As the problem of surface garbage pollution becomes more serious,it is necessary to improve the efficiency of garbage inspection and picking rather than traditional manual methods.Due to lightness,Unmanned Aerial Vehi...As the problem of surface garbage pollution becomes more serious,it is necessary to improve the efficiency of garbage inspection and picking rather than traditional manual methods.Due to lightness,Unmanned Aerial Vehicles(UAVs)can traverse the entire water surface in a short time through their flight field of view.In addition,Unmanned Surface Vessels(USVs)can provide battery replacement and pick up garbage.In this paper,we innovatively establish a system framework for the collaboration between UAV and USVs,and develop an automatic water cleaning strategy.First,on the basis of the partition principle,we propose a collaborative coverage path algorithm based on UAV off-site takeoff and landing to achieve global inspection.Second,we design a task scheduling and assignment algorithm for USVs to balance the garbage loads based on the particle swarm optimization algorithm.Finally,based on the swarm intelligence algorithm,we also design an autonomous obstacle avoidance path planning algorithm for USVs to realize autonomous navigation and collaborative cleaning.The system can simultaneously perform inspection and clearance tasks under certain constraints.The simulation results show that the proposed algorithms have higher generality and flexibility while effectively improving computational efficiency and reducing actual cleaning costs compared with other schemes.展开更多
Scrap metals are typically covered with surface contaminants,such as paint,dust,and rust,which can significantly affect the emission spectrum during laser-induced breakdown spectroscopy(LIBS)based sorting.In this stud...Scrap metals are typically covered with surface contaminants,such as paint,dust,and rust,which can significantly affect the emission spectrum during laser-induced breakdown spectroscopy(LIBS)based sorting.In this study,the effects of paint layers on metal surfaces during LIBS classification were investigated.LIBS spectra were collected from metal surfaces painted with black and white paints by ablation with a nanosecond pulsed laser(wavelength=1064 nm,pulse width=7 ns).For the black-painted samples,the LIBS spectra showed a broad background emission,emission lines unrelated to the target metals,large shot-to-shot variation,and a relatively low signal intensity of the target metal,causing poor classification accuracy even at high shot numbers.Cleaning the black paint layer by ablating over a wide area prior to LIBS analysis resulted in high classification accuracy with fewer shot numbers.A method to determine the number of cleaning shots necessary to obtain high classification accuracy and high throughput is proposed on the basis of the change in LIBS signal intensity during cleaning shots.For the white-painted samples,the paint peeled off the metal surface after the first shot,and strong LIBS signals were measured after the following shot,which were attributed to the nanoparticles generated by the ablation of the paint,allowing an accurate classification after only two shots.The results demonstrate that different approaches must be employed depending on the paint color to achieve high classification accuracy with fewer shot numbers.展开更多
As the cornerstone of sterile instrument maintenance in endoscopy centers,the quality of endoscope cleaning directly impacts hospital infection control effectiveness.The traceability system for endoscopy centers utili...As the cornerstone of sterile instrument maintenance in endoscopy centers,the quality of endoscope cleaning directly impacts hospital infection control effectiveness.The traceability system for endoscopy centers utilizes digital means to document the entire cleaning process,enabling real-time monitoring and precise quality control.This paper analyzes current quality control practices in endoscope cleaning and addresses existing challenges.It explores how traceability systems standardize procedures,enhance monitoring,and improve management efficiency.The study proposes optimization strategies for traceability system implementation,clarifying its core value in endoscope cleaning quality control.These findings provide theoretical foundations and practical guidance for hospitals to refine management of endoscopy centers,ensure diagnostic safety,and reduce infection risks,ultimately advancing endoscope cleaning quality control toward standardized and informatized development.展开更多
The effect of a non-ionic surfactant on particles removal in post-CMP cleaning was investigated. By changing the concentration of the non-ionic surfactant, a series of experiments were performed on the 12 inch Cu patt...The effect of a non-ionic surfactant on particles removal in post-CMP cleaning was investigated. By changing the concentration of the non-ionic surfactant, a series of experiments were performed on the 12 inch Cu pattern wafers in order to determine the best cleaning results. Then the effect of the surfactant on the reduction of defects and the removal of particles was discussed in this paper. What is more, the negative effect of a non-ionic surfactant was also discussed. Based on the experiment results, it is concluded that the non-ionic surfactant could cause good and ill effects at different concentrations in the post-CMP cleaning process. This understanding will serve as a guide to how much surfactant should be added in order to achieve excellent cleaning performance.展开更多
Dust deposition on the surface of photovoltaic (PV) cells poses a significant challenge to their efficiency, especially in arid regions characterized by desert and semi-desert conditions. Despite the pronounced impact...Dust deposition on the surface of photovoltaic (PV) cells poses a significant challenge to their efficiency, especially in arid regions characterized by desert and semi-desert conditions. Despite the pronounced impact of dust accumulation, these regions offer optimal solar radiation and minimal cloud cover, making them ideal candidates for widespread PV cell deployment. Various surface cleaning methods exist, each employing distinct approaches. Choosing an appropriate cleaning method requires a comprehensive understanding of the mechanisms involved in both dust deposition on module surfaces and dust adhesion to PV cell surfaces. The mechanisms governing dust deposition and adhesion are complex and multifaceted, influenced by factors such as the nature and properties of the dust particles, environmental climatic conditions, characteristics of protective coatings, and the specific location of the PV installation. These factors exhibit regional variations, necessitating the implementation of diverse cleaning approaches tailored to the unique conditions of each location. The first part of this article explores the factors influencing dust deposition on PV cell surfaces, delving into the intricate interplay of environmental variables and particle characteristics. Subsequently, the second part addresses various cleaning methods, offering an analysis of their respective advantages and disadvantages. By comprehensively examining the factors influencing dust accumulation and evaluating the effectiveness of different cleaning strategies, this article aims to contribute valuable insights to the ongoing efforts to optimize the performance and longevity of photovoltaic systems in diverse geographical contexts.展开更多
Rosin,a renewable and abundant resource,has been extensively processed and chemically modified to endow it with special properties,especially in the surfactant industry.In this study,four rosin-based quaternary ammoni...Rosin,a renewable and abundant resource,has been extensively processed and chemically modified to endow it with special properties,especially in the surfactant industry.In this study,four rosin-based quaternary ammonium asymmetric gemini surfactants(RGS-2-n)with different alkyl chain lengths(n=12,14,16,18)were synthesized using a simple two-step method based on dehydroabietylamine as the raw material.The feasibility of these surfactants for cleaning purposes was comprehensively evaluated,suggesting that the surfactants own high surface activity and good cleaning performance.Furthermore,by successfully introducing the amine group of dehydroabietylamine into the hydrophilic group of the surfactants,we avoided its potential harm to the environment and water pollution.Density functional theory proves rosin-based gemini surfactants with asymmetric structure can further improve cleaning efficiency.Overall,our findings suggests that RGS-2-n surfactants are promising and sustainable candidates for cleaning electric plates,and provide new opportunities for rosin application in the electric industry.展开更多
First mirror(FM)cleaning,using radio frequency(RF)plasma,has been proposed to recover FM reflectivity in nuclear fusion reactors such as the International Thermonuclear Experimental Reactor(ITER).To investigate the in...First mirror(FM)cleaning,using radio frequency(RF)plasma,has been proposed to recover FM reflectivity in nuclear fusion reactors such as the International Thermonuclear Experimental Reactor(ITER).To investigate the influence of simultaneous cleaning of two mirrors on mirror cleaning efficiency and uniformity,experiments involving single-mirror cleaning and dual-mirror cleaning were conducted using RF capacitively coupled plasma in the laboratory.For the test and simultaneous cleaning of two mirrors,the FM and second mirror(SM),both measuring 110 mm×80 mm,were placed inside the first mirror unit(FMU).They were composed of 16 mirror samples,each with a dimension of 27.5 mm×20 mm.These mirror samples consist of a titanium-zirconium-molybdenum alloy substrate,a 500 nm Mo intermediate layer and a 30 nm Al_(2)O_(3) surface coating as a proxy for Be impurities.The cleaning of a single first mirror(SFM)and the simultaneous cleaning of the FM and SM(DFM and DSM)lasted for 9 h using Ar plasma at a pressure of 1 Pa.The total reflectivity of mirror samples on the DSM did not fully recover and varied with location,with a self-bias of−140 V.With a self-bias of−300 V,the total reflectivity of mirror samples on the SFM and DFM was fully recovered.The energy dispersive spectrometer results demonstrated that the Al_(2)O_(3) coating had been completely removed from these mirror samples.However,the mass loss of each mirror sample on the SFM and DFM before and after cleaning varied depending on its location,with higher mass loss observed for mirror samples located in the corners and lower loss for those in the center.Compared with SM cleaning,the simultaneous cleaning of two mirrors reduced the difference between the highest and lowest mass loss.Furthermore,this mass loss for the mirror samples of the DFM facing the DSM was increased.This indicated that mirror samples cleaned face to face in the FMU simultaneously could influence each other,highlighting the need for special attention in future studies.展开更多
In extended-reach or long-horizontal drilling,cuttings usually deposit at the bottom of the annulus.Once cuttings accumulate to a certain thickness,complex problems such as excessive torque and drag,tubing buckling,an...In extended-reach or long-horizontal drilling,cuttings usually deposit at the bottom of the annulus.Once cuttings accumulate to a certain thickness,complex problems such as excessive torque and drag,tubing buckling,and pipe stuck probably occur,which results in a lot of non-productive time and remedial operations.Cuttings bed remover can efficiently destroy deposited cuttings in time through hydraulic and mechanical stirring effects.This paper aims to build a method for hole cleaning evaluation and installation spacing optimization of cuttings bed remover to improve the wellbore cleaning effect.Firstly,a Computational Fluid Dynamics approach with Eulerian—Eulerian multiphase model was utilized to investigate the mechanism of cuttings transportation,and a new type of cuttings bed remover was designed.Next,an evaluation method of hole cleaning effect of remover was established.After that,the effects of several drilling parameters on hole cleaning including flow rate of drilling fluid,rotational speed of drillpipe,rate of penetration,wellbore size,rheological property of drilling fluid,and remover eccentricity on the performance of cuttings bed remover were investigated.The results demonstrate that the new type of remover with streamline blade performs better than conventional removers.The efficiency of hole cleaning is greatly improved by increasing the rotational speed of drillpipe,flow rate of drilling fluid,remover eccentricity,and 6 rpm Fann dial reading for drilling fluid.While higher rate of penetration and large wellbore size result in worse hole cleaning.These findings can serve as an important guide for the structure optimization design of cuttings bed remover and installation spacing of removers.展开更多
To prolong the service life of optics,the feasibility of in situ cleaning of the multilayer mirror(MLM)of tin and its oxidized contamination was investigated using hydrogen plasma at different power levels.Granular ti...To prolong the service life of optics,the feasibility of in situ cleaning of the multilayer mirror(MLM)of tin and its oxidized contamination was investigated using hydrogen plasma at different power levels.Granular tin-based contamination consisting of micro-and macroparticles was deposited on silicon via physical vapor deposition(PVD).The electrodedriven hydrogen plasma at different power levels was systematically diagnosed using a Langmuir probe and a retarding field ion energy analyzer(RFEA).Moreover,the magnitude of the self-biasing voltage was measured at different power levels,and the peak ion energy was corrected for the difference between the RFEA measurements and the self-biasing voltage(E_(RFEA)-eV_(self)).XPS analysis of O 1s and Sn 3d peaks demonstrated the chemical reduction process after 1 W cleaning.Analysis of surface and cross-section morphology revealed that holes emerged on the upper part of the macroparticles while its bottom remained smooth.Hills and folds appeared on the upper part of the microparticles,confirming the top-down cleaning mode with hydrogen plasma.This study provides an in situ electrode-driven hydrogen plasma etching process for tin-based contamination and will provide meaningful guidance for understanding the chemical mechanism of reduction and etching.展开更多
The efficient development and exploitation of shale oil depends on long-distance horizontal wells. As the degreeof cleaning of the wellbore plays a key role in these processes, in this study, this problem is investiga...The efficient development and exploitation of shale oil depends on long-distance horizontal wells. As the degreeof cleaning of the wellbore plays a key role in these processes, in this study, this problem is investigated experimentallyby focusing on the dimensionless cuttings bed height. A method is proposed to calculate the horizontalwellhydraulic extension taking into account the influence of the wellbore cleaning degree on the wellborepressure distribution and assess the effect of a variety of factors such as the bottom hole pressure, the circulatingpressure drop, the drilling pump performance and the formation properties. The analysis shows that the hydraulicextension of horizontal wells decreases with an increase in the cuttings bed height, and the higher the displacementof drilling fluid, the faster the hydraulic extension declines. The annular pressure drop of the horizontalsection increases with the increase of the cuttings bed height, resulting in a higher bottom-hole pressure. Severalarguments are provided to guide the safe drilling of shale oil horizontal wells and overcome the limits of currenttechnological approaches.展开更多
Current methodologies for cleaning wind power anomaly data exhibit limited capabilities in identifying abnormal data within extensive datasets and struggle to accommodate the considerable variability and intricacy of ...Current methodologies for cleaning wind power anomaly data exhibit limited capabilities in identifying abnormal data within extensive datasets and struggle to accommodate the considerable variability and intricacy of wind farm data.Consequently,a method for cleaning wind power anomaly data by combining image processing with community detection algorithms(CWPAD-IPCDA)is proposed.To precisely identify and initially clean anomalous data,wind power curve(WPC)images are converted into graph structures,which employ the Louvain community recognition algorithm and graph-theoretic methods for community detection and segmentation.Furthermore,the mathematical morphology operation(MMO)determines the main part of the initially cleaned wind power curve images and maps them back to the normal wind power points to complete the final cleaning.The CWPAD-IPCDA method was applied to clean datasets from 25 wind turbines(WTs)in two wind farms in northwest China to validate its feasibility.A comparison was conducted using density-based spatial clustering of applications with noise(DBSCAN)algorithm,an improved isolation forest algorithm,and an image-based(IB)algorithm.The experimental results demonstrate that the CWPAD-IPCDA method surpasses the other three algorithms,achieving an approximately 7.23%higher average data cleaning rate.The mean value of the sum of the squared errors(SSE)of the dataset after cleaning is approximately 6.887 lower than that of the other algorithms.Moreover,the mean of overall accuracy,as measured by the F1-score,exceeds that of the other methods by approximately 10.49%;this indicates that the CWPAD-IPCDA method is more conducive to improving the accuracy and reliability of wind power curve modeling and wind farm power forecasting.展开更多
In this paper,potent index of an element and pseudo clean rings are considered.Some properties and examples of pseudo clean rings are given.We also show that Zm is pseudo clean for every 2≤m∈Z and pseudo clean rings...In this paper,potent index of an element and pseudo clean rings are considered.Some properties and examples of pseudo clean rings are given.We also show that Zm is pseudo clean for every 2≤m∈Z and pseudo clean rings are clean.Furthermore,we prove pseudo clean rings are directly finite and have stable range one.展开更多
Chemical cleaning has been reported as the best method to restore ceramic filters flow rate by removing fouling agents. Even though there are several chemicals that can be used as cleaning agents, sodium hydroxide (Na...Chemical cleaning has been reported as the best method to restore ceramic filters flow rate by removing fouling agents. Even though there are several chemicals that can be used as cleaning agents, sodium hydroxide (NaOH) has been widely used as a cleaning agent. Literature reports that main factors of this cleaning are sodium hydroxide concentration, treatment temperature and contact time. However, the most significant factors have not been determined nor the interactions between them. The aim of this study was to determine the most significant parameter and the interactions between sodium hydroxide concentration, treatment temperature and contact time. This was done using Box-Behnken experimental design. The results, based on ANOVA analyses, showed that temperature is the most significant factor and that interaction between sodium hydroxide concentration and treatment temperature is the most significant interaction.展开更多
The notion of absolutely clean N-complexes is studied.We show that an N-complex X is absolutely clean if and only if X is Nexact and Z,(X)is an absolutely clean module for each n e Z and i=1,2,..,N.In particular,we pr...The notion of absolutely clean N-complexes is studied.We show that an N-complex X is absolutely clean if and only if X is Nexact and Z,(X)is an absolutely clean module for each n e Z and i=1,2,..,N.In particular,we prove that a bounded above N-complex X is absolutely clean if and only if X,is an absolutely clean module for each n e Z.We also show that under certain hypotheses,an Ncomplex X is Gorenstein AC-injective if and only if Z;(X)is a Gorenstein AC-injective module for each n e Z and t=1,2,.,N.展开更多
Introduction In September 2020,President Xi Jinping announced China's goals of carbon peak and carbon neutrality.Compared to Europe and the United States,China faces a tighter timeline and a larger scale in achiev...Introduction In September 2020,President Xi Jinping announced China's goals of carbon peak and carbon neutrality.Compared to Europe and the United States,China faces a tighter timeline and a larger scale in achieving its dual carbon goals,making the task exceptionally demanding.展开更多
IFCE International Forum for Clean Energy(Macao)Research Think Tank Technological Innovation Investment Collaboration Market Development Established in 2012,the International Forum for Clean Energy(Macao)(IFCE)is a le...IFCE International Forum for Clean Energy(Macao)Research Think Tank Technological Innovation Investment Collaboration Market Development Established in 2012,the International Forum for Clean Energy(Macao)(IFCE)is a leading global platform committed to advancing clean energy solutions.展开更多
As global climate governance moves into the implementation phase,the integration of bluetech and clean energy has emerged as a key driver of green transition.On the occasion of the 50th anniversary of China-EU diploma...As global climate governance moves into the implementation phase,the integration of bluetech and clean energy has emerged as a key driver of green transition.On the occasion of the 50th anniversary of China-EU diplomatic relations,China and Portugal have built a multi-level cooperation framework in the“ocean+clean energy”domain,leveraging complementary resource endowments,technological synergies,and policy alignment.展开更多
基金supported in part by the National Natural Science Foundation of China under Grants 62071189,62201220 and 62171189by the Key Research and Development Program of Hubei Province under Grant 2021BAA026 and 2020BAB120。
文摘As the problem of surface garbage pollution becomes more serious,it is necessary to improve the efficiency of garbage inspection and picking rather than traditional manual methods.Due to lightness,Unmanned Aerial Vehicles(UAVs)can traverse the entire water surface in a short time through their flight field of view.In addition,Unmanned Surface Vessels(USVs)can provide battery replacement and pick up garbage.In this paper,we innovatively establish a system framework for the collaboration between UAV and USVs,and develop an automatic water cleaning strategy.First,on the basis of the partition principle,we propose a collaborative coverage path algorithm based on UAV off-site takeoff and landing to achieve global inspection.Second,we design a task scheduling and assignment algorithm for USVs to balance the garbage loads based on the particle swarm optimization algorithm.Finally,based on the swarm intelligence algorithm,we also design an autonomous obstacle avoidance path planning algorithm for USVs to realize autonomous navigation and collaborative cleaning.The system can simultaneously perform inspection and clearance tasks under certain constraints.The simulation results show that the proposed algorithms have higher generality and flexibility while effectively improving computational efficiency and reducing actual cleaning costs compared with other schemes.
基金supported by the R&D Center for Valuable Recycling (Global-Top R&D Program)of the Ministry of Environment (No.2016002250003)。
文摘Scrap metals are typically covered with surface contaminants,such as paint,dust,and rust,which can significantly affect the emission spectrum during laser-induced breakdown spectroscopy(LIBS)based sorting.In this study,the effects of paint layers on metal surfaces during LIBS classification were investigated.LIBS spectra were collected from metal surfaces painted with black and white paints by ablation with a nanosecond pulsed laser(wavelength=1064 nm,pulse width=7 ns).For the black-painted samples,the LIBS spectra showed a broad background emission,emission lines unrelated to the target metals,large shot-to-shot variation,and a relatively low signal intensity of the target metal,causing poor classification accuracy even at high shot numbers.Cleaning the black paint layer by ablating over a wide area prior to LIBS analysis resulted in high classification accuracy with fewer shot numbers.A method to determine the number of cleaning shots necessary to obtain high classification accuracy and high throughput is proposed on the basis of the change in LIBS signal intensity during cleaning shots.For the white-painted samples,the paint peeled off the metal surface after the first shot,and strong LIBS signals were measured after the following shot,which were attributed to the nanoparticles generated by the ablation of the paint,allowing an accurate classification after only two shots.The results demonstrate that different approaches must be employed depending on the paint color to achieve high classification accuracy with fewer shot numbers.
文摘As the cornerstone of sterile instrument maintenance in endoscopy centers,the quality of endoscope cleaning directly impacts hospital infection control effectiveness.The traceability system for endoscopy centers utilizes digital means to document the entire cleaning process,enabling real-time monitoring and precise quality control.This paper analyzes current quality control practices in endoscope cleaning and addresses existing challenges.It explores how traceability systems standardize procedures,enhance monitoring,and improve management efficiency.The study proposes optimization strategies for traceability system implementation,clarifying its core value in endoscope cleaning quality control.These findings provide theoretical foundations and practical guidance for hospitals to refine management of endoscopy centers,ensure diagnostic safety,and reduce infection risks,ultimately advancing endoscope cleaning quality control toward standardized and informatized development.
基金Project supported by the Specific Project Items No.2 in National Long-Term Technology Development Plan(No.2009zx02308-003)
文摘The effect of a non-ionic surfactant on particles removal in post-CMP cleaning was investigated. By changing the concentration of the non-ionic surfactant, a series of experiments were performed on the 12 inch Cu pattern wafers in order to determine the best cleaning results. Then the effect of the surfactant on the reduction of defects and the removal of particles was discussed in this paper. What is more, the negative effect of a non-ionic surfactant was also discussed. Based on the experiment results, it is concluded that the non-ionic surfactant could cause good and ill effects at different concentrations in the post-CMP cleaning process. This understanding will serve as a guide to how much surfactant should be added in order to achieve excellent cleaning performance.
文摘Dust deposition on the surface of photovoltaic (PV) cells poses a significant challenge to their efficiency, especially in arid regions characterized by desert and semi-desert conditions. Despite the pronounced impact of dust accumulation, these regions offer optimal solar radiation and minimal cloud cover, making them ideal candidates for widespread PV cell deployment. Various surface cleaning methods exist, each employing distinct approaches. Choosing an appropriate cleaning method requires a comprehensive understanding of the mechanisms involved in both dust deposition on module surfaces and dust adhesion to PV cell surfaces. The mechanisms governing dust deposition and adhesion are complex and multifaceted, influenced by factors such as the nature and properties of the dust particles, environmental climatic conditions, characteristics of protective coatings, and the specific location of the PV installation. These factors exhibit regional variations, necessitating the implementation of diverse cleaning approaches tailored to the unique conditions of each location. The first part of this article explores the factors influencing dust deposition on PV cell surfaces, delving into the intricate interplay of environmental variables and particle characteristics. Subsequently, the second part addresses various cleaning methods, offering an analysis of their respective advantages and disadvantages. By comprehensively examining the factors influencing dust accumulation and evaluating the effectiveness of different cleaning strategies, this article aims to contribute valuable insights to the ongoing efforts to optimize the performance and longevity of photovoltaic systems in diverse geographical contexts.
基金supported by National Natural Science Foundation of China(U21A200313)Key Program of Qingyuan Innovation Laboratory(00221003)‘111’program of Fuzhou University.
文摘Rosin,a renewable and abundant resource,has been extensively processed and chemically modified to endow it with special properties,especially in the surfactant industry.In this study,four rosin-based quaternary ammonium asymmetric gemini surfactants(RGS-2-n)with different alkyl chain lengths(n=12,14,16,18)were synthesized using a simple two-step method based on dehydroabietylamine as the raw material.The feasibility of these surfactants for cleaning purposes was comprehensively evaluated,suggesting that the surfactants own high surface activity and good cleaning performance.Furthermore,by successfully introducing the amine group of dehydroabietylamine into the hydrophilic group of the surfactants,we avoided its potential harm to the environment and water pollution.Density functional theory proves rosin-based gemini surfactants with asymmetric structure can further improve cleaning efficiency.Overall,our findings suggests that RGS-2-n surfactants are promising and sustainable candidates for cleaning electric plates,and provide new opportunities for rosin application in the electric industry.
基金supported by the National Key R&D Project of China(No.2022YFE03030000)National Natural Science Foundation of China(Nos.11975269,12275306 and 12075279)+3 种基金the Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.2022452)the Anhui Provincial Natural Science Foundation(No.2208085J40)the CASHIPS Director’s Fund(Nos.YZJJQY202302 and BJPY2023B03)the Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228).
文摘First mirror(FM)cleaning,using radio frequency(RF)plasma,has been proposed to recover FM reflectivity in nuclear fusion reactors such as the International Thermonuclear Experimental Reactor(ITER).To investigate the influence of simultaneous cleaning of two mirrors on mirror cleaning efficiency and uniformity,experiments involving single-mirror cleaning and dual-mirror cleaning were conducted using RF capacitively coupled plasma in the laboratory.For the test and simultaneous cleaning of two mirrors,the FM and second mirror(SM),both measuring 110 mm×80 mm,were placed inside the first mirror unit(FMU).They were composed of 16 mirror samples,each with a dimension of 27.5 mm×20 mm.These mirror samples consist of a titanium-zirconium-molybdenum alloy substrate,a 500 nm Mo intermediate layer and a 30 nm Al_(2)O_(3) surface coating as a proxy for Be impurities.The cleaning of a single first mirror(SFM)and the simultaneous cleaning of the FM and SM(DFM and DSM)lasted for 9 h using Ar plasma at a pressure of 1 Pa.The total reflectivity of mirror samples on the DSM did not fully recover and varied with location,with a self-bias of−140 V.With a self-bias of−300 V,the total reflectivity of mirror samples on the SFM and DFM was fully recovered.The energy dispersive spectrometer results demonstrated that the Al_(2)O_(3) coating had been completely removed from these mirror samples.However,the mass loss of each mirror sample on the SFM and DFM before and after cleaning varied depending on its location,with higher mass loss observed for mirror samples located in the corners and lower loss for those in the center.Compared with SM cleaning,the simultaneous cleaning of two mirrors reduced the difference between the highest and lowest mass loss.Furthermore,this mass loss for the mirror samples of the DFM facing the DSM was increased.This indicated that mirror samples cleaned face to face in the FMU simultaneously could influence each other,highlighting the need for special attention in future studies.
基金the financial support from the Natural Science Foundation of China(Grant Nos.52222401,52234002,52394250,52394255)Science Foundation of China University of Petroleum,Beijing(Grant No.ZXZX20230083)other projects(ZLZX2020-01-07-01)。
文摘In extended-reach or long-horizontal drilling,cuttings usually deposit at the bottom of the annulus.Once cuttings accumulate to a certain thickness,complex problems such as excessive torque and drag,tubing buckling,and pipe stuck probably occur,which results in a lot of non-productive time and remedial operations.Cuttings bed remover can efficiently destroy deposited cuttings in time through hydraulic and mechanical stirring effects.This paper aims to build a method for hole cleaning evaluation and installation spacing optimization of cuttings bed remover to improve the wellbore cleaning effect.Firstly,a Computational Fluid Dynamics approach with Eulerian—Eulerian multiphase model was utilized to investigate the mechanism of cuttings transportation,and a new type of cuttings bed remover was designed.Next,an evaluation method of hole cleaning effect of remover was established.After that,the effects of several drilling parameters on hole cleaning including flow rate of drilling fluid,rotational speed of drillpipe,rate of penetration,wellbore size,rheological property of drilling fluid,and remover eccentricity on the performance of cuttings bed remover were investigated.The results demonstrate that the new type of remover with streamline blade performs better than conventional removers.The efficiency of hole cleaning is greatly improved by increasing the rotational speed of drillpipe,flow rate of drilling fluid,remover eccentricity,and 6 rpm Fann dial reading for drilling fluid.While higher rate of penetration and large wellbore size result in worse hole cleaning.These findings can serve as an important guide for the structure optimization design of cuttings bed remover and installation spacing of removers.
基金funded by the Institutional Research Fund from Sichuan University(No.2020SCUNL211)。
文摘To prolong the service life of optics,the feasibility of in situ cleaning of the multilayer mirror(MLM)of tin and its oxidized contamination was investigated using hydrogen plasma at different power levels.Granular tin-based contamination consisting of micro-and macroparticles was deposited on silicon via physical vapor deposition(PVD).The electrodedriven hydrogen plasma at different power levels was systematically diagnosed using a Langmuir probe and a retarding field ion energy analyzer(RFEA).Moreover,the magnitude of the self-biasing voltage was measured at different power levels,and the peak ion energy was corrected for the difference between the RFEA measurements and the self-biasing voltage(E_(RFEA)-eV_(self)).XPS analysis of O 1s and Sn 3d peaks demonstrated the chemical reduction process after 1 W cleaning.Analysis of surface and cross-section morphology revealed that holes emerged on the upper part of the macroparticles while its bottom remained smooth.Hills and folds appeared on the upper part of the microparticles,confirming the top-down cleaning mode with hydrogen plasma.This study provides an in situ electrode-driven hydrogen plasma etching process for tin-based contamination and will provide meaningful guidance for understanding the chemical mechanism of reduction and etching.
基金supported by CNPC Key Core Technology Research Projects (2022ZG06)project funded by China Postdoctoral Science Foundation (2021M693508)Basic research and strategic reserve technology research fund project of institutes directly under CNPC.
文摘The efficient development and exploitation of shale oil depends on long-distance horizontal wells. As the degreeof cleaning of the wellbore plays a key role in these processes, in this study, this problem is investigated experimentallyby focusing on the dimensionless cuttings bed height. A method is proposed to calculate the horizontalwellhydraulic extension taking into account the influence of the wellbore cleaning degree on the wellborepressure distribution and assess the effect of a variety of factors such as the bottom hole pressure, the circulatingpressure drop, the drilling pump performance and the formation properties. The analysis shows that the hydraulicextension of horizontal wells decreases with an increase in the cuttings bed height, and the higher the displacementof drilling fluid, the faster the hydraulic extension declines. The annular pressure drop of the horizontalsection increases with the increase of the cuttings bed height, resulting in a higher bottom-hole pressure. Severalarguments are provided to guide the safe drilling of shale oil horizontal wells and overcome the limits of currenttechnological approaches.
基金supported by the National Natural Science Foundation of China(Project No.51767018)Natural Science Foundation of Gansu Province(Project No.23JRRA836).
文摘Current methodologies for cleaning wind power anomaly data exhibit limited capabilities in identifying abnormal data within extensive datasets and struggle to accommodate the considerable variability and intricacy of wind farm data.Consequently,a method for cleaning wind power anomaly data by combining image processing with community detection algorithms(CWPAD-IPCDA)is proposed.To precisely identify and initially clean anomalous data,wind power curve(WPC)images are converted into graph structures,which employ the Louvain community recognition algorithm and graph-theoretic methods for community detection and segmentation.Furthermore,the mathematical morphology operation(MMO)determines the main part of the initially cleaned wind power curve images and maps them back to the normal wind power points to complete the final cleaning.The CWPAD-IPCDA method was applied to clean datasets from 25 wind turbines(WTs)in two wind farms in northwest China to validate its feasibility.A comparison was conducted using density-based spatial clustering of applications with noise(DBSCAN)algorithm,an improved isolation forest algorithm,and an image-based(IB)algorithm.The experimental results demonstrate that the CWPAD-IPCDA method surpasses the other three algorithms,achieving an approximately 7.23%higher average data cleaning rate.The mean value of the sum of the squared errors(SSE)of the dataset after cleaning is approximately 6.887 lower than that of the other algorithms.Moreover,the mean of overall accuracy,as measured by the F1-score,exceeds that of the other methods by approximately 10.49%;this indicates that the CWPAD-IPCDA method is more conducive to improving the accuracy and reliability of wind power curve modeling and wind farm power forecasting.
基金Supported by National Natural Science Foundation of China(12301041)。
文摘In this paper,potent index of an element and pseudo clean rings are considered.Some properties and examples of pseudo clean rings are given.We also show that Zm is pseudo clean for every 2≤m∈Z and pseudo clean rings are clean.Furthermore,we prove pseudo clean rings are directly finite and have stable range one.
文摘Chemical cleaning has been reported as the best method to restore ceramic filters flow rate by removing fouling agents. Even though there are several chemicals that can be used as cleaning agents, sodium hydroxide (NaOH) has been widely used as a cleaning agent. Literature reports that main factors of this cleaning are sodium hydroxide concentration, treatment temperature and contact time. However, the most significant factors have not been determined nor the interactions between them. The aim of this study was to determine the most significant parameter and the interactions between sodium hydroxide concentration, treatment temperature and contact time. This was done using Box-Behnken experimental design. The results, based on ANOVA analyses, showed that temperature is the most significant factor and that interaction between sodium hydroxide concentration and treatment temperature is the most significant interaction.
基金Supported by the National Natural Science Foundation of China (12061061)Fundamental Research Funds for the Central Universities (31920230173)+1 种基金Longyuan Young Talents of Gansu ProvinceYoung Talents Team Project of Gansu Province (2025QNTD49)。
文摘The notion of absolutely clean N-complexes is studied.We show that an N-complex X is absolutely clean if and only if X is Nexact and Z,(X)is an absolutely clean module for each n e Z and i=1,2,..,N.In particular,we prove that a bounded above N-complex X is absolutely clean if and only if X,is an absolutely clean module for each n e Z.We also show that under certain hypotheses,an Ncomplex X is Gorenstein AC-injective if and only if Z;(X)is a Gorenstein AC-injective module for each n e Z and t=1,2,.,N.
文摘Introduction In September 2020,President Xi Jinping announced China's goals of carbon peak and carbon neutrality.Compared to Europe and the United States,China faces a tighter timeline and a larger scale in achieving its dual carbon goals,making the task exceptionally demanding.
文摘IFCE International Forum for Clean Energy(Macao)Research Think Tank Technological Innovation Investment Collaboration Market Development Established in 2012,the International Forum for Clean Energy(Macao)(IFCE)is a leading global platform committed to advancing clean energy solutions.
文摘As global climate governance moves into the implementation phase,the integration of bluetech and clean energy has emerged as a key driver of green transition.On the occasion of the 50th anniversary of China-EU diplomatic relations,China and Portugal have built a multi-level cooperation framework in the“ocean+clean energy”domain,leveraging complementary resource endowments,technological synergies,and policy alignment.