期刊文献+
共找到142篇文章
< 1 2 8 >
每页显示 20 50 100
Optimal oxide-aperture for improving the power conversion efficiency of VCSEL arrays
1
作者 王文娟 李冲 +4 位作者 周弘毅 武华 栾信信 史磊 郭霞 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第2期181-185,共5页
The maximum power conversion efficiencies of the top-emitting,oxide-confined,two-dimensional integrated 2×2 and4×4 vertical-cavity surface-emitting laser(VCSEL) arrays with the oxide-apertures of 6 μm,16 ... The maximum power conversion efficiencies of the top-emitting,oxide-confined,two-dimensional integrated 2×2 and4×4 vertical-cavity surface-emitting laser(VCSEL) arrays with the oxide-apertures of 6 μm,16 μm,19 μm,26 μm,29 μm,36 μm,39 μm,and 46 urn are fabricated and characterized,respectively.The maximum power conversion efficiencies increase rapidly with the augment of oxide-aperture at the beginning and then decrease slowly.A maximum value of27.91%at an oxide-aperture of 18.6 μm is achieved by simulation.The experimental data are well consistent with the simulation results,which are analyzed by utilizing an empirical model. 展开更多
关键词 vertical-cavity surface-emitting laser arrays power conversion efficiency oxide-aperture
原文传递
Optimizing the power conversion processes in diluted donor/acceptor heterojunctions towards 19.4%efficiency all-polymer solar cells
2
作者 Liang Wang Chen Chen +11 位作者 Zirui Gan Chenhao Liu Chuanhang Guo Weiyi Xia Wei Sun Jingchao Cheng Yuandong Sun Jing Zhou Zexin Chen Dan Liu Wei Li Tao Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期345-350,共6页
All polymer solar cells(all-PSCs)promise mechanically-flexible and morphologically-stable organic photovoltaics and have aroused increased interests very recently.However,due to their disorderly conformation structure... All polymer solar cells(all-PSCs)promise mechanically-flexible and morphologically-stable organic photovoltaics and have aroused increased interests very recently.However,due to their disorderly conformation structures within the photoactive film,inefficient charge generation and carrier transport are observed which lead to inferior photovoltaic performance compared to smaller molecular acceptor-based photovoltaics.Here,by diluting PM6 with a cutting-edge polymeric acceptor PY-IT and diluting PY-IT with PM6 or D18,donor-dominating or acceptor-dominating heterojunctions were prepared.Synchrotron X-ray and multiple spectrometer techniques reveal that the diluted heterojunctions receive increased structural order,translating to enhanced carrier mobility,improved exciton diffusion length,and suppressed non-radiative recombination loss during the power conversion.As the results,the corresponding PM6+1%PY-IT/PY-IT+1%D18 and PM6+1%PY-IT/PY-IT+1%PM6 devices fabricated by layer-by-layer deposition received superior power conversion efficiency(PCE)of 19.4%and 18.8%respectively,along with enhanced operational lifetimes in air,outperforming the PCE of 17.5%in the PM6/PY-IT reference device. 展开更多
关键词 All-polymer solar cells power conversion efficiency Structural order Charge generation
在线阅读 下载PDF
Ternary organic solar cells offer 14% power conversion efficiency 被引量:52
3
作者 Zuo Xiao Xue Jia Liming Ding 《Science Bulletin》 SCIE EI CAS CSCD 2017年第23期1562-1564,共3页
Organic solar cells (OSCs) have advantages like light-weight, flexibility, colorfulness and solution processability [1 ]. The active layer of OSCs generally contains two organic semiconductors: an electron donor an... Organic solar cells (OSCs) have advantages like light-weight, flexibility, colorfulness and solution processability [1 ]. The active layer of OSCs generally contains two organic semiconductors: an electron donor and an electron acceptor. The donor and acceptor make nanoscale phase separation to allow efficient exciton dissociation and also form a three-dimensional (3D) passage to rapidly transfer free charge carriers to respective electrodes. 展开更多
关键词 Ternary organic solar cells power conversion efficiency
原文传递
Dual‑Donor‑Induced Crystallinity Modulation Enables 19.23% Efficiency Organic Solar Cells
4
作者 Anhai Liang Yuqing Sun +9 位作者 Sein Chung Jiyeong Shin Kangbo Sun Chaofeng Zhu Jingjing Zhao Zhenmin Zhao Yufei Zhong Guangye Zhang Kilwon Cho Zhipeng Kan 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期376-388,共13页
Trap-assisted charge recombination is one of the primary limitationsof restricting the performance of organic solar cells. However, effectivelyreducing the presence of traps in the photoactive layer remains challengin... Trap-assisted charge recombination is one of the primary limitationsof restricting the performance of organic solar cells. However, effectivelyreducing the presence of traps in the photoactive layer remains challenging.Herein, wide bandgap polymer donor PTzBI-dF is demonstrated as an effectivemodulator for enhancing the crystallinity of the bulk heterojunction active layerscomposed of D18 derivatives blended with Y6, leading to dense and orderedmolecular packings, and thus, improves photoluminescence quenching properties.As a result, the photovoltaic devices exhibit reduced trap-assisted charge recombinationlosses, achieving an optimized power conversion efficiency of over 19%.Besides the efficiency enhancement, the devices comprised of PTzBI-dF as athird component simultaneously attain decreased current leakage, improved chargecarrier mobilities, and suppressed bimolecular charge recombination, leading toreduced energy losses. The advanced crystalline structures induced by PTzBI-dFand its characteristics, such as well-aligned energy level, and complementaryabsorption spectra, are ascribed to the promising performance improvements.Our findings suggest that donor phase engineering is a feasible approach to tuning the molecular packings in the active layer, providingguidelines for designing effective morphology modulators for high-performance organic solar cells. 展开更多
关键词 Trap-assisted charge recombination PHOTOLUMINESCENCE MISCIBILITY Current leakage power conversion efficiency
在线阅读 下载PDF
A High Power Conversion Efficiency L-Band Erbium Doped Fiber Amplifier
5
作者 Z.G. Lu C.P. Grover 《光学学报》 EI CAS CSCD 北大核心 2003年第S1期383-384,共2页
By using two sections of erbium doped fiber and a fiber optical reflector, a novel, highly efficient L-band amplifier is demonstrated with significantly power-conversion-efficiency enhancement and the gain increasing ... By using two sections of erbium doped fiber and a fiber optical reflector, a novel, highly efficient L-band amplifier is demonstrated with significantly power-conversion-efficiency enhancement and the gain increasing of as much as 13 dB. 展开更多
关键词 EDFA as of LENGTH high with A High power conversion efficiency L-Band Erbium Doped Fiber Amplifier ASE been for
原文传递
P-doped all-small-molecule organic solar cells with power conversion efficiency of 17.73%
6
作者 Wanying Feng Kangqiao Ma +10 位作者 Guangkun Song Tianyin Shao Huazhe Liang Shudi Lu Yu Chen Guankui Long Chenxi Li Xiangjian Wan Zhaoyang Yao Bin Kan Yongsheng Chen 《Science China Chemistry》 SCIE EI CAS CSCD 2023年第8期2371-2379,共9页
All-small organic solar cells(ASM OSCs)inherit the advantages of the distinct merits of small molecules,such as well-defined structures and less batch-to-batch variation.In comparison with the rapid development of pol... All-small organic solar cells(ASM OSCs)inherit the advantages of the distinct merits of small molecules,such as well-defined structures and less batch-to-batch variation.In comparison with the rapid development of polymer-based OSCs,more efforts are needed to devote to improving the performance of ASM OSCs to close the performance gap between ASM and polymer-based OSCs.Herein,a well-known p-dopant named fluoro-7,7,8,8-tetracyano-p-quinodimethane(FTCNQ)was introduced to a highefficiency system of HD-1:BTP-e C9,and a high power conversion efficiency(PCE)of 17.15%was achieved due to the improved electrical properties as well as better morphology of the active layer,supported by the observed higher fill factor(FF)of 79.45%and suppressed non-radiative recombination loss.Furthermore,combining with the further morphology optimization from solvent additive of 1-iodonaphthalene(IN)in the blend film,the HD-1:BTP-e C9-based device with the synergistic effects of both FTCNQ and IN demonstrates a remarkable PCE of 17.73%(certified as 17.49%),representing the best result of binary ASM OSCs to date. 展开更多
关键词 organic solar cells all-small-molecule power conversion efficiency p-dopant
原文传递
Surpassing Shockley-Queisser Efficiency Limit in Photovoltaic Cells
7
作者 Zhigang Li Bingqing Wei 《Nano-Micro Letters》 2025年第12期804-808,共5页
The Shockley-Queisser(S-Q)model sets a theoretical limit on the power conversion efficiency(PCE)of single-junction solar cells at around 33%.Recently,a PCE of 50%-60%was achieved for the first time in n-type singlejun... The Shockley-Queisser(S-Q)model sets a theoretical limit on the power conversion efficiency(PCE)of single-junction solar cells at around 33%.Recently,a PCE of 50%-60%was achieved for the first time in n-type singlejunction Si solar cells by inhibiting light conversion to heat at low temperatures.Understanding these new observations opens tremendous opportunities for designing solar cells with even higher PCE to provide efficient and powerful energy sources for cryogenic devices and outer and deep space explorations. 展开更多
关键词 Single-junction Si solar cells power conversion efficiency Shockley-Queisser model Carrier freeze-out effect
在线阅读 下载PDF
High Efficiency Formamidinium-Cesium Perovskite-Based Radio-Photovoltaic Cells 被引量:2
8
作者 Runlong Gao Rui Chen +10 位作者 Pengying Wan Xiao Ouyang Qiantao Lei Qi Deng Xinyu Guan Guangda Niu Jiang Tang Wei Chen Zonghao Liu Xiaoping Ouyang Linyue Liu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期160-167,共8页
Radio-photovoltaic cell is a micro nuclear battery for devices operating in extreme environments,which converts the decay energy of a radioisotope into electric energy by using a phosphor and a photovoltaic converter.... Radio-photovoltaic cell is a micro nuclear battery for devices operating in extreme environments,which converts the decay energy of a radioisotope into electric energy by using a phosphor and a photovoltaic converter.Many phosphors with high light yield and good environmental stability have been developed,but the performance of radio-photovoltaic cells remains far behind expectations in terms of power density and power conversion efficiency,because of the poor photoelectric conversion efficiency of traditional photovoltaic converters under low-light conditions.This paper reports an radio-photovoltaic cell based on an intrinsically stable formamidinium-cesium perovskite photovoltaic converter exhibiting a wide light wavelength response from 300 to 800 nm,high open-circuit voltage(V_(oc)),and remarkable efficiency at low-light intensity.When a He ions accelerator is adopted as a mimickedαradioisotope source with an equivalent activity of 0.83 mCi cm^(-2),the formamidinium-cesium perovskite radio-photovoltaic cell achieves a V_(oc)of 0.498 V,a short-circuit current(J_(sc))of 423.94 nA cm^(-2),and a remarkable power conversion efficiency of 0.886%,which is 6.6 times that of the Si reference radio-photovoltaic cell,as well as the highest among all radio-photovoltaic cells reported so far.This work provides a theoretical basis for enhancing the performance of radio-photovoltaic cells. 展开更多
关键词 formamidinium-cesium perovskite PHOSPHOR photovoltaic converter power conversion efficiency radio-photovoltaic cell
在线阅读 下载PDF
Enhancing the crystallinity and stability of perovskite solar cells with 4-tert-butylpyridine induction for efficiency exceeding 24%
9
作者 You Liu Lishuang Zheng +15 位作者 Kuanxiang Zhang Kun Xu Weicheng Xie Jue Zhang Yulu Tian Tianyuan Liu Hanzhong Xu Ruoming Ma Wei Huang Jiahui Chen Jusheng Bao Chen Chen Yongsheng Zhou Xuchun Wang Junming Chen Jungan Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期1-7,I0001,共8页
Perovskite solar cells(PSCs)have emerged as a promising photovoltaic technology because of their high light absorption coefficient,long carrier diffusion distance,and tunable bandgap.However,PSCs face challenges such ... Perovskite solar cells(PSCs)have emerged as a promising photovoltaic technology because of their high light absorption coefficient,long carrier diffusion distance,and tunable bandgap.However,PSCs face challenges such as hysteresis effects and stability issues.In this study,we introduced a novel approach to improve film crystallization by leveraging 4-tert-butylpyridine(TBP)molecules,thereby enhancing the performance and stability of PSCs.Our findings demonstrate the effective removal of PbI_(2)from the perovskite surface through strong coordination with TBP molecules.Additionally,by carefully adjusting the concentration of the TBP solution,we achieved enhanced film crystallinity without disrupting the perovskite structure.The TBP-treated perovskite films exhibit a low defect density,improved crystallinity,and improved carrier lifetime.As a result,the PSCs manufactured with TBP treatment achieve power conversion efficiency(PCE)exceeding 24%.Moreover,we obtained the PCE of 21.39%for the 12.25 cm^(2)module. 展开更多
关键词 4-tert-butylpyridine Film crystallization Perovskite solar cells power conversion efficiency Stability improvement
在线阅读 下载PDF
Highly Efficient Power Conversion from Salinity Gradients with Ion-Selective Polymeric Nanopores
10
作者 凌云 闫东晓 +4 位作者 王鹏飞 汪茂 文琪 刘峰 王宇钢 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第9期91-94,共4页
A polymeric nanopore membrane with selective ionic transport has been proposed as a potential device to convert the chemical potential energy in salinity gradients to electrical power. However, its energy conversion e... A polymeric nanopore membrane with selective ionic transport has been proposed as a potential device to convert the chemical potential energy in salinity gradients to electrical power. However, its energy conversion efficiency and power density are often limited due to the challenge in reliably controlling the size of the nanopores with the conventional chemical etching method. Here we report that without chemical etching, polyimide (PI) membranes irradiated with GeV heavy ions have negatively charged nanopores, showing nearly perfect selectivity for cations over anions, and they can generate electrical power from salinity gradients. We further demonstrate that the power generation efficiency of the PI membrane approaches the theoretical limit, and the maximum power density reaches 130m W/m2 with a modified etching method, outperforming the previous energy conversion device that was made of polymeric nanopore membranes. 展开更多
关键词 of on in from with Highly Efficient power conversion from Salinity Gradients with Ion-Selective Polymeric Nanopores
原文传递
Manipulation strategy of cation inhomogeneity in perovskite solar cells 被引量:1
11
作者 Jiale Sun Xuxia Shai +6 位作者 Weitao chen Shenchao Li Jinlan He Xinxing Liu Dongmei He Yue Yu Jiangzhao Chen 《Journal of Semiconductors》 2025年第5期9-12,共4页
In recent years, the research advancements have high-lighted the critical role of the A-site cation in determining the optoelectronic and physicochemical properties of organicinorganic lead halide perovskites. Mixed-c... In recent years, the research advancements have high-lighted the critical role of the A-site cation in determining the optoelectronic and physicochemical properties of organicinorganic lead halide perovskites. Mixed-cation perovskites(MCPs) have been extensively used as absorber thin films in perovskite solar cells(PSCs), achieving high power conversion efficiencies(PCE) over 26%^([1, 2]). 展开更多
关键词 cation inhomogeneity perovskite solar cells pscs perovskite solar cells absorber thin films mixed cation perovskites organicinorganic lead halide perovskites power conversion efficiency
在线阅读 下载PDF
Tailoring the configuration of polymer passivators in perovskite solar cells
12
作者 Yaohua Li Qi Cao Xuanhua Li 《Chinese Journal of Structural Chemistry》 2025年第2期10-13,共4页
The rapid advancement of metal halide perovskites can be attributed to their exceptional optoelectronic properties and facile solution processing technique.Noteworthy strides have been achieved in the realm of perovsk... The rapid advancement of metal halide perovskites can be attributed to their exceptional optoelectronic properties and facile solution processing technique.Noteworthy strides have been achieved in the realm of perovskite solar cells(PSCs),with a certified power conversion efficiency(PCE)escalating to 26.7%over the course of a decade,positioning them as promising contenders for next-generation photovoltaic technologies[1].However,the formation of crystal defects,including anion/cation vacancies,Pb–I antisite defects,and uncoordinated Pb^(2+),along the surface and grain boundaries(GBs)of perovskite layers during the solution processing stage poses a significant challenge,compromising the photoelectric performance and stability of PSCs. 展开更多
关键词 antisite d perovskite solar cells optoelectronic properties metal halide perovskites perovskite solar cells pscs power conversion efficiency crystal defects anion cation vacancies
原文传递
Non-conjugated polymer as printable electron transport layer for efficient and stable organic photovoltaic cells
13
作者 Hao Hou Qian Kang +5 位作者 Yafei Wang Wenxuan Wang Jianqiu Wang Yong Cui Qing Liao Jianhui Hou 《Journal of Energy Chemistry》 2025年第6期835-842,I0017,共9页
With the continuous improvement of photovoltaic efficiency in the organic photovoltaic(OPV),interface engineering has emerged as a pivotal issue in their practical deployment.Currently,the robust crystallinity of smal... With the continuous improvement of photovoltaic efficiency in the organic photovoltaic(OPV),interface engineering has emerged as a pivotal issue in their practical deployment.Currently,the robust crystallinity of small molecule electron transport layers(ETLs)and the poor film-forming abilities of conjugated polymer ETLs are a huge obstacle in this field.Herein,an innovative and efficient nonconjugated polymer ETL,namely PNDI-SO,which contains polar cationic segments for solubility and conjugated units for efficient charge transport in stable OPV cells,is reported.Endowed with suitable energy levels and excellent electron extraction capabilities,PNDI-SO-based OPV cells attain a power conversion efficiency(PCE)of 18.54%.Furthermore,compared with conventional OPV cells utilizing PFN-Br or PDINN,PNDI-SO substantially enhances long-term stability under continuous illumination,evidenced by a T80 lifetime(signifying retention of 80% of initial performance)exceeding 1250 h.Notably,through scanning electron microscope,we verified that PNDI-SO achieves a harmonious balance between film-forming ability and charge transport properties for ETL,enabling the blade-coating OPV based on PBDB-TF:BTP-eC9 to achieve a PCE of 17.47%.These results suggest the potential of PNDI-SO as a promising interface material for industrial printing applications in OPV fabrication. 展开更多
关键词 Organic solar cell Electron transport layer power conversion efficiency Naphthalene diimide Blade-coating
在线阅读 下载PDF
A new perspective to develop regiorandom polymer acceptors with high active layer ductility,excellent device stability,and high efficiency approaching 17% 被引量:4
14
作者 Qunping Fan Ruijie Ma +10 位作者 Wenyan Su Qinglian Zhu Zhenghui Luo Kai Chen Yabing Tang Francis RLin Yuxiang Li He Yan Chuluo Yang Alex K.-Y.Jen Wei Ma 《Carbon Energy》 SCIE CSCD 2023年第2期216-224,共9页
The recently reported efficient polymerized small-molecule acceptors(PSMAs)usually adopt a regioregular backbone by polymerizing small-molecule acceptors precursors with a low-reactivity 5-brominated 3-(dicyanomethyli... The recently reported efficient polymerized small-molecule acceptors(PSMAs)usually adopt a regioregular backbone by polymerizing small-molecule acceptors precursors with a low-reactivity 5-brominated 3-(dicyanomethylidene)indan-1-one(IC)end group or its derivatives,leading to low molecular weight,and thus reduce active layer mechanical properties.Herein,a series of newly designed chlorinated PSMAs originating from isomeric IC end groups are developed by adjusting chlorinated positions and copolymerized sites on end groups to achieve high molecular weight,favorable intermolecular interaction,and improved physicochemical properties.Compared with regioregular PY2Se-Cl-o and PY2Se-Cl-m,regiorandom PY2Se-Cl-ran has a similar absorption profile,moderate lowest unoccupied molecular orbital level,and favorable intermolecular packing and crystallization properties.Moreover,the binary PM6:PY2Se-Cl-ran blend achieves better ductility with a crack-onset strain of 17.5% and improved power conversion efficiency(PCE)of 16.23% in all-polymer solar cells(all-PSCs)due to the higher molecular weight of PY2Se-Cl-ran and optimized blend morphology,while the ternary PM6:J71:PY2Se-Cl-ran blend offers an impressive PCE approaching 17% and excellent device stability,which are all crucial for potential practical applications of all-PSCs in wearable electronics.To date,the efficiency of 16.86% is the highest value reported for the regiorandom PSMAs-based all-PSCs and is also one of the best values reported for the all-PSCs.Our work provides a new perspective to develop efficient all-PSCs,with all high active layer ductility,impressive PCE,and excellent device stability,towards practical applications. 展开更多
关键词 all-polymer solar cells CHLORINATION DUCTILITY power conversion efficiency regiorandom polymer acceptors
在线阅读 下载PDF
Novel polymer acceptors achieving 10.18% efficiency for all-polymer solar cells 被引量:3
15
作者 Shaorong Huang Feiyan Wu +3 位作者 Zuoji Liu Yongjie Cui Lie Chena Yiwang Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第2期63-68,I0003,共7页
Polymer acceptors based on extended fused ring p skeleton has been proven to be promising candidates for all-polymer solar cells(all-PSCs), due to their remarkable improved light absorption than the traditional imide-... Polymer acceptors based on extended fused ring p skeleton has been proven to be promising candidates for all-polymer solar cells(all-PSCs), due to their remarkable improved light absorption than the traditional imide-based polymer acceptors. To expand structural diversity of the polymer acceptors, herein,two polymer acceptors PSF-IDIC and PSi-IDIC with extended fused ring p skeleton are developed by copolymerization of 2,20-((2 Z,20 Z)-((4,4,9,9-tetrahexadecyl-4,9-dihydro-s-indaceno [1,2-b:5,6-b']dithio phene-2,7-diyl)bis(methanylylidene))bis(3-oxo-2,3-dihydro-1 H-indene-2,1-diylidene))dimalononitrile(IDIC-C16) block with sulfur(S) and fluorine(F) functionalized benzodithiophene(BDT) unit and silicon(Si) atom functionalized BDT unit, respectively. Both polymer acceptors exhibit strong light absorption.The PSF-IDIC exhibits similar energy levels and slightly higher absorption coefficient relative to the PSi-IDIC. After blended with the donor polymer PM6, the functional atoms on the polymer acceptors show quite different effect on the device performance. Both of the acceptors deliver a notably high open circuit voltage(V_(OC)) of the devices, but PSi-IDIC achieves higher V OCthan PSF-IDIC. All-PSC based on PM6:PSi-IDIC attains a power conversion efficiency(PCE) of 8.29%, while PM6:PSF-IDIC-based device achieves a much higher PCE of 10.18%, which is one of the highest values for the all-PSCs reported so far. The superior device performance of PM6:PSF-IDIC is attributed to its higher exciton dissociation and charge transport, decreased charge recombination, and optimized morphology than PM6:PSi-IDIC counterpart. These results suggest that optimizing the functional atoms of the side chain provide an effective strategy to develop high performance polymer acceptors for all-PSCs. 展开更多
关键词 All-polymer solar cells Polymer acceptor Functional atoms power conversion efficiency
在线阅读 下载PDF
Gadolinium-incorporated CsPbI_(2)Br for boosting efficiency and long-term stability of all-inorganic perovskite solar cells 被引量:1
16
作者 Xingyu Pu Jiabao Yang +9 位作者 Tong Wang Shuaici Cheng Qi Cao Junsong Zhao Hui Chen Yixin Zhang Tingting Xu Ilhom Tojiboyev Hadi Salari Xuanhua Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第7期9-17,I0001,共10页
All-inorganic CsPbI_(2)Br perovskite solar cells(PSCs)have received extensive research interests recently.Nevertheless,their low efficiency and poor long-term stability are still obstacles for further commercial appli... All-inorganic CsPbI_(2)Br perovskite solar cells(PSCs)have received extensive research interests recently.Nevertheless,their low efficiency and poor long-term stability are still obstacles for further commercial application.Herein,we demonstrate that high efficiency and exceptional long-term stability are realized by incorporating gadolinium(III)chloride(GdCl_(3))into the CsPbI_(2)Br perovskite film.The incorporation of GdCl_(3) enhances the Goldschmidt tolerance factor of CsPbI_(2)Br perovskite,yielding a dense perovskite film with small grains,thus the a-phase CsPbI_(2)Br is remarkably stabilized.Additionally,it is found that the GdCl_(3)-incorporated perovskite film achieves suppressed charge recombination and appropriate energy level alignment compared with the pristine CsPbI_(2)Br film.The noticeable increment in efficiency from14.01%(control PSC)to 16.24%is achieved for GdCl_(3)-incorporated PSC.Moreover,the nonencapsulated GdCl_(3)-incorporated PSC exhibits excellent environmental and thermal stability,remaining over 91%or90%of the original efficiency after 1200 h aging at 40%relative humidity or 480 h heating at 85℃ in nitrogen glove box respectively.The encapsulated GdCl_(3)-incorporated PSC presents an improved operational stability with over 88%of initial efficiency under maximum power point(MPP)tracking at 45℃ for1000 h.This work presents an effective ion-incorporation approach for boosting efficiency and long-term stability of all-inorganic PSCs. 展开更多
关键词 All-inorganic perovskite CsPbI_(2)Br Gadolinium incorporation power conversion efficiency Long-term stability
在线阅读 下载PDF
Graphene quantum dots assisted photovoltage and efficiency enhancement in CdSe quantum dot sensitized solar cells 被引量:1
17
作者 Yuanyuan Zhong Hua Zhang +2 位作者 Dengyu Pan Liang Wang Xinhua Zhong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第6期722-728,共7页
CdSe quantum dot sensitized solar cells (QDSCs) modified with graphene quantum dots (GQDs) have been successfully achieved in this work for the first time. Satisfactorily, the optimized photovoltage (Voc) of the... CdSe quantum dot sensitized solar cells (QDSCs) modified with graphene quantum dots (GQDs) have been successfully achieved in this work for the first time. Satisfactorily, the optimized photovoltage (Voc) of the modified QDSCs was approximately 0.04 V higher than that of plain CdSe QDSCs, consequently improving the photovoltaic performance of the resulting QDSCs. Served as a novel coating on the CdSe QD sensitized photoanode, GQDs played a vital role in improving Voc due to the suppressed charge recombination which has been confirmed by electron impedance spectroscopy as well as transient photovoltage decay measure- ments. Moreover, different adsorption sequences, concentration and deposition time of GQDs have also been systematically investigated to boost the power conversion efficiency (PCE) of CdSe QDSCs. After the coating of CdSe with GQDs, the resulting champion CdSe QDSCs exhibited an improved PCE of 6.59% under AM 1.5G full one sun illumination. 展开更多
关键词 Graphene quantum dot CdSe O DSCs Coating Open-circuit voltage power conversion efficiency
在线阅读 下载PDF
Layered-stacking of titania films for solar energy conversion:Toward tailored optical,electronic and photovoltaic performance 被引量:1
18
作者 Wu-Qiang Wu Jin-Feng Liao Dai-Bin Kuang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第3期690-702,共13页
Nanostructured TiO2 with differentiate morphologies has attracted tremendous attention due to its wide band-gap nature as well as outstanding optical and electric properties for solar-driven light-toelectricity conver... Nanostructured TiO2 with differentiate morphologies has attracted tremendous attention due to its wide band-gap nature as well as outstanding optical and electric properties for solar-driven light-toelectricity conversion application. Layered-stacking TiO2 film such as double-layer, tri-layer, quadrupleor quintuplicate-layer, is highly desirable to the design of high-performance semiconductor material photoanodes and the development of advanced photovoltaic devices. In this minireview, we will summarize the recent progress and achievements on proof-of-concept of layered-stacking TiO2 films(LTFs) for solar cells with emphasis on the tailored properties and synergistic functionalization of LTFs, such as optimized sensitizer adsorption, broadened light confinement as well as facilitated electron transport characteristics.Various demonstrations of LTFs photovoltaic systems provide lots of possibilities and flexibilities for more efficient solar energy utilization that a wide variety of TiO2 with distinguished morphologies can be integrated into differently structured photoanodes with synergistic and complementary advantages. This key structure engineering technology will also pave the way for the development of next generation state-ofthe-art electronics and optoelectronics. Finally, from our point of view, we conclude the future research interest and efforts for constructing more efficient LTFs as photoelectrode, which will be highly warranted to advance the solar energy conversion process. 展开更多
关键词 TiO2 Charge transport Light scattering power conversion efficiency Solar cells
在线阅读 下载PDF
100 cm^(2) Organic Photovoltaic Cells with 23%Efficiency under Indoor Illumination
19
作者 Yong Cui Hui-Feng Yao +8 位作者 Ye Xu Peng-Qing Bi Jian-Qi Zhang Tao Zhang Ling Hong Zhi-Hao Chen Zhi-Xiang Wei Xiao-Tao Hao Jian-Hui Hou 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2022年第8期979-988,I0011,共11页
The application of organic photovoltaic(OPV)cells to drive off-grid microelectronic devices under indoor light has attracted broad attention.As organic semiconductors intrinsically have less ordered intermolecular pac... The application of organic photovoltaic(OPV)cells to drive off-grid microelectronic devices under indoor light has attracted broad attention.As organic semiconductors intrinsically have less ordered intermolecular packing than inorganic materials,the relatively larger energetic disorder is one of the main results that limit the photovoltaic efficiency of the OPV cells at low carrier density.Here,we optimize the alkyl chains of non-fullerene acceptors to get suppressed energetic disorder.We find the optimal acceptor DTz-R1 with the shortest alkyl chain has the strongest crystalline property and lowest energetic disorder.As a result,over 26%efficiency is recorded for the 1 cm^(2) OPV cells under a light-emitting diode illumination of 500 lux.We also fabricate a 100 cm^(2) cell device and get a PCE of 23.0%,which is an outstanding value for large-area OPV cells.These results suggest that modulation of the energetic disorder is of great importance for further improving the efficiency of OPV cells,especially for indoor applications. 展开更多
关键词 Organic photovoltaic cells Low light intensity Energetic disorder Energy loss power conversion efficiency
原文传递
Efficiency enhancement of Cs_(0.1)(CH_(3)NH_(3))_(0.9)PbI_(3) perovskite solar cell by surface passivation using iso-butyl ammonium iodide
20
作者 Wakul Bumrungsan Kritsada Hongsith +4 位作者 Vasan Yarangsi Pisith Kumnorkeaw Sukrit Sucharitakul Surachet Phaduangdhitidhada Supab Choopun 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第11期1963-1970,共8页
Efficiency enhancement of Cs_(0.1)(CH_(3)NH_(3))_(0.9)PbI_(3) solar cell devices was performed by using iso-butyl ammonium iodide(IBA)passivated on Cs_(0.1)(CH_(3)NH_(3))_(0.9)PbI_(3) films.The n-i-p structure of pero... Efficiency enhancement of Cs_(0.1)(CH_(3)NH_(3))_(0.9)PbI_(3) solar cell devices was performed by using iso-butyl ammonium iodide(IBA)passivated on Cs_(0.1)(CH_(3)NH_(3))_(0.9)PbI_(3) films.The n-i-p structure of perovskite solar cell devices was fabricated with the structure of FTO/SnO_(2)/Cs_(0.1)(CH_(3)NH_(3))_(0.9)PbI_(3)(FTO,i.e.,fluorine doped tin oxide)and IBA/Spiro-OMeTAD/Ag.The effect of different weights of IBA passivated on Cs-doped perovskite solar cells(PSCs)was systematically investigated and compared with non-passivated devices.It was found that the 5-mg IBA-passivated devices exhibited a high power conversion efficiency(PCE)of 15.49%higher than 12.64%of non-IBA-passivated devices.The improvement of photovoltaic parameters of the 5-mg IBA-passivated device can be clearly observed compared to the Cs-doped device.The better performance of the IBA-passivated device can be confirmed by the reduction of PbI_(2) phase in the crystal structure,lower charge recombination rate,lower charge transfer resistance,and improved contact angle of perovskite films.Therefore,IBA passivation on Cs_(0.1)(CH_(3)NH)_(0.9)PbI_(3) is a promising technique to improve the efficiency of Cs-doped perovskite solar cells. 展开更多
关键词 perovskite solar cell power conversion efficiency surface passivation cesium methylammonium lead iodide iso-butyl ammoni-um iodide
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部