晨 +1 位作者 余克志 沈恒 《中国现代教育装备》 2026年第1期138-141,共4页
本文探讨了在Food Engineering Principle课程中实施校企协同教学模式的必要性和优势。面对留学生教育中实践教学的挑战,提出了通过高校与企业的合作,引入企业技术人员参与教学,培养留学生的实践能力和理论知识应用能力。校企协同教学... 本文探讨了在Food Engineering Principle课程中实施校企协同教学模式的必要性和优势。面对留学生教育中实践教学的挑战,提出了通过高校与企业的合作,引入企业技术人员参与教学,培养留学生的实践能力和理论知识应用能力。校企协同教学模式充分发挥高校教师和企业教师各自优势,优化实践教学,提高了教学质量。实践证明,这种教学模式提高了留学生的培养水平,有利于提高我国的国际影响力。 展开更多
关键词 校企协同 留学生 Food engineering Principle 食品工程原理
在线阅读 下载PDF
Geographical Engineering and Its Role in Promoting Integrated Geography Research 被引量:2
5
作者 LIU Yansui SU Sixin LI Xuhong 《Chinese Geographical Science》 2025年第1期1-23,共23页
Throughout the contemporary Chinese history of geography,geographical engineering has consistently played a pivotal role as a fundamental scientific activity.It possesses its distinct ontological basis and value orien... Throughout the contemporary Chinese history of geography,geographical engineering has consistently played a pivotal role as a fundamental scientific activity.It possesses its distinct ontological basis and value orientation,rendering it inseparable from being merely a derivative of geographical science or technology.This paper defines geographical engineering and introduces its development history through the lens of Chinese geographical engineering praxises.Furthermore,it is highlighted the logical and functional consistency between the theory of human-earth system and the praxis of geographical engineering.Six modern cases of geographical engineering projects are presented in detail to demonstrate the points and characteristics of different types of modern geographical engineering.Geographical engineering serves as an engine for promoting integrated geography research,and in response to the challenge posed by fragmented geographies,this paper advocates for an urgent revitalization of geographical engineering.The feasibility of revitalizing geographical engineering is guaranteed because it aligns with China’s national strategies. 展开更多
关键词 geographical engineering geographical science and engineering integrated geography research human-earth system Chinese geography
在线阅读 下载PDF
Boron‑Insertion‑Induced Lattice Engineering of Rh Nanocrystals Toward Enhanced Electrocatalytic Conversion of Nitric Oxide to Ammonia
6
作者 Peng Han Xiangou Xu +13 位作者 Weiwei Chen Long Zheng Chen Ma Gang Wang Lei Xu Ping Gu Wenbin Wang Qiyuan He Zhiyuan Zeng Jinlan Wang Dong Su Chongyi Ling Zhengxiang Gu Ye Chen 《Nano-Micro Letters》 2026年第3期85-102,共18页
Electrocatalytic nitric oxide(NO)reduction reaction(NORR)is a promising and sustainable process that can simultaneously realize green ammonia(NH3)synthesis and hazardous NO removal.However,current NORR performances ar... Electrocatalytic nitric oxide(NO)reduction reaction(NORR)is a promising and sustainable process that can simultaneously realize green ammonia(NH3)synthesis and hazardous NO removal.However,current NORR performances are far from practical needs due to the lack of efficient electrocatalysts.Engineering the lattice of metal-based nanomaterials via phase control has emerged as an effective strategy to modulate their intrinsic electrocatalytic properties.Herein,we realize boron(B)-insertion-induced phase regulation of rhodium(Rh)nanocrystals to obtain amorphous Rh_(4)B nanoparticles(NPs)and hexagonal close-packed(hcp)RhB NPs through a facile wet-chemical method.A high Faradaic efficiency(92.1±1.2%)and NH_(3) yield rate(629.5±11.0μmol h^(−1) cm^(−2))are achieved over hcp RhB NPs,far superior to those of most reported NORR nanocatalysts.In situ spectro-electrochemical analysis and density functional theory simulations reveal that the excellent electrocatalytic performances of hcp RhB NPs are attributed to the upshift of d-band center,enhanced NO adsorption/activation profile,and greatly reduced energy barrier of the rate-determining step.A demonstrative Zn-NO battery is assembled using hcp RhB NPs as the cathode and delivers a peak power density of 4.33 mW cm−2,realizing simultaneous NO removal,NH3 synthesis,and electricity output. 展开更多
关键词 Lattice engineering of nanomaterials Phase engineering of nanomaterials Wet-chemical synthesis Metal nanocatalysts Nitric oxide reduction reaction Electrocatalytic ammonia synthesis
在线阅读 下载PDF
Recent advances and perspectives in interface engineering of high-performance alloys
7
作者 Yuan Zhu Tongbo Jiang +7 位作者 Honghui Wu Faguo Hou Xiaoye Zhou Feiyang Wang Shuize Wang Junheng Gao Haitao Zhao Chaolei Zhang 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期53-67,共15页
High-performance alloys are indispensable in modern engineering because of their exceptional strength,ductility,corrosion resistance,fatigue resistance,and thermal stability,which are all significantly influenced by t... High-performance alloys are indispensable in modern engineering because of their exceptional strength,ductility,corrosion resistance,fatigue resistance,and thermal stability,which are all significantly influenced by the alloy interface structures.Despite substantial efforts,a comprehensive overview of interface engineering of high-performance alloys has not been presented so far.In this study,the interfaces in high-performance alloys,particularly grain and phase boundaries,were systematically examined,with emphasis on their crystallographic characteristics and chemical element segregations.The effects of the interfaces on the electrical conductivity,mechanical strength,toughness,hydrogen embrittlement resistance,and thermal stability of the alloys were elucidated.Moreover,correlations among various types of interfaces and advanced experimental and computational techniques were examined using big data analytics,enabling robust design strategies.Challenges currently faced in the field of interface engineering and emerging opportunities in the field are also discussed.The study results would guide the development of next-generation high-performance alloys. 展开更多
关键词 interface engineering crystallographic boundary chemical boundary alloy design
在线阅读 下载PDF
Regulation Engineering of Alkali Metal Interlayer Pillar in P2‑Type Cathode for Ultra‑High Rate and Long‑Term Cycling Sodium‑Ion Batteries
8
作者 Xu Wang Zixiang Yang +7 位作者 Yujia Cai Heng Ma Jinglei Xu Rabia Khatoon Zhizhen Ye Dashuai Wang Muhammad Tariq Sajjad Jianguo Lu 《Nano-Micro Letters》 2026年第3期876-892,共17页
Layered oxides have attracted significant attention as cathodes for sodium-ion batteries(SIBs)due to their compositional versatility and tuneable electrochemical performance.However,these materials still face challeng... Layered oxides have attracted significant attention as cathodes for sodium-ion batteries(SIBs)due to their compositional versatility and tuneable electrochemical performance.However,these materials still face challenges such as structural phase transitions,Na^(+)/vacancy ordering,and Jahn–Teller distortion effect,resulting in severe capacity decay and sluggish ion kinetics.We develop a novel Cu/Y dual-doping strategy that leads to the formation of"Na–Y"interlayer aggregates,which act as structural pillars within alkali metal layers,enhancing structural stability and disrupting the ordered arrangement of Na^(+)/vacancies.This disruption leads to a unique coexistence of ordered and disordered Na^(+)/vacancy states with near-zero strain,which significantly improves Na^(+)diffusion kinetics.This structural innovation not only mitigates the unfavorable P2–O2 phase transition but also facilitates rapid ion transport.As a result,the doped material demonstrates exceptional electrochemical performance,including an ultra-long cycle life of 3000 cycles at 10 C and an outstanding high-rate capability of~70 mAh g^(−1)at 50 C.The discovery of this novel interlayer pillar,along with its role in modulating Na^(+)/vacancy arrangements,provides a fresh perspective on engineering layered oxides.It opens up promising new pathways for the structural design of advanced cathode materials toward efficient,stable,and high-rate SIBs. 展开更多
关键词 Sodium-ion batteries Layered oxides P2-type phase Dual-site doping Regulation engineering
在线阅读 下载PDF
Smart Techniques Promoting Sustainability in Construction Engineering and Management 被引量:2
9
作者 Song-Shun Lin Shui-Long Shen +1 位作者 Annan Zhou Xiang-Sheng Chen 《Engineering》 2025年第2期262-282,共21页
Construction engineering and management(CEM)has become increasingly complicated with the increasing size of engineering projects under different construction environments,motivating the digital transformation of CEM.T... Construction engineering and management(CEM)has become increasingly complicated with the increasing size of engineering projects under different construction environments,motivating the digital transformation of CEM.To contribute to a better understanding of the state of the art of smart techniques for engineering projects,this paper provides a comprehensive review of multi-criteria decision-making(MCDM)techniques,intelligent techniques,and their applications in CEM.First,a comprehensive framework detailing smart technologies for construction projects is developed.Next,the characteristics of CEM are summarized.A bibliometric review is then conducted to investigate the keywords,journals,and clusters related to the application of smart techniques in CEM during 2000-2022.Recent advancements in intelligent techniques are also discussed under the following six topics:①big data technology;②computer vision;③speech recognition;④natural language processing;⑤machine learning;and⑥knowledge representation,understanding,and reasoning.The applications of smart techniques are then illustrated via underground space exploitation.Finally,future research directions for the sustainable development of smart construction are highlighted. 展开更多
关键词 Construction engineering and management Multi-criteria decision-making techniques Intelligent techniques Digital transformation SUSTAINABILITY
在线阅读 下载PDF
Characterization and correlation of engineering properties with microstructure in peanuts:A microscopic to macroscopic analysis 被引量:1
10
作者 Fei Xiang Zhenyuan Li +9 位作者 Yichen Zheng Caixia Ding Benu Adhikari Xiaojie Ma Xuebing Xu Jinjin Zhu Bello Zaki Abubakar Aimin Shi Hui Hu Qiang Wang 《Journal of Integrative Agriculture》 2025年第1期339-352,共14页
Peanut varieties are diverse globally,with their characters and nutrition determining the product quality.However,the comparative analysis and statistical analysis of key quality indicators for peanut kernels across t... Peanut varieties are diverse globally,with their characters and nutrition determining the product quality.However,the comparative analysis and statistical analysis of key quality indicators for peanut kernels across the world remains relatively limited,impeding the comprehensive evaluation of peanut quality and hindering the industry development on a global scale.This study aimed to compare and analyze the apparent morphology,microstructure,single-cell structure,engineering and mechanical properties,as well as major nutrient contents of peanut kernels from 10 different cultivars representing major peanut-producing countries.The surface and cross-section microstructure of the peanut kernels exhibited a dense“blocky”appearance with a distinct cellular structure.The lipid droplets were predominantly spherical with a regular distribution within the cells.The single-cell structure of the kernels from these 10 peanut cultivars demonstrated varying morphologies and dimensions,which exhibited correlations with their mechanical and engineering properties.Furthermore,the mass loss versus temperature profiles of the peanut kernels revealed five distinct stages,corresponding to moisture loss,volatile loss,protein denaturation,and the degradation of various biomacromolecules.Variations were also observed in the lipid,protein,and sucrose contents,texture,bulk density,true density,porosity,geometric mean diameter,and sphericity among the diferent peanut varieties.This study establishes relationships and correlations among microstructure,engineering properties,and nutritional composition of commonly grown peanut varieties in major peanut-processing countries.The findings provide valuable insights into peanut quality evaluation,empowering the peanut industry to enhance their processing and product development efforts. 展开更多
关键词 peanut kernels apparent morphology MICROSTRUCTURE engineering properties mechanical properties
在线阅读 下载PDF
Crystallographic Engineering Enables Fast Low‑Temperature Ion Transport of TiNb_(2)O_(7)for Cold‑Region Lithium‑Ion Batteries
11
作者 Lihua Wei Shenglu Geng +7 位作者 Hailu Liu Liang Deng Yiyang Mao Yanbin Ning Biqiong Wang Yueping Xiong Yan Zhang Shuaifeng Lou 《Nano-Micro Letters》 2026年第3期428-444,共17页
TiNb_(2)O_(7)represents an up-and-coming anode material for fast-charging lithium-ion batteries,but its practicalities are severely impeded by slow transfer rates of ionic and electronic especially at the low-temperat... TiNb_(2)O_(7)represents an up-and-coming anode material for fast-charging lithium-ion batteries,but its practicalities are severely impeded by slow transfer rates of ionic and electronic especially at the low-temperature conditions.Herein,we introduce crystallographic engineering to enhance structure stability and promote Li+diffusion kinetics of TiNb_(2)O_(7)(TNO).The density functional theory computation reveals that Ti^(4+)is replaced by Sb^(5+)and Nb^(5+)in crystal lattices,which can reduce the Li+diffusion impediment and improve electronic conductivity.Synchrotron radiation X-ray 3D nano-computed tomography and in situ X-ray diffraction measurement confirm the introduction of Sb/Nb alleviates volume expansion during lithiation and delithiation processes,contributing to enhancing structure stability.Extended X-ray absorption fine structure spectra results verify that crystallographic engineering also increases short Nb-O bond length in TNO-Sb/Nb.Accordingly,the TNO-Sb/Nb anode delivers an outstanding capacity retention rate of 89.8%at 10 C after 700 cycles and excellent rate performance(140.4 mAh g^(−1) at 20 C).Even at−30℃,TNO-Sb/Nb anode delivers a capacity of 102.6 mAh g^(−1) with little capacity degeneration for 500 cycles.This work provides guidance for the design of fast-charging batteries at low-temperature condition. 展开更多
关键词 Lithium-ion batteries Low-temperature conditions Crystallographic engineering TiNb_(2)O_(7) Structure stability
在线阅读 下载PDF
Integrating Main-Chain and Side-Chain Engineering in Polymers for Enhanced Photocatalytic Hydrogen Production
12
作者 TIAN Changhao LIU Xueyan +4 位作者 YU Miaojie WU Yongzhen CHE Yu ZHANG Weiwei ZHU Weihong 《功能高分子学报》 北大核心 2025年第3期216-227,共12页
Traditional polymeric photocatalysts are typically constructed using aromatic building blocks to enhanceπ-conjugation.However,their inherent hydrophobicity and rigid structure lead to poor dispersibility in aqueous s... Traditional polymeric photocatalysts are typically constructed using aromatic building blocks to enhanceπ-conjugation.However,their inherent hydrophobicity and rigid structure lead to poor dispersibility in aqueous solutions,resulting in significant optical losses and exciton recombination.In this study,two series of six novel polymer photocatalysts(FLUSO,FLUSO-PEG10,FLUSO-PEG30;CPDTSO,CPDTSO-PEG10,CPDTSO-PEG30)are designed and synthesized by incorporating the hydrophilic,non-conjugated polyethylene glycol(PEG)chain,into both the main and side chains of polymers.By precisely optimizing the ratio of hydrophilic PEG segments,the water dispersibility is significantly improved while the light absorption capability of the polymer photocatalysts is well maintained.The experimental results confirm that the optimized FLUSO-PEG10 exhibits excellent photocatalytic hydrogen evolution rate,reaching up to 33.9 mmol/(g·h),which is nearly three times higher than that of fullyπ-conjugated counterparts.Water contact angles and particle size analyses reveal that incorporating non-conjugated segments into the main chains enhances the capacitance of the polymer/water interface and reduces particle aggregation,leading to improved photocatalyst dispersion and enhanced charge generation. 展开更多
关键词 organic semiconductor polymer photocatalyst main-chain engineering side-chain engineering photocatalytic hydrogen evolution
在线阅读 下载PDF
Research progress of intelligent testing technology and evaluation methods for subgrade engineering 被引量:1
13
作者 Guojun Cai Hongliang Tian +2 位作者 Lulu Liu Xiaoyan Liu Songyu Liu 《Journal of Road Engineering》 2025年第2期164-183,共20页
Subgrade engineering is a fundamental aspect of infrastructure construction in China.As the primary structural element responsible for bearing and distributing traffic loads,the subgrade must not only withstand the su... Subgrade engineering is a fundamental aspect of infrastructure construction in China.As the primary structural element responsible for bearing and distributing traffic loads,the subgrade must not only withstand the substantial pressures exerted by vehicles,trains,and other forms of transportation,but also efficiently transfer these loads to the underlying foundation,ensuring the stability and longevity of the roadway.In recent years,advancements in subgrade engineering technology have propelled the industry towards smarter,greener,and more sustainable practices,particularly in the areas of intelligent monitoring,disaster management,and innovative construction methods.This paper reviews the application and methodologies of intelligent testing equipment,including cone penetration testing(CPT)devices,soil resistivity testers,and intelligent rebound testers,in subgrade engineering.It examines the operating principles,advantages,limitations,and application ranges of these tools in subgrade testing.Additionally,the paper evaluates the practical use of advanced equipment from both domestic and international perspectives,addressing the challenges encountered by various instruments in realworld applications.These devices enable precise,comprehensive testing and evaluation of subgrade conditions at different stages,providing real-time data analysis and intelligent early warnings.This supports effective subgrade health management and maintenance.As intelligent technologies continue to evolve and integrate,these tools will increasingly enhance the accuracy,efficiency,and sustainability of subgrade monitoring. 展开更多
关键词 Subgrade engineering Intelligent testing technology Technology evaluation Health management and maintenance
在线阅读 下载PDF
Enhanced Piezoelectric Properties of (1-x)(0.8PZT-0.2PZN)-xBZT Ceramics via Phase Boundary and Domain Engineering
14
作者 CHEN Xiangjie LI Ling +2 位作者 LEI Tianfu WANG Jiajia WANG Yaojin 《无机材料学报》 北大核心 2025年第6期729-734,共6页
Pb(Zr,Ti)O_(3)-Pb(Zn_(1/3)Nb_(2/3))O_(3) (PZT-PZN) based ceramics, as important piezoelectric materials, have a wide range of applications in fields such as sensors and actuators, thus the optimization of their piezoe... Pb(Zr,Ti)O_(3)-Pb(Zn_(1/3)Nb_(2/3))O_(3) (PZT-PZN) based ceramics, as important piezoelectric materials, have a wide range of applications in fields such as sensors and actuators, thus the optimization of their piezoelectric properties has been a hot research topic. This study investigated the effects of phase boundary engineering and domain engineering on (1-x)[0.8Pb(Zr_(0.5)Ti_(0.5))O_(3)-0.2Pb(Zn_(1/3)Nb_(2/3))O_(3)]-xBi(Zn_(0.5)Ti_(0.5))O_(3) ((1-x)(0.8PZT-0.2PZN)- xBZT) ceramic to obtain excellent piezoelectric properties. The crystal phase structure and microstructure of ceramic samples were characterized. The results showed that all samples had a pure perovskite structure, and the addition of BZT gradually increased the grain size. The addition of BZT caused a phase transition in ceramic samples from the morphotropic phase boundary (MPB) towards the tetragonal phase region, which is crucial for optimizing piezoelectric properties. By adjusting content of BZT and precisely controlling position of the phase boundary, the piezoelectric performance can be optimized. Domain structure is one of the key factors affecting piezoelectric performance. By using domain engineering techniques to optimize grain size and domain size, piezoelectric properties of ceramic samples have been significantly improved. Specifically, excellent piezoelectric properties (piezoelectric constant d_(33)=320 pC/N, electromechanical coupling factor kp=0.44) were obtained simultaneously for x=0.08. Based on experimental results and theoretical analysis, influence mechanisms of phase boundary engineering and domain engineering on piezoelectric properties were explored. The study shows that addition of BZT not only promotes grain growth, but also optimizes the domain structure, enabling the polarization reversal process easier, thereby improving piezoelectric properties. These research results not only provide new ideas for the design of high-performance piezoelectric ceramics, but also lay a theoretical foundation for development of related electronic devices. 展开更多
关键词 phase boundary 0.8PZT-0.2PZN domain engineering piezoelectric property
在线阅读 下载PDF
Identification of Limiting Factors and Engineering Selection for Agricultural Development of Barren Grassland:A Systems Engineering Approach
15
作者 Zhaoya Chen Yinuo Zhao +2 位作者 Boan Shi Yaheng Chen Xinxing Zhang 《Journal of Environmental & Earth Sciences》 2025年第4期351-367,共17页
Agricultural land development is a pivotal strategy for addressing the global food security crisis.Barren grassland,especially those in mountainous regions,constitutes critical areas where cultivation can substantiall... Agricultural land development is a pivotal strategy for addressing the global food security crisis.Barren grassland,especially those in mountainous regions,constitutes critical areas where cultivation can substantially enhance land resources.This study highlights the necessity for a precise correlation between land development initiatives and constraints in order to optimize efficiency and enhance the effectiveness of such projects,with the core being the seamless integration of land development engineering and techniques to eliminate agricultural constraints.This study employs a systems engineering approach to classify improvement factors into mobile and fixed categories,elucidating the integration methods of constraint factors.Adhering to the Wooden Barrel Principle,these constraints were rigorously analyzed based on soil quality,land topography,water availability,and agricultural infrastructure.An innovative method of engineering type combination is proposed,which effectively explains the correlation between natural factors combination,project type combination,and target factors combination.It provides a convenient way for the selection of barren grassland development projects and lays a foundation for land planning,development project establishment,program selection,engineering design,and budget preparation.Taking Tang County of China as an example,it is divided into 19 factor improvement areas,a quick reference table of engineering types is established,and 14 main types of engineering combinations are obtained,which lays a foundation for the application of theoretical framework in practice. 展开更多
关键词 Barren Grassland Land Development Limiting Factors engineering Combination engineering Selection Cultivated Land Reserve Resources
在线阅读 下载PDF
The engineered probiotic strain Lactococcus lactis MG1363-pMG36e-GLP-1 regulates microglial polarization and gut dysbiosis in a transgenic mouse model of Parkinson’s disease
16
作者 Mengyun Yue Tingtao Chen +6 位作者 Wenjie Chen Jing Wei Bin Liao Jie Zhang Fangjun Li Daojun Hong Xin Fang 《Neural Regeneration Research》 2026年第3期1211-1221,共11页
Parkinson’s disease is characterized by synucleinopathy-associated neurodegeneration.Previous studies have shown that glucagon-like peptide-1(GLP-1)has beneficial effects in a mouse model of Parkinson’s disease indu... Parkinson’s disease is characterized by synucleinopathy-associated neurodegeneration.Previous studies have shown that glucagon-like peptide-1(GLP-1)has beneficial effects in a mouse model of Parkinson’s disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.However,the effect of GLP-1 on intrinsic synuclein malfunction remains unclear.In this study,we investigated the effect of Lactococcus lactis MG1363-pMG36e-GLP-1 on parkinsonism in SncaA53T transgenic mice and explored the underlying mechanisms.Our data showed that Lactococcus lactis MG1363-pMG36e-GLP-1 inhibited dopaminergic neuronal death,reduced pathological aggregation ofα-synuclein,and decreased movement disorders in SncaA53T transgenic mice.Furthermore,Lactococcus lactis MG1363-pMG36e-GLP-1 downregulated lipopolysaccharide-related inflammation,reduced cerebral activation of microglia and astrocytes,and promoted cell survival via the GLP-1 receptor/PI3K/Akt pathway in the substantia nigra.Additionally,Lactococcus lactis MG1363-pMG36e-GLP-1 decreased serum levels of pro-inflammatory molecules including lipopolysaccharide,lipopolysaccharide binding protein,interleukin-1β,and interleukin-6.Gut histopathology and western blotting further revealed that Lactococcus lactis MG1363-pMG36e-GLP-1 increased the expression of gut integrity-related proteins and reduced lipopolysaccharide-related inflammation by reversing gut dysbiosis in SncaA53T transgenic mice.Our findings showed that the beneficial effect of Lactococcus lactis MG1363-pMG36e-GLP-1 on parkinsonism traits in SncaA53T transgenic mice is mediated by microglial polarization and the reversal of dysbiosis.Collectively,our findings suggest that Lactococcus lactis MG1363-pMG36e-GLP-1 is a promising therapeutic agent for the treatment of Parkinson’s disease. 展开更多
关键词 A53T transgenic mice engineered probiotics glucagon-like peptide-1 gut dysbacteriosis gut-brain axis Lactococcus lactis MG1363-pMG36e-GLP-1 microglial polarization neurodegenerative disease neuroinflammation Parkinson’s disease
暂未订购
Research on the Project-Based Teaching Model for Engineering Majors in Colleges and Universities
17
作者 Hongli Zhang 《Journal of Contemporary Educational Research》 2025年第1期19-24,共6页
Based on the study of the Mechanical Design and Automation major and its relevance to teaching reform in higher education engineering programs,a project-based teaching model was introduced.This approach integrates tea... Based on the study of the Mechanical Design and Automation major and its relevance to teaching reform in higher education engineering programs,a project-based teaching model was introduced.This approach integrates teaching design,scheme argumentation,and the implementation of teaching activities with the project serving as the central framework.Course knowledge points are derived from the project topics,forming the foundation for a structured knowledge framework.The course content is modularized in alignment with the project design,enabling students to engage with professional courses on a module-by-module basis,guided by the project.Each course utilizes the project topic as a practical case,facilitating project-led teaching.A teaching system tailored to the research project is proposed,establishing a professional course structure closely linked to the project objectives. 展开更多
关键词 Teaching model project-based teaching engineering majors Teaching system
在线阅读 下载PDF
A Metamodeling Approach to Enforcing the No-Cloning Theorem in Quantum Software Engineering
18
作者 Dae-Kyoo Kim 《Computers, Materials & Continua》 2025年第8期2549-2572,共24页
Quantum software development utilizes quantum phenomena such as superposition and entanglement to address problems that are challenging for classical systems.However,it must also adhere to critical quantum constraints... Quantum software development utilizes quantum phenomena such as superposition and entanglement to address problems that are challenging for classical systems.However,it must also adhere to critical quantum constraints,notably the no-cloning theorem,which prohibits the exact duplication of unknown quantum states and has profound implications for cryptography,secure communication,and error correction.While existing quantum circuit representations implicitly honor such constraints,they lack formal mechanisms for early-stage verification in software design.Addressing this constraint at the design phase is essential to ensure the correctness and reliability of quantum software.This paper presents a formal metamodeling framework using UML-style notation and and Object Constraint Language(OCL)to systematically capture and enforce the no-cloning theorem within quantum software models.The proposed metamodel formalizes key quantum concepts—such as entanglement and teleportation—and encodes enforceable invariants that reflect core quantum mechanical laws.The framework’s effectiveness is validated by analyzing two critical edge cases—conditional copying with CNOT gates and quantum teleportation—through instance model evaluations.These cases demonstrate that the metamodel can capture nuanced scenarios that are often mistaken as violations of the no-cloning theorem but are proven compliant under formal analysis.Thus,these serve as constructive validations that demonstrate the metamodel’s expressiveness and correctness in representing operations that may appear to challenge the no-cloning theorem but,upon rigorous analysis,are shown to comply with it.The approach supports early detection of conceptual design errors,promoting correctness prior to implementation.The framework’s extensibility is also demonstrated by modeling projective measurement,further reinforcing its applicability to broader quantum software engineering tasks.By integrating the rigor of metamodeling with fundamental quantum mechanical principles,this work provides a structured,model-driven approach that enables traditional software engineers to address quantum computing challenges.It offers practical insights into embedding quantum correctness at the modeling level and advances the development of reliable,error-resilient quantum software systems. 展开更多
关键词 METAMODELING no-cloning theorem quantum software software engineering
在线阅读 下载PDF
Rational protein engineering of thermostable heparinase I from Bacteroides thetaiotaomicron for highly efficient heparin degradation
19
作者 Chuan Zhang Ruohan Zhao +6 位作者 Leilei Yu Qixiao Zhai Jianxin Zhao Hao Zhang Xuegang Luo Fengwei Tian Wei Chen 《Food Science and Human Wellness》 2025年第6期2161-2171,共11页
Heparin,a glycosaminoglycan,is a stable source of carbon that supports the growth of microorganisms in the human intestine.It is also a commonly used anticoagulant drug in clinical practice,with significant therapeuti... Heparin,a glycosaminoglycan,is a stable source of carbon that supports the growth of microorganisms in the human intestine.It is also a commonly used anticoagulant drug in clinical practice,with significant therapeutic effects.Low molecular weight heparin(LMWH)is a highly active low molecular weight fragment obtained via enzymatic reaction or the chemical degradation of heparin.LMWH has been applied globally in the prevention and treatment of venous thromboembolism in thrombosis patients.Simultaneously,as a potential prebiotic,because of its low molecular weight,LMWH can be well degraded by the gut microbiota to maintain intestinal balance.Enzymatic heparin degradation has recently emerged as a viable disposal method for LMWH preparation;however,only very few benchmark enzymes have been thoroughly described and subjected to protein engineering to improve their properties over the past few years.The commercialization of enzymes will require the development of robustly engineered enzymes that meet the demands of industrial processes.Herein,we report a rational protein engineering strategy that includes molecular dynamic simulations of flexible amino acid mutations and disulfide bond screening.Several Bacteroides thetaiotaomicron heparanase I(Bt-HepI)mutants were obtained and screened for high thermal stability.We obtained the Bt-HepI^(D204C/K208C/H189W/Q198R)variant,which features a stabilized protein surface structure,with a 1.3-fold increase in catalytic constant/michaelis-menten constant(k_(cat)/K_(m)),a 2.44-fold increase in thermal stability at 50℃,and a 1.8-fold decrease in the average molecular weight of LMWH produced at 40℃compared with that seen with Bt-HepI^(WT).Our study establishes a strategy to engineer thermostable HepI to underpin its industrial applications. 展开更多
关键词 HEPARIN Bacteroides thetaiotaomicron Heparinase I Rational protein engineering Thermostability
在线阅读 下载PDF
Research on Project Lifecycle Management in Housing and Municipal Engineering Supervision: With Quality Safety and Cost Control as the Core
20
作者 Yifeng Wang 《Journal of Architectural Research and Development》 2025年第4期98-103,共6页
Housing construction and municipal engineering have full lifecycle characteristics,involving multiple stages.Emphasizing the coherence and systematicity of each stage,the supervisor should establish a three-dimensiona... Housing construction and municipal engineering have full lifecycle characteristics,involving multiple stages.Emphasizing the coherence and systematicity of each stage,the supervisor should establish a three-dimensional management system.Establishing quantitative evaluation models and visual monitoring schemes to ensure quality and safety,as well as introducing cost control methods and innovative collaborative management mechanisms,ultimately forming a supervision-led paradigm and proposing directions for the application of digital twin technology. 展开更多
关键词 Housing construction Municipal engineering Full lifecycle management SUPERVISOR
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部