[ Objective] To study the effects of different pretreatment methods on determination of microelement in feed and thus find the best pre treatment method for each microetement, t Method] The samples (concentrated feed...[ Objective] To study the effects of different pretreatment methods on determination of microelement in feed and thus find the best pre treatment method for each microetement, t Method] The samples (concentrated feeding stuff and fodder) were pretreated through throe methods, that is, dry incineration method, HNOs HCIO, wetdecomposition method and microwave digestion method. Then the content of seven kinds of mi croelement (AI, Ca, Cu, Fe, Mn, Se and Zn) was determined by inductively coupled plasma atomic emission spectrometer (ICPAES). I Result] These three methods were all suitable for the determination of Cu, Mn and Zn in concentrated feeding stuff and the determination of Cu and Ca in fodder. The content of Cu and Ca was higher in fodder detected by HNO3 HCIO, wetdecomposition method. The microwave digestion method was suitable for the determination of AI and Ca in concentrated feeding stuff and the determination of AI, Fe, Mn and Zn in fodder. The dry incinera tion method was fit for the determination of Fe in concentrated feeding stuff. [ Condusionl The content of different microelements should be deter mined after the feed is treated with different Ioretreatment methods.展开更多
The Cu-Zr-Ce-O catalysts prepared using the coprecipitation method exhibited better catalytic performance for CO selective oxidation. The Cu-Zr-Ce-O catalysts pretreated with different methods were studied by CO-TPR a...The Cu-Zr-Ce-O catalysts prepared using the coprecipitation method exhibited better catalytic performance for CO selective oxidation. The Cu-Zr-Ce-O catalysts pretreated with different methods were studied by CO-TPR and XPS techniques. The results showed that the Cu-Zr-Ce-O catalyst pretreated with oxygen exhibited the best catalytic performance and had the widest operating temperature window, with CO conversion above 99% from 160 to 200 ℃. The O2 pretreatment caused an enrichment of the oxygen storaged on the Cu active species and promoted the conversion of adsorbed oxygen into surface lattice oxygen. It also improved the amount of Cu+/Cu^2+ ionic pair, and then facilitated the formation of CuO active species on the catalyst for selective CO oxidation.展开更多
Five individual pretreatment methods, including three widely-used protocols (heat, acid and base) and two novel attempts (ultrasonic and ultraviolet), were conducted in batch tests to compare their effects on mixe...Five individual pretreatment methods, including three widely-used protocols (heat, acid and base) and two novel attempts (ultrasonic and ultraviolet), were conducted in batch tests to compare their effects on mixed microflora to enhance hydrogen (H2) production from corn stover hydrolysate. Experimental results indicated that heat and base pretreatments significantly increased H2 yield with the values of 5.03 and 4.45 mmol H2/g sugar utilized, respectively, followed by acid pretreatment of 3.21 mmol H2/g sugar utilized. However, compared with the control (2.70 mmol H2/g sugar utilized), ultrasonic and ultraviolet pretreatments caused indistinctive effects on H2 production with the values of 2.92 and 2.87 mmol H2/g sugar utilized, respectively. The changes of soluble metabolites composition caused by pretreatment were in accordance with H2-producing behavior. Concretely, more acetate accumulation and less ethanol production were found in pretreated processes, meaning that more reduced nicotinamide adenine dinucleotide (NADH) might be saved and flowed into H2-producing pathways. PCR-DGGE analysis indicated that the pretreatment led to the enrichment of some species, which appeared in large amounts and even dominated the microbial community. Most of the dominated species were affiliated to Enterobacter spp. and Escherichia spp. As another efflcient H2 producer, Clostridium bifermentan was only found in a large quantity after heat pretreatment. This strain might be mainly responsible for better performance of H2 production in this case.展开更多
Mercury (Hg) stable isotope analysis can provide new insight for understanding the biogeochemistry and sources of Hg in the polar regions. To completely extract the low contents of Hg in polar samples and to avoid i...Mercury (Hg) stable isotope analysis can provide new insight for understanding the biogeochemistry and sources of Hg in the polar regions. To completely extract the low contents of Hg in polar samples and to avoid isotopic fractionation during the sample preparation stage, an effective and reliable pretreatment method is needed. In this work, two different pretreatment methods were compared for measuring Hg stable isotopes in Antarctic moss samples. One method was acid digestion (HNO3 : H2O2=5 : 3, v/v) and the second was a combustion-trapping treatment with a trapping solution (HNO3:HCl=2:1, v/v). There were no significant differences in the analytical results obtained with the two methods. The overall mean values and uncertainties of total Hg (THg) and the isotopic compositions of Hg in the referenced materials were all in good agreement with the certified and reported values, indicating that both methods were accurate and applicable. Acid digestion is highly efficient, while the combustion-trapping method can be used to treat samples with low Hg content. The proposed methods were successfully used to determine the Hg isotopic compositions in moss samples collected from the Antarctic.展开更多
In this study,we investigated the effect of sample pretreatments(ultrasonication and alkaline extraction)on total organic carbon(TOC)measurements for water samples containing suspended solids(SS)of four different orig...In this study,we investigated the effect of sample pretreatments(ultrasonication and alkaline extraction)on total organic carbon(TOC)measurements for water samples containing suspended solids(SS)of four different origins(algae,soil,sewage sludge,and leaf litter)to more clearly assess the impact of particulate organic carbon(POC)in water.The effects each of ultrasonication(power,pulse,etc.)and alkaline extraction condition(concentration,time,etc.)on the TOC recovery and precision were investigated,and the results were compared with those of a new sample pre treatment method combining both methods.Alkaline treatment(0.01 mol/L NaOH)showed higher precision than ultrasonication(100/5 on/off pulse),and notably,the differences among the measured TOC values in samples of different origins were also further reduced in the alkaline treatment.This suggests that the ultrasonic pretreatment results can be mainly attributed to the increase in POC recovery through particle size reduction,whereas the alkaline treatment results are achieved through the enhancement of POC solubilization.It is also particularly noteworthy that a higher TOC recovery of 87.6%±7.4%with a higher precision of 8.4%could be obtained using the combined method,compared to each treatment(ultrasonic:TOC recovery 34.7%,relative standard deviation 63.1%;alkaline:49.6%and 23.0%,respectively).Thus,simultaneous pretreatment with ultrasonication and alkaline extraction is expected to increase the oxidation rate of organic matter and the homogeneity of the samples,minimizing the loss of POC measurement values,and thereby improving the reliability of the TOC measurements of water samples containing SS.展开更多
Millets are widely recognized for their nutritional significance;however, the methods employed for their processing are currently lacking. This article primarily focuses on the advanced technologies and progressions i...Millets are widely recognized for their nutritional significance;however, the methods employed for their processing are currently lacking. This article primarily focuses on the advanced technologies and progressions in millet dehulling and polishing. These technologies operate based on the fundamental principles of compression-shearing, abrasion-friction, and centrifugal-impact forces. Processing of millets can be challenging because of the physical characteristics and tight attachment of hull and bran to the endosperm. However, several dehullers have been designed to solve this problem for different kinds of millets. In addition, the nutritional and anti-nutritional characteristics undergo alterations due to both dehulling and polishing processes. These alterations are thoroughly examined and discussed in this article. Specifically, anti-nutrients such as tannins and phytate are predominantly found in the outer pericarp of the grain and experience a reduction after undergoing dehulling and polishing. The nutritional properties are also subjected to a reduction;however, this reduction can be mitigated by subjecting the grains to certain pretreatments before dehulling and polishing. These treatments serve to enhance dehulling efficiency and nutrient digestibility while simultaneously reducing the presence of anti-nutrients. Novel thermal and non-thermal methodologies such as microwave, hydrothermal, high-pressure processing, and ohmic heating can be employed for processing millets, thereby diminishing the loss of nutrients. Additional research can be carried out to investigate their impact on the dehulling and polishing of millets.展开更多
Sugarcane shoots and leaves consist of 35.2% cellulose, 23.43% hemicellulose, 12.6% lignin and 6.59% ash on dry solid (DS) basis and have the potential to serve as low cost feedstocks for ethanol production. To impr...Sugarcane shoots and leaves consist of 35.2% cellulose, 23.43% hemicellulose, 12.6% lignin and 6.59% ash on dry solid (DS) basis and have the potential to serve as low cost feedstocks for ethanol production. To improve the enzymatic digestibility of these biomass and bioethanol production, three pretreatment methods had been investigated and compared, including: (1) 2% w/v NaOH solution autoclaving pretreatment; (2) 2% w/v H2SO4 solution autoclaving pretreatment and (3) two steps of 2% w/v NaOH solution autoclaving followed by 2% w/v H2SO4 solution autoclaving pretreatment. Among them, the best result for ethanol production was obtained when 15 g DS of sugarcane shoots and leaves was pretreated by using two step of 2% w/v NaOH solution autoclaving followed by 2% w/v H2SO4 solution autoclaving. The highest ethanol concentration 30.40 g/L (92.65% in fermentation efficiency) was obtained from reducing sugar 89.25 g/L at 48 h. Moreover, the washing step of solid residue after pretreatment could reduce furfural and hydroxymethylfurfural (HMF) in all pretreatment methods when compared to unwashing solid residue after pretreatment.展开更多
Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters accordi...Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems.展开更多
The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytica...The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytical solutions for free vibration and eigenbuckling of rectangular plates and circular cylindrical shells.By taking the free vibration of rectangular thin plates as an example,this work presents the theoretical framework of the SOV methods in an instructive way,and the bisection–based solution procedures for a group of nonlinear eigenvalue equations.Besides,the explicit equations of nodal lines of the SOV methods are presented,and the relations of nodal line patterns and frequency orders are investigated.It is concluded that the highly accurate SOV methods have the same accuracy for all frequencies,the mode shapes about repeated frequencies can also be precisely captured,and the SOV methods do not have the problem of missing roots as well.展开更多
Soil improvement is one of the most important issues in geotechnical engineering practice.The wide application of traditional improvement techniques(cement/chemical materials)are limited due to damage ecological en-vi...Soil improvement is one of the most important issues in geotechnical engineering practice.The wide application of traditional improvement techniques(cement/chemical materials)are limited due to damage ecological en-vironment and intensify carbon emissions.However,the use of microbially induced calcium carbonate pre-cipitation(MICP)to obtain bio-cement is a novel technique with the potential to induce soil stability,providing a low-carbon,environment-friendly,and sustainable integrated solution for some geotechnical engineering pro-blems in the environment.This paper presents a comprehensive review of the latest progress in soil improvement based on the MICP strategy.It systematically summarizes and overviews the mineralization mechanism,influ-encing factors,improved methods,engineering characteristics,and current field application status of the MICP.Additionally,it also explores the limitations and correspondingly proposes prospective applications via the MICP approach for soil improvement.This review indicates that the utilization of different environmental calcium-based wastes in MICP and combination of materials and MICP are conducive to meeting engineering and market demand.Furthermore,we recommend and encourage global collaborative study and practice with a view to commercializing MICP technique in the future.The current review purports to provide insights for engineers and interdisciplinary researchers,and guidance for future engineering applications.展开更多
Ocean energy has progressively gained considerable interest due to its sufficient potential to meet the world’s energy demand,and the blade is the core component in electricity generation from the ocean current.Howev...Ocean energy has progressively gained considerable interest due to its sufficient potential to meet the world’s energy demand,and the blade is the core component in electricity generation from the ocean current.However,the widened hydraulic excitation frequency may satisfy the blade resonance due to the time variation in the velocity and angle of attack of the ocean current,even resulting in blade fatigue and destructively interfering with grid stability.A key parameter that determines the resonance amplitude of the blade is the hydrodynamic damping ratio(HDR).However,HDR is difficult to obtain due to the complex fluid-structure interaction(FSI).Therefore,a literature review was conducted on the hydrodynamic damping characteristics of blade-like structures.The experimental and simulation methods used to identify and obtain the HDR quantitatively were described,placing emphasis on the experimental processes and simulation setups.Moreover,the accuracy and efficiency of different simulation methods were compared,and the modal work approach was recommended.The effects of key typical parameters,including flow velocity,angle of attack,gap,rotational speed,and cavitation,on the HDR were then summarized,and the suggestions on operating conditions were presented from the perspective of increasing the HDR.Subsequently,considering multiple flow parameters,several theoretical derivations and semi-empirical prediction formulas for HDR were introduced,and the accuracy and application were discussed.Based on the shortcomings of the existing research,the direction of future research was finally determined.The current work offers a clear understanding of the HDR of blade-like structures,which could improve the evaluation accuracy of flow-induced vibration in the design stage.展开更多
Surface pretreatment can change the surface properties of minerals,placing them in either a favorable or an unfavorable state for flotation.To solve the separation problem associated with magnesite and dolomite,surfac...Surface pretreatment can change the surface properties of minerals,placing them in either a favorable or an unfavorable state for flotation.To solve the separation problem associated with magnesite and dolomite,surface pretreatment experiments with citric acid,tartaric acid,and tannic acid(TA)on magnesite and dolomite as well as flotation experiments on pretreated samples were performed in this study.Experimental results demonstrated that when citric acid and tartaric acid are used for surface pretreatment,the separation effect of magnesite and dolomite is poor.However,when TA is used,the separation effect of magnesite and dolomite improves.SEM and BET analysis indicated that surface pretreatment with TA changes the surface morphology of the two minerals,resulting in additional concave pores on the dolomite surface,and a significant increase in pore size and specific surface area.The adsorption quantity test and contact angle measurement demonstrated that after surface pretreatment with TA,the magnesite adsorption capacity on sodium oleate(NaOL)slightly decreases and the dolomite adsorption capacity on NaOL considerably decreases.XPS detection concluded that the surface pretreatment of TA on the magnesite surface mainly relies on physical adsorption with weak adsorption ability and poor ability to act on Mg sites.The TA surface pretreatment action on the dolomite surface is mainly through chemical adsorption,and it is strongly and selectively adsorbed on the Ca site of dolomite through O.Actual ore rough selection experiments reveal that TA pretreatment successfully removes dolomite from magnesite,resulting in a high-quality magnesite concentrate characterized by a MgO grade of 45.49%and a CaO grade of 0.75%.展开更多
Oat husks,a byproduct of oat milling operations with limited economic value,present a promising feedstock for biorefinery processes due to their chemical composition.This study investigates the conversion of C5 carboh...Oat husks,a byproduct of oat milling operations with limited economic value,present a promising feedstock for biorefinery processes due to their chemical composition.This study investigates the conversion of C5 carbohydrates in oat husks into furfural through hydrothermal pretreatment using various phosphate-based catalysts,including H_(3)PO_(4),NH_(4)H_(2)PO_(4),NaH_(2)PO_(4),KH_(2)PO_(4),K_(2)HPO_(4) and K_(3)PO_(4) as catalyst.The catalysts’effectiveness in promoting furfural production was evaluated under identical hydrothermal conditions(treatment time for 60 min at a constant temperature of 170℃ and a catalyst amount).Continuous water steam was used to strip furfural from the reaction zone and minimize its degradation.Results indicated that H_(3)PO_(4) was the most effective catalyst,achieving a furfural yield of 13.99 wt.%,which corresponds to approximately 57%of the theoretical yield.NH4H2PO4 also showed moderate effectiveness,while sodium and potassium phosphate salts were significantly less effective.A scanning electron microscope analysis shows that catalysts with lower pH may disrupt the oat husks external layer thus providing a higher C5 carbohydrates conversion rate into furfural.The chemical complexity of oat husk contributes to side reactions between its carbohydrates and lignin during the hydrothermal treatment.This results in an increase in acid-insoluble lignin and inorganic matter in the oat husk lignocellulosic residue,which can reduce the effectiveness of further cellulose saccharification by enzymatic hydrolysis.展开更多
Sewage sludge in cities of Yangzi River Belt,China,generally exhibits a lower organic content and higher silt contentdue to leakage of drainage system,which caused low bioenergy recovery and carbon emission benefits i...Sewage sludge in cities of Yangzi River Belt,China,generally exhibits a lower organic content and higher silt contentdue to leakage of drainage system,which caused low bioenergy recovery and carbon emission benefits in conventional anaerobic digestion(CAD).Therefore,this paper is on a pilot scale,a bio-thermophilic pretreatment anaerobic digestion(BTPAD)for low organic sludge(volatile solids(VS)of 4%)was operated with a long-term continuous flow of 200 days.The VS degradation rate and CH_(4) yield of BTPAD increased by 19.93%and 53.33%,respectively,compared to those of CAD.The analysis of organic compositions in sludge revealed that BTPAD mainly improved the hydrolysis of proteins in sludge.Further analysis of microbial community proportions by high-throughput sequencing revealed that the short-term bio-thermophilic pretreatment was enriched in Clostridiales,Coprothermobacter and Gelria,was capable of hydrolyzing acidified proteins,and provided more volatile fatty acid(VFA)for the subsequent reaction.Biome combined with fluorescence quantitative polymerase chain reaction(PCR)analysis showed that the number of bacteria with high methanogenic capacity in BTPAD was much higher than that in CAD during the medium temperature digestion stage,indicating that short-term bio-thermophilic pretreatment could provide better methanogenic conditions for BTPAD.Furthermore,the greenhouse gas emission footprint analysis showed that short-term bio-thermophilic pretreatment could reduce the carbon emission of sludge anaerobic digestion system by 19.18%.展开更多
RNAs have important biological functions and the functions of RNAs are generally coupled to their structures, especiallytheir secondary structures. In this work, we have made a comprehensive evaluation of the performa...RNAs have important biological functions and the functions of RNAs are generally coupled to their structures, especiallytheir secondary structures. In this work, we have made a comprehensive evaluation of the performances of existingtop RNA secondary structure prediction methods, including five deep-learning (DL) based methods and five minimum freeenergy (MFE) based methods. First, we made a brief overview of these RNA secondary structure prediction methods.Afterwards, we built two rigorous test datasets consisting of RNAs with non-redundant sequences and comprehensivelyexamined the performances of the RNA secondary structure prediction methods through classifying the RNAs into differentlength ranges and different types. Our examination shows that the DL-based methods generally perform better thanthe MFE-based methods for RNAs with long lengths and complex structures, while the MFE-based methods can achievegood performance for small RNAs and some specialized MFE-based methods can achieve good prediction accuracy forpseudoknots. Finally, we provided some insights and perspectives in modeling RNA secondary structures.展开更多
Understanding the wind power potential of a site is essential for designing an optimal wind power conditioning system. The Weibull distribution and wind speed extrapolation methods are powerful mathematical tools for ...Understanding the wind power potential of a site is essential for designing an optimal wind power conditioning system. The Weibull distribution and wind speed extrapolation methods are powerful mathematical tools for efficiently predicting the frequency distribution of wind speeds at a site. Hourly wind speed and direction data were collected from the National Aeronautics and Space Administration (NASA) website for the period 2013 to 2023. MATLAB software was used to calculate the distribution parameters using the graphical method and to plot the corresponding curves, while WRPLOTView software was used to construct the wind rose. The average wind speed obtained is 3.33 m/s and can reach up to 5.71 m/s at a height of 100 meters. The wind energy is estimated to be 1315.30 kWh/m2 at a height of 100 meters. The wind rose indicates the prevailing winds (ranging from 3.60 m/s to 5.70 m/s) in the northeast-east direction.展开更多
The authors regret that due to negligence,the picture was misplaced in the original manuscript,resulting in Fig.6d being incorrectly included.The correct version of Fig.6d is provided below for reference.This error do...The authors regret that due to negligence,the picture was misplaced in the original manuscript,resulting in Fig.6d being incorrectly included.The correct version of Fig.6d is provided below for reference.This error does not affect the conclusions of the study,and we apologize for any confusion it may have caused.展开更多
Purpose–For the commonly used concrete mix for railway tunnel linings,concrete model specimens were made,and springback and core drilling tests were conducted at different ages.The springback strength was measured to...Purpose–For the commonly used concrete mix for railway tunnel linings,concrete model specimens were made,and springback and core drilling tests were conducted at different ages.The springback strength was measured to the compressive strength of the core sample with a diameter of 100mm and a height-to-diameter ratio of 1:1.By comparing the measured strength values,the relationship between the measured values under different strength measurement methods was analyzed.Design/methodology/approach–A comparative test of the core drilling method and the rebound method was conducted on the side walls of tunnel linings in some under-construction railways to study the feasibility of the rebound method in engineering quality supervision and inspection.Findings–Tests showed that the rebound strength was positively correlated with the core drill strength.The core drill test strength was significantly higher than the rebound test strength,and the strength still increased after 56 days of age.The rebound method is suitable for the general survey of concrete strength during the construction process and is not suitable for direct supervision and inspection.Originality/value–By studying the correlation of test strength of tunnel lining concrete using two methods,the differences in test results of different methods are proposed to provide a reference for the test and evaluation of tunnel lining strength in railway engineering.展开更多
Efficient and accurate simulation of unsteady flow presents a significant challenge that needs to be overcome in computational fluid dynamics.Temporal discretization method plays a crucial role in the simulation of un...Efficient and accurate simulation of unsteady flow presents a significant challenge that needs to be overcome in computational fluid dynamics.Temporal discretization method plays a crucial role in the simulation of unsteady flows.To enhance computational efficiency,we propose the Implicit-Explicit Two-Step Runge-Kutta(IMEX-TSRK)time-stepping discretization methods for unsteady flows,and develop a novel adaptive algorithm that correctly partitions spatial regions to apply implicit or explicit methods.The novel adaptive IMEX-TSRK schemes effectively handle the numerical stiffness of the small grid size and improve computational efficiency.Compared to implicit and explicit Runge-Kutta(RK)schemes,the IMEX-TSRK methods achieve the same order of accuracy with fewer first derivative calculations.Numerical case tests demonstrate that the IMEX-TSRK methods maintain numerical stability while enhancing computational efficiency.Specifically,in high Reynolds number flows,the computational efficiency of the IMEX-TSRK methods surpasses that of explicit RK schemes by more than one order of magnitude,and that of implicit RK schemes several times over.展开更多
In this paper,a new technique is introduced to construct higher-order iterative methods for solving nonlinear systems.The order of convergence of some iterative methods can be improved by three at the cost of introduc...In this paper,a new technique is introduced to construct higher-order iterative methods for solving nonlinear systems.The order of convergence of some iterative methods can be improved by three at the cost of introducing only one additional evaluation of the function in each step.Furthermore,some new efficient methods with a higher-order of convergence are obtained by using only a single matrix inversion in each iteration.Analyses of convergence properties and computational efficiency of these new methods are made and testified by several numerical problems.By comparison,the new schemes are more efficient than the corresponding existing ones,particularly for large problem sizes.展开更多
文摘[ Objective] To study the effects of different pretreatment methods on determination of microelement in feed and thus find the best pre treatment method for each microetement, t Method] The samples (concentrated feeding stuff and fodder) were pretreated through throe methods, that is, dry incineration method, HNOs HCIO, wetdecomposition method and microwave digestion method. Then the content of seven kinds of mi croelement (AI, Ca, Cu, Fe, Mn, Se and Zn) was determined by inductively coupled plasma atomic emission spectrometer (ICPAES). I Result] These three methods were all suitable for the determination of Cu, Mn and Zn in concentrated feeding stuff and the determination of Cu and Ca in fodder. The content of Cu and Ca was higher in fodder detected by HNO3 HCIO, wetdecomposition method. The microwave digestion method was suitable for the determination of AI and Ca in concentrated feeding stuff and the determination of AI, Fe, Mn and Zn in fodder. The dry incinera tion method was fit for the determination of Fe in concentrated feeding stuff. [ Condusionl The content of different microelements should be deter mined after the feed is treated with different Ioretreatment methods.
基金supported by the National Nature Science Foundation of China (Project No.20576023)the Natural Science Foundation of Guangdong Province (Project No.06025660).
文摘The Cu-Zr-Ce-O catalysts prepared using the coprecipitation method exhibited better catalytic performance for CO selective oxidation. The Cu-Zr-Ce-O catalysts pretreated with different methods were studied by CO-TPR and XPS techniques. The results showed that the Cu-Zr-Ce-O catalyst pretreated with oxygen exhibited the best catalytic performance and had the widest operating temperature window, with CO conversion above 99% from 160 to 200 ℃. The O2 pretreatment caused an enrichment of the oxygen storaged on the Cu active species and promoted the conversion of adsorbed oxygen into surface lattice oxygen. It also improved the amount of Cu+/Cu^2+ ionic pair, and then facilitated the formation of CuO active species on the catalyst for selective CO oxidation.
基金supported by the National Natural Science Foundation of China (No. 30870037, 30970552)the Funding of the National Creative Research Groups (No.50821002)+1 种基金the Aid Program for Science and Technology Innovative Research Team in Higher Educational Instituions of Heilongjiang Province (No. 2010TD10)the Harbin Normal University (No. KJTD2011-2)
文摘Five individual pretreatment methods, including three widely-used protocols (heat, acid and base) and two novel attempts (ultrasonic and ultraviolet), were conducted in batch tests to compare their effects on mixed microflora to enhance hydrogen (H2) production from corn stover hydrolysate. Experimental results indicated that heat and base pretreatments significantly increased H2 yield with the values of 5.03 and 4.45 mmol H2/g sugar utilized, respectively, followed by acid pretreatment of 3.21 mmol H2/g sugar utilized. However, compared with the control (2.70 mmol H2/g sugar utilized), ultrasonic and ultraviolet pretreatments caused indistinctive effects on H2 production with the values of 2.92 and 2.87 mmol H2/g sugar utilized, respectively. The changes of soluble metabolites composition caused by pretreatment were in accordance with H2-producing behavior. Concretely, more acetate accumulation and less ethanol production were found in pretreated processes, meaning that more reduced nicotinamide adenine dinucleotide (NADH) might be saved and flowed into H2-producing pathways. PCR-DGGE analysis indicated that the pretreatment led to the enrichment of some species, which appeared in large amounts and even dominated the microbial community. Most of the dominated species were affiliated to Enterobacter spp. and Escherichia spp. As another efflcient H2 producer, Clostridium bifermentan was only found in a large quantity after heat pretreatment. This strain might be mainly responsible for better performance of H2 production in this case.
基金supported by the National Natural Science Foundation of China (Grant nos.41422306 and 41673118)the National Basic Research Program of China (Grant no.2013CB430004)
文摘Mercury (Hg) stable isotope analysis can provide new insight for understanding the biogeochemistry and sources of Hg in the polar regions. To completely extract the low contents of Hg in polar samples and to avoid isotopic fractionation during the sample preparation stage, an effective and reliable pretreatment method is needed. In this work, two different pretreatment methods were compared for measuring Hg stable isotopes in Antarctic moss samples. One method was acid digestion (HNO3 : H2O2=5 : 3, v/v) and the second was a combustion-trapping treatment with a trapping solution (HNO3:HCl=2:1, v/v). There were no significant differences in the analytical results obtained with the two methods. The overall mean values and uncertainties of total Hg (THg) and the isotopic compositions of Hg in the referenced materials were all in good agreement with the certified and reported values, indicating that both methods were accurate and applicable. Acid digestion is highly efficient, while the combustion-trapping method can be used to treat samples with low Hg content. The proposed methods were successfully used to determine the Hg isotopic compositions in moss samples collected from the Antarctic.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIP)(No.2017R1A2A2A09069617)the Korea Ministry of Environment as a“Global Top Project”(No.2016002210005)
文摘In this study,we investigated the effect of sample pretreatments(ultrasonication and alkaline extraction)on total organic carbon(TOC)measurements for water samples containing suspended solids(SS)of four different origins(algae,soil,sewage sludge,and leaf litter)to more clearly assess the impact of particulate organic carbon(POC)in water.The effects each of ultrasonication(power,pulse,etc.)and alkaline extraction condition(concentration,time,etc.)on the TOC recovery and precision were investigated,and the results were compared with those of a new sample pre treatment method combining both methods.Alkaline treatment(0.01 mol/L NaOH)showed higher precision than ultrasonication(100/5 on/off pulse),and notably,the differences among the measured TOC values in samples of different origins were also further reduced in the alkaline treatment.This suggests that the ultrasonic pretreatment results can be mainly attributed to the increase in POC recovery through particle size reduction,whereas the alkaline treatment results are achieved through the enhancement of POC solubilization.It is also particularly noteworthy that a higher TOC recovery of 87.6%±7.4%with a higher precision of 8.4%could be obtained using the combined method,compared to each treatment(ultrasonic:TOC recovery 34.7%,relative standard deviation 63.1%;alkaline:49.6%and 23.0%,respectively).Thus,simultaneous pretreatment with ultrasonication and alkaline extraction is expected to increase the oxidation rate of organic matter and the homogeneity of the samples,minimizing the loss of POC measurement values,and thereby improving the reliability of the TOC measurements of water samples containing SS.
基金the Indian Institute of Technology, Kharagpur, West Bengal, 721302, for providing technical and financial support for the research。
文摘Millets are widely recognized for their nutritional significance;however, the methods employed for their processing are currently lacking. This article primarily focuses on the advanced technologies and progressions in millet dehulling and polishing. These technologies operate based on the fundamental principles of compression-shearing, abrasion-friction, and centrifugal-impact forces. Processing of millets can be challenging because of the physical characteristics and tight attachment of hull and bran to the endosperm. However, several dehullers have been designed to solve this problem for different kinds of millets. In addition, the nutritional and anti-nutritional characteristics undergo alterations due to both dehulling and polishing processes. These alterations are thoroughly examined and discussed in this article. Specifically, anti-nutrients such as tannins and phytate are predominantly found in the outer pericarp of the grain and experience a reduction after undergoing dehulling and polishing. The nutritional properties are also subjected to a reduction;however, this reduction can be mitigated by subjecting the grains to certain pretreatments before dehulling and polishing. These treatments serve to enhance dehulling efficiency and nutrient digestibility while simultaneously reducing the presence of anti-nutrients. Novel thermal and non-thermal methodologies such as microwave, hydrothermal, high-pressure processing, and ohmic heating can be employed for processing millets, thereby diminishing the loss of nutrients. Additional research can be carried out to investigate their impact on the dehulling and polishing of millets.
文摘Sugarcane shoots and leaves consist of 35.2% cellulose, 23.43% hemicellulose, 12.6% lignin and 6.59% ash on dry solid (DS) basis and have the potential to serve as low cost feedstocks for ethanol production. To improve the enzymatic digestibility of these biomass and bioethanol production, three pretreatment methods had been investigated and compared, including: (1) 2% w/v NaOH solution autoclaving pretreatment; (2) 2% w/v H2SO4 solution autoclaving pretreatment and (3) two steps of 2% w/v NaOH solution autoclaving followed by 2% w/v H2SO4 solution autoclaving pretreatment. Among them, the best result for ethanol production was obtained when 15 g DS of sugarcane shoots and leaves was pretreated by using two step of 2% w/v NaOH solution autoclaving followed by 2% w/v H2SO4 solution autoclaving. The highest ethanol concentration 30.40 g/L (92.65% in fermentation efficiency) was obtained from reducing sugar 89.25 g/L at 48 h. Moreover, the washing step of solid residue after pretreatment could reduce furfural and hydroxymethylfurfural (HMF) in all pretreatment methods when compared to unwashing solid residue after pretreatment.
基金supported by the Innovation Foundation of Provincial Education Department of Gansu(2024B-005)the Gansu Province National Science Foundation(22YF7GA182)the Fundamental Research Funds for the Central Universities(No.lzujbky2022-kb01)。
文摘Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems.
基金supported by the National Natural Science Foundation of China(12172023).
文摘The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytical solutions for free vibration and eigenbuckling of rectangular plates and circular cylindrical shells.By taking the free vibration of rectangular thin plates as an example,this work presents the theoretical framework of the SOV methods in an instructive way,and the bisection–based solution procedures for a group of nonlinear eigenvalue equations.Besides,the explicit equations of nodal lines of the SOV methods are presented,and the relations of nodal line patterns and frequency orders are investigated.It is concluded that the highly accurate SOV methods have the same accuracy for all frequencies,the mode shapes about repeated frequencies can also be precisely captured,and the SOV methods do not have the problem of missing roots as well.
基金funded by the National Natural Science Foundation of China(No.41962016)the Natural Science Foundation of NingXia(Nos.2023AAC02023,2023A1218,and 2021AAC02006).
文摘Soil improvement is one of the most important issues in geotechnical engineering practice.The wide application of traditional improvement techniques(cement/chemical materials)are limited due to damage ecological en-vironment and intensify carbon emissions.However,the use of microbially induced calcium carbonate pre-cipitation(MICP)to obtain bio-cement is a novel technique with the potential to induce soil stability,providing a low-carbon,environment-friendly,and sustainable integrated solution for some geotechnical engineering pro-blems in the environment.This paper presents a comprehensive review of the latest progress in soil improvement based on the MICP strategy.It systematically summarizes and overviews the mineralization mechanism,influ-encing factors,improved methods,engineering characteristics,and current field application status of the MICP.Additionally,it also explores the limitations and correspondingly proposes prospective applications via the MICP approach for soil improvement.This review indicates that the utilization of different environmental calcium-based wastes in MICP and combination of materials and MICP are conducive to meeting engineering and market demand.Furthermore,we recommend and encourage global collaborative study and practice with a view to commercializing MICP technique in the future.The current review purports to provide insights for engineers and interdisciplinary researchers,and guidance for future engineering applications.
基金Supported by the National Natural Science Foundation of China(Nos.52222904 and 52309117)China Postdoctoral Science Foundation(Nos.2022TQ0168 and 2023M731895).
文摘Ocean energy has progressively gained considerable interest due to its sufficient potential to meet the world’s energy demand,and the blade is the core component in electricity generation from the ocean current.However,the widened hydraulic excitation frequency may satisfy the blade resonance due to the time variation in the velocity and angle of attack of the ocean current,even resulting in blade fatigue and destructively interfering with grid stability.A key parameter that determines the resonance amplitude of the blade is the hydrodynamic damping ratio(HDR).However,HDR is difficult to obtain due to the complex fluid-structure interaction(FSI).Therefore,a literature review was conducted on the hydrodynamic damping characteristics of blade-like structures.The experimental and simulation methods used to identify and obtain the HDR quantitatively were described,placing emphasis on the experimental processes and simulation setups.Moreover,the accuracy and efficiency of different simulation methods were compared,and the modal work approach was recommended.The effects of key typical parameters,including flow velocity,angle of attack,gap,rotational speed,and cavitation,on the HDR were then summarized,and the suggestions on operating conditions were presented from the perspective of increasing the HDR.Subsequently,considering multiple flow parameters,several theoretical derivations and semi-empirical prediction formulas for HDR were introduced,and the accuracy and application were discussed.Based on the shortcomings of the existing research,the direction of future research was finally determined.The current work offers a clear understanding of the HDR of blade-like structures,which could improve the evaluation accuracy of flow-induced vibration in the design stage.
基金Project(BGRIMM-KJSKL-2024-07) supported by the Open Foundation of State Key Laboratory of Mineral Processing,ChinaProjects(52374259,52174239) supported by the National Natural Science Foundation of China。
文摘Surface pretreatment can change the surface properties of minerals,placing them in either a favorable or an unfavorable state for flotation.To solve the separation problem associated with magnesite and dolomite,surface pretreatment experiments with citric acid,tartaric acid,and tannic acid(TA)on magnesite and dolomite as well as flotation experiments on pretreated samples were performed in this study.Experimental results demonstrated that when citric acid and tartaric acid are used for surface pretreatment,the separation effect of magnesite and dolomite is poor.However,when TA is used,the separation effect of magnesite and dolomite improves.SEM and BET analysis indicated that surface pretreatment with TA changes the surface morphology of the two minerals,resulting in additional concave pores on the dolomite surface,and a significant increase in pore size and specific surface area.The adsorption quantity test and contact angle measurement demonstrated that after surface pretreatment with TA,the magnesite adsorption capacity on sodium oleate(NaOL)slightly decreases and the dolomite adsorption capacity on NaOL considerably decreases.XPS detection concluded that the surface pretreatment of TA on the magnesite surface mainly relies on physical adsorption with weak adsorption ability and poor ability to act on Mg sites.The TA surface pretreatment action on the dolomite surface is mainly through chemical adsorption,and it is strongly and selectively adsorbed on the Ca site of dolomite through O.Actual ore rough selection experiments reveal that TA pretreatment successfully removes dolomite from magnesite,resulting in a high-quality magnesite concentrate characterized by a MgO grade of 45.49%and a CaO grade of 0.75%.
基金funded by the Latvian State Institute of Wood Chemistry Bioeconomic Research Grant No.09-24 titled“Selective Valorization of Lignocellulosic Biomass(SeVaLi)”.
文摘Oat husks,a byproduct of oat milling operations with limited economic value,present a promising feedstock for biorefinery processes due to their chemical composition.This study investigates the conversion of C5 carbohydrates in oat husks into furfural through hydrothermal pretreatment using various phosphate-based catalysts,including H_(3)PO_(4),NH_(4)H_(2)PO_(4),NaH_(2)PO_(4),KH_(2)PO_(4),K_(2)HPO_(4) and K_(3)PO_(4) as catalyst.The catalysts’effectiveness in promoting furfural production was evaluated under identical hydrothermal conditions(treatment time for 60 min at a constant temperature of 170℃ and a catalyst amount).Continuous water steam was used to strip furfural from the reaction zone and minimize its degradation.Results indicated that H_(3)PO_(4) was the most effective catalyst,achieving a furfural yield of 13.99 wt.%,which corresponds to approximately 57%of the theoretical yield.NH4H2PO4 also showed moderate effectiveness,while sodium and potassium phosphate salts were significantly less effective.A scanning electron microscope analysis shows that catalysts with lower pH may disrupt the oat husks external layer thus providing a higher C5 carbohydrates conversion rate into furfural.The chemical complexity of oat husk contributes to side reactions between its carbohydrates and lignin during the hydrothermal treatment.This results in an increase in acid-insoluble lignin and inorganic matter in the oat husk lignocellulosic residue,which can reduce the effectiveness of further cellulose saccharification by enzymatic hydrolysis.
基金supported by the National Key Research and Development Project (Nos.2020YFC1908702 and 2021YFC3200700)the National Natural Science Foundation of China (Nos.52192684 and 52192680).
文摘Sewage sludge in cities of Yangzi River Belt,China,generally exhibits a lower organic content and higher silt contentdue to leakage of drainage system,which caused low bioenergy recovery and carbon emission benefits in conventional anaerobic digestion(CAD).Therefore,this paper is on a pilot scale,a bio-thermophilic pretreatment anaerobic digestion(BTPAD)for low organic sludge(volatile solids(VS)of 4%)was operated with a long-term continuous flow of 200 days.The VS degradation rate and CH_(4) yield of BTPAD increased by 19.93%and 53.33%,respectively,compared to those of CAD.The analysis of organic compositions in sludge revealed that BTPAD mainly improved the hydrolysis of proteins in sludge.Further analysis of microbial community proportions by high-throughput sequencing revealed that the short-term bio-thermophilic pretreatment was enriched in Clostridiales,Coprothermobacter and Gelria,was capable of hydrolyzing acidified proteins,and provided more volatile fatty acid(VFA)for the subsequent reaction.Biome combined with fluorescence quantitative polymerase chain reaction(PCR)analysis showed that the number of bacteria with high methanogenic capacity in BTPAD was much higher than that in CAD during the medium temperature digestion stage,indicating that short-term bio-thermophilic pretreatment could provide better methanogenic conditions for BTPAD.Furthermore,the greenhouse gas emission footprint analysis showed that short-term bio-thermophilic pretreatment could reduce the carbon emission of sludge anaerobic digestion system by 19.18%.
基金supported by grants from the National Science Foundation of China(Grant Nos.12375038 and 12075171 to ZJT,and 12205223 to YLT).
文摘RNAs have important biological functions and the functions of RNAs are generally coupled to their structures, especiallytheir secondary structures. In this work, we have made a comprehensive evaluation of the performances of existingtop RNA secondary structure prediction methods, including five deep-learning (DL) based methods and five minimum freeenergy (MFE) based methods. First, we made a brief overview of these RNA secondary structure prediction methods.Afterwards, we built two rigorous test datasets consisting of RNAs with non-redundant sequences and comprehensivelyexamined the performances of the RNA secondary structure prediction methods through classifying the RNAs into differentlength ranges and different types. Our examination shows that the DL-based methods generally perform better thanthe MFE-based methods for RNAs with long lengths and complex structures, while the MFE-based methods can achievegood performance for small RNAs and some specialized MFE-based methods can achieve good prediction accuracy forpseudoknots. Finally, we provided some insights and perspectives in modeling RNA secondary structures.
文摘Understanding the wind power potential of a site is essential for designing an optimal wind power conditioning system. The Weibull distribution and wind speed extrapolation methods are powerful mathematical tools for efficiently predicting the frequency distribution of wind speeds at a site. Hourly wind speed and direction data were collected from the National Aeronautics and Space Administration (NASA) website for the period 2013 to 2023. MATLAB software was used to calculate the distribution parameters using the graphical method and to plot the corresponding curves, while WRPLOTView software was used to construct the wind rose. The average wind speed obtained is 3.33 m/s and can reach up to 5.71 m/s at a height of 100 meters. The wind energy is estimated to be 1315.30 kWh/m2 at a height of 100 meters. The wind rose indicates the prevailing winds (ranging from 3.60 m/s to 5.70 m/s) in the northeast-east direction.
文摘The authors regret that due to negligence,the picture was misplaced in the original manuscript,resulting in Fig.6d being incorrectly included.The correct version of Fig.6d is provided below for reference.This error does not affect the conclusions of the study,and we apologize for any confusion it may have caused.
文摘Purpose–For the commonly used concrete mix for railway tunnel linings,concrete model specimens were made,and springback and core drilling tests were conducted at different ages.The springback strength was measured to the compressive strength of the core sample with a diameter of 100mm and a height-to-diameter ratio of 1:1.By comparing the measured strength values,the relationship between the measured values under different strength measurement methods was analyzed.Design/methodology/approach–A comparative test of the core drilling method and the rebound method was conducted on the side walls of tunnel linings in some under-construction railways to study the feasibility of the rebound method in engineering quality supervision and inspection.Findings–Tests showed that the rebound strength was positively correlated with the core drill strength.The core drill test strength was significantly higher than the rebound test strength,and the strength still increased after 56 days of age.The rebound method is suitable for the general survey of concrete strength during the construction process and is not suitable for direct supervision and inspection.Originality/value–By studying the correlation of test strength of tunnel lining concrete using two methods,the differences in test results of different methods are proposed to provide a reference for the test and evaluation of tunnel lining strength in railway engineering.
基金supported by the National Natural Science Foundation of China(No.92252201)the Fundamental Research Funds for the Central Universitiesthe Academic Excellence Foundation of Beihang University(BUAA)for PhD Students。
文摘Efficient and accurate simulation of unsteady flow presents a significant challenge that needs to be overcome in computational fluid dynamics.Temporal discretization method plays a crucial role in the simulation of unsteady flows.To enhance computational efficiency,we propose the Implicit-Explicit Two-Step Runge-Kutta(IMEX-TSRK)time-stepping discretization methods for unsteady flows,and develop a novel adaptive algorithm that correctly partitions spatial regions to apply implicit or explicit methods.The novel adaptive IMEX-TSRK schemes effectively handle the numerical stiffness of the small grid size and improve computational efficiency.Compared to implicit and explicit Runge-Kutta(RK)schemes,the IMEX-TSRK methods achieve the same order of accuracy with fewer first derivative calculations.Numerical case tests demonstrate that the IMEX-TSRK methods maintain numerical stability while enhancing computational efficiency.Specifically,in high Reynolds number flows,the computational efficiency of the IMEX-TSRK methods surpasses that of explicit RK schemes by more than one order of magnitude,and that of implicit RK schemes several times over.
基金Supported by the National Natural Science Foundation of China(12061048)NSF of Jiangxi Province(20232BAB201026,20232BAB201018)。
文摘In this paper,a new technique is introduced to construct higher-order iterative methods for solving nonlinear systems.The order of convergence of some iterative methods can be improved by three at the cost of introducing only one additional evaluation of the function in each step.Furthermore,some new efficient methods with a higher-order of convergence are obtained by using only a single matrix inversion in each iteration.Analyses of convergence properties and computational efficiency of these new methods are made and testified by several numerical problems.By comparison,the new schemes are more efficient than the corresponding existing ones,particularly for large problem sizes.