The current artificial bone is unable to accurately replicate the inhomogeneity and anisotropy of human cancellous bone.To address this issue,we proposed a personalized approach based on clinical CT images to design m...The current artificial bone is unable to accurately replicate the inhomogeneity and anisotropy of human cancellous bone.To address this issue,we proposed a personalized approach based on clinical CT images to design mechanical equivalent porous structures for artificial femoral heads.Firstly,supported by Micro and clinical CT scans of 21 bone specimens,the anisotropic mechanical parameters of human cancellous bone in the femoral head were characterized using clinical CT values(Hounsfield unit).After that,the equivalent porous structure of cancellous bone was designed based on the gyroid surface,the influence of its degree of anisotropy and volume fraction on the macroscopic mechanical parameters was investigated by finite element analysis.Furthermore,a mapping relationship between CT values and the porous structure was established by jointly solving the mechanical parameters of the porous structure and human cancellous bone,allowing the design of personalized gradient porous structures based on clinical CT images.Finally,to verify the mechanical equivalence,implant press-in tests were conducted on 3D-printed artificial femoral heads and human femoral heads,the influence of the porous structure’s cell size in bone-implant interaction problems was also explored.Results showed that the minimum deviations of press-in stiffness(<15%)and peak load(<5%)both occurred when the cell size was 20%to 30%of the implant diameter.In conclusion,the designed porous structure can replicate the human cancellous bone-implant interaction at a high level,indicating its effectiveness in optimizing the mechanical performance of 3D-printed artificial femoral head.展开更多
Hierarchical porous structure,which include macropores,minor pores,and micropores in scaffolds,are essential in the multiple biological functions of bone repair and regeneration.In this study,patientcustomized calcium...Hierarchical porous structure,which include macropores,minor pores,and micropores in scaffolds,are essential in the multiple biological functions of bone repair and regeneration.In this study,patientcustomized calcium-deficient hydroxyapatite(CDHA)scaffolds with three-level hierarchical porous structure were fabricated by indirect 3D printing technology and particulate leaching method.The sacrificial template scaffolds were fabricated using a photo-curing 3D printer,which provided a prerequisite for the integral structure and interconnected macropores of CDHA scaffolds.Additionally,20 wt%pore former was incorporated into the slurry to enhance the content of smaller pores within the CDHA-2 scaffolds,and then the CDHA-2 scaffolds were sintered to remove the sacrificial template scaffolds and pore former.The obtained CDHA-2 scaffolds exhibited interconnected macropores(300-400μm),minor pores(∼10-100μm),and micropores(<10μm)distributed throughout the scaffolds,which could promote bone tissue ingrowth,increase surface roughness,and enhance protein adsorption of scaffolds.In vitro studies identified that CDHA-2 scaffolds had nanocrystal grains,high specific surface area,and outstanding protein adsorption capacity,which could provide a microenvironment for cell adhesion,spreading,and proliferation.In addition,the murine intramuscular implantation experiment suggested that CDHA-2 scaffolds exhibited excellent osteoinductivity and were superior to traditional BCP ceramics under conditions without the addition of live cells and exogenous growth factors.The rabbit calvarial defect repair results indicated that CDHA-2 scaffolds could enhance in situ bone regeneration.In conclusion,these findings demonstrated that the hierarchical porous structure of CDHA scaffolds was a pivotal factor in modulating osteoinductivity and bone regeneration,and CDHA-2 scaffolds were potential candidates for bone regeneration.展开更多
Faced with complex operational environments,liquid metal divertors are considered alternative solutions to traditional solid divertors.Experiments have been conducted using a self-designed embedded multichannel capill...Faced with complex operational environments,liquid metal divertors are considered alternative solutions to traditional solid divertors.Experiments have been conducted using a self-designed embedded multichannel capillary porous structure(EM-CPS)for plasma irradiation of lithium(Li)-prefilled EM-CPS in the high-density linear plasma device(SCU-PSI).The optical image analysis of the interaction region between the plasma and Li vapor shows that the region is not a regular geometric shape and the point of strongest light emission appears 1–2 cm in front of the target rather than on its surface.The irregularity is due to the uneven distribution and density of the Li vapor,as well as the radial and axial attenuation of the plasma.As the plasma discharge parameters increase,the vapor profile initially expands globally and then contracts locally,with the point of the strongest light emission gradually moving towards the target surface.The spectral lines of Li 670.78 nm and Ar 763.51 nm in the interaction region are produced by deexcitation.These lines gradually decrease in intensity along the axial direction,which is close to the trend of light emission intensity that initially increases and then decreases along the same direction.These findings provide a reference for studying the interaction mechanism between plasma and liquid Li capillary porous structures in linear plasma devices and future tokamak.展开更多
Bone-mimicking gradient porous NiTi shape memory alloys(SMAs)are promising for orthopedic im-plants due to their distinctive superelastic functional properties.However,premature plastic deformation in weak areas such ...Bone-mimicking gradient porous NiTi shape memory alloys(SMAs)are promising for orthopedic im-plants due to their distinctive superelastic functional properties.However,premature plastic deformation in weak areas such as thinner struts,nodes,and sharp corners severely deteriorates the superelasticity of gradient porous NiTi SMAs.In this work,we prepared gradient porous NiTi SMAs with a porosity of 50%by additive manufacturing(AM)and achieved a remarkable improvement of superelasticity by a simple solution treatment regime.After solution treatment,phase transformation temperatures dropped signif-icantly,the dislocation density decreased,and partial intergranular Ti-rich precipitates were transferred into the grain.Compared to as-built samples,the strain recovery rate of solution-treated samples was nearly doubled at a pre-strain of 6%(up to 90%),and all obtained a stable recoverable strain of more than 4%.The remarkable superelasticity improvement was attributed to lower phase transformation tem-peratures,fewer dislocations,and the synergistic strengthening effect of intragranular multi-scale Ti-Ni precipitates.Notably,the gradient porous structure played a non-negligible role in both superelasticity deterioration and improvement.The microstructure evolution of the solution-treated central strut after constant 10 cycles and the origin of the stable superelastic response of gradient porous NiTi SMAs were revealed.This work provides an accessible strategy for improving the superelastic performance of gra-dient porous NiTi SMAs and proposes a key strategy for achieving such high-performance architectured materials.展开更多
This paper aims to propose a topology optimization method on generating porous structures comprising multiple materials.The mathematical optimization formulation is established under the constraints of individual volu...This paper aims to propose a topology optimization method on generating porous structures comprising multiple materials.The mathematical optimization formulation is established under the constraints of individual volume fraction of constituent phase or total mass,as well as the local volume fraction of all phases.The original optimization problem with numerous constraints is converted into a box-constrained optimization problem by incorporating all constraints to the augmented Lagrangian function,avoiding the parameter dependence in the conventional aggregation process.Furthermore,the local volume percentage can be precisely satisfied.The effects including the globalmass bound,the influence radius and local volume percentage on final designs are exploited through numerical examples.The numerical results also reveal that porous structures keep a balance between the bulk design and periodic design in terms of the resulting compliance.All results,including those for irregular structures andmultiple volume fraction constraints,demonstrate that the proposedmethod can provide an efficient solution for multiple material infill structures.展开更多
Based on the advantages of triply periodic minimal surface(TPMS)porous structures,extensive research on NiTi shape memory alloy TPMS scaffolds has been conducted.However,the current reports about TPMS porous structure...Based on the advantages of triply periodic minimal surface(TPMS)porous structures,extensive research on NiTi shape memory alloy TPMS scaffolds has been conducted.However,the current reports about TPMS porous structures highly rely on the implicit equation,which limited the design flexibility.In this work,novel shell-based TPMS structures were designed and fabricated by laser powder bed fusion.The comparisons of manufacturability,mechanical properties,and shape recovery responses between traditional solid-based and novel shell-based TPMS structures were evaluated.Results indicated that the shell-based TPMS porous structures possessed larger Young's moduli and higher compressive strengths.Specifically,Diamond shell structure possessed the highest Young's moduli of 605.8±24.5MPa,while Gyroid shell structure possessed the highest compressive strength of 43.90±3.32 MPa.In addition,because of the larger specific surface area,higher critical stress to induce martensite transformation,and lower austenite finish temperature,the Diamond shell porous structure exhibited much higher shape recovery performance(only 0.1%residual strain left at pre-strains of 6%)than other porous structures.These results substantially uncover the effects of structural topology on the mechanical properties and shape recovery responses of NiTi shape memory alloy scaffolds,and confirm the effectiveness of this novel structural design method.This research can provide guidance for the structural design application of NiTi porous scaffolds in bone implants.展开更多
In bone tissue engineering,good structural and forming qualities are prerequisites for the long-term implantation of scaffolds.To mitigate the stress-shielding effect between porous bone scaffolds and the human skelet...In bone tissue engineering,good structural and forming qualities are prerequisites for the long-term implantation of scaffolds.To mitigate the stress-shielding effect between porous bone scaffolds and the human skeleton,this study proposes a method for designing non-linear gradient gyroid porous structures with radial-axial hybrid gra-dients that are precisely controlled by multivariate polynomial functions to simulate human bone characteristics.The influence of the volumetric energy density on the forming quality of the porous structures was evaluated by characterizing the internal strut morphology and measuring the strut width and porosity.Finite element analysis combined with experimental observations revealed that during compression,the thin struts at the top and bottom of the hybrid-gradient porous structure deformed first,and the compressive stress and shear stress were gradually transferred from the thin struts at the upper and lower ends of the structure to the thicker struts in the middle.Compared with the axial gradient,the edge struts of the hybrid-gradient porous structures can withstand higher shear and compressive stresses.Furthermore,owing to the variation in the radial gradient,compared to struc-tures with 20%axial porosity variation,the hybrid-gradient porous structure with 40%radial porosity variation and 20%axial porosity variation exhibited an 18.10%increase in elastic modulus and a 4.29%increase in yield strength.Additionally,its effective energy absorption was 20.39%higher than that of the homogeneous structures.Compared to radial-gradient porous structures,the hybrid-gradient porous structure showed a lower sensitivity of the elastic modulus and yield strength to the volumetric energy density.展开更多
An advantageous porous architecture of electrodes is pivotal in significantly enhancing alkaline water electrolysis(AWE)efficiency by optimizing the mass transport mechanisms.This effect becomes even more pronounced w...An advantageous porous architecture of electrodes is pivotal in significantly enhancing alkaline water electrolysis(AWE)efficiency by optimizing the mass transport mechanisms.This effect becomes even more pronounced when aiming to achieve elevated current densities.Herein,we employed a rapid and scalable laser texturing process to craft novel multi-channel porous electrodes.Particularly,the obtained electrodes exhibit the lowest Tafel slope of 79 mV dec^(-1)(HER)and 49 mV dec^(-1)(OER).As anticipated,the alkaline electrolyzer(AEL)cell incorporating multi-channel porous electrodes(NP-LT30)exhibited a remarkable improvement in cell efficiency,with voltage drops(from 2.28 to 1.97 V)exceeding 300 mV under 1 A cm^(-1),compared to conventional perforated Ni plate electrodes.This enhancement mainly stemmed from the employed multi-channel porous structure,facilitating mass transport and bubble dynamics through an innovative convection mode,surpassing the traditional convection mode.Furthermore,the NP-LT30-based AEL cell demonstrated exceptional durability for 300 h under 1.0 A cm^(-2).This study underscores the capability of the novel multi-channel porous electrodes to expedite mass transport in practical AWE applications.展开更多
The wave interaction with stratified porous structure combined with a surface-piercing porous block in a stepped seabed is analysed based on the small amplitude wave theory.The study is performed to analyse the effect...The wave interaction with stratified porous structure combined with a surface-piercing porous block in a stepped seabed is analysed based on the small amplitude wave theory.The study is performed to analyse the effectiveness of partial porous structure in increasing the wave attenuation in the nearshore regions consisting of stratified porous structures of different configurations using the eigenfunction expansion method and orthogonal mode-coupling relation.The hydrodynamic characteristics such as wave reflection coefficient,transmission coefficient,dissipation coefficient,wave force impact and surface elevation are investigated due to the presence of both horizontally and vertically stratified porous structures.The effect of varying porosity,structural width,angle of incidence,wavelength and length between the porous block and stratified structure is examined.The numerical results are validated with the results available in the literature.The present study illustrates that the presence of the stratified structure decreases wave transmission and efficient wave attenuation can also be easily achieved.The wave force acting on stratified structure can be decreased if the structure is combined with wider surface-piercing porous blocks.Further,the presence of stratified porous structure combined with porous block helps in creating a tranquil zone in the leeside of the structure.The combination of vertical and horizontal stratified porous structure with surface-piercing porous block is intended to be an effective solution for the protection of coastal facilities.展开更多
Rapid advancements in the aerospace industry necessitate the development of unified,lightweight and thermally conductive structures.Integrating complex geometries,including bionic and porous structures,is paramount in...Rapid advancements in the aerospace industry necessitate the development of unified,lightweight and thermally conductive structures.Integrating complex geometries,including bionic and porous structures,is paramount in thermally conductive structures to attain improved thermal conductivity.The design of two high-porosity porous lattice structures was inspired by pomelo peel structure,using Voronoi parametric design.By combining characteristic elements of two high-porostructuressity porous lattice structures designed,a novel high-porosity porous gradient structure is created.This structure is based on gradient design.Utilizing selective laser melting(SLM),fabrication comprises three.Steady-state thermal characteristics are evaluated via finite element analysis(FEA).The experimental thermal conductivity measurements correlate well with simulation results,validating the sequence of K_L as the highest,followed by D_K_L and then D_L.Heat treatment significantly improves thermal conductivity,enhancing the base material by about 45.6%and porous structured samples by approximately 43.7%.展开更多
[Objective] The paper was to study the effect of microporous structure of ac- tivated carbon on adsorption performance of n-butane. [Method] Using 8 activated car- bons prepared from different materials and technologi...[Objective] The paper was to study the effect of microporous structure of ac- tivated carbon on adsorption performance of n-butane. [Method] Using 8 activated car- bons prepared from different materials and technologies, the effects of physical prop- erties of activated carbon on butane adsorption performance were investigated. [Result] Specific surface area, pore volume and pore size distribution of activated carbon exert- ed remarkable effects on butane adsorption. The activated carbon with high percent- age of micropore volume within the range of 1.2-2 nm possessed high butane activity. The level of butane retentivity rose with the increase of the volume of pore within the range of 0.5-0,9 nm, which led to smaller butan working capacity (BWC). [Conclusion] The study provided reference for the adsorption research for activated carbon.展开更多
Inspired by natural porous architectures,numerous attempts have been made to generate porous structures.Owing to the smooth surfaces,highly interconnected porous architectures,and mathematical controllable geometry fe...Inspired by natural porous architectures,numerous attempts have been made to generate porous structures.Owing to the smooth surfaces,highly interconnected porous architectures,and mathematical controllable geometry features,triply periodic minimal surface(TPMS)is emerging as an outstanding solution to constructing porous structures in recent years.However,many advantages of TPMS are not fully utilized in current research.Critical problems of the process from design,manufacturing to applications need further systematic and integrated discussions.In this work,a comprehensive overview of TPMS porous structures is provided.In order to generate the digital models of TPMS,the geometry design algorithms and performance control strategies are introduced according to diverse requirements.Based on that,precise additive manufacturing methods are summarized for fabricating physical TPMS products.Furthermore,actual multidisciplinary applications are presented to clarify the advantages and further potential of TPMS porous structures.Eventually,the existing problems and further research outlooks are discussed.展开更多
A recent progress in new emerging two-dimensional(2 D)materials has provided promising opportunity for gas sensing in ultra-low detectable concentration.In this work,we have demonstrated a flexible NO2 gas sensor with...A recent progress in new emerging two-dimensional(2 D)materials has provided promising opportunity for gas sensing in ultra-low detectable concentration.In this work,we have demonstrated a flexible NO2 gas sensor with porous structure graphene on polyethylene terephthalate substrates operating at room temperature.The gas sensor exhibited good performance with response of 1.2%and a fast response time within 30 s after exposure to50×10^-9 NO2 gas.As porous structure of graphene increased the surface area,the sensor showed high sensitivity of ppb level for NO2 detection.Au nanoparticles were decorated on the surface of the porous structure graphene skeleton,resulting in an incensement of response compared with pristine graphene.Au nanoparticles-decorated graphene exhibits not only better sensitivity(1.5-1.6 times larger than pristine graphene)for NO2 gas detection,but also fast response.The sensor was found to be robust and sensitive under the cycling bending test,which could also be ascribed to the merits of graphene.This porous structure graphene-based gas sensor is expected to enable a simple and inexpensive flexible gas sensing platform.展开更多
The porous structure in pomelo peel is believed to be responsible for the protection of its fruit from damage during the free falling from a tree.The quantitative understanding of the relationship between the deformat...The porous structure in pomelo peel is believed to be responsible for the protection of its fruit from damage during the free falling from a tree.The quantitative understanding of the relationship between the deformation behavior and the porous structure could pave the way for the design of porous structures for efficient energy absorption.Here,a universal feature of pore distribution in pomelo peels along the radial direction is extracted from three varieties of pomelos,which shows strong correlation to the deformation behavior of the peels under compression.Guided by the porous design found in pomelo peels,porous polyether-ether-ketone(PEEK)cube is additively manufactured and possesses the highest ability to absorb energy during compression as compared to the non-pomelo-inspired geometries,which is further confirmed by the finite element simulation.The nature-optimized porous structure revealed here could guide the design of lightweight and high-energy-dissipating materials/devices.展开更多
Searching for free-standing and cost-efficient hydrogen evolution reaction(HER)electrocatalysts with high efficiency and excellent durability remains a great challenge for the hydrogen-based energy industry.Here,we re...Searching for free-standing and cost-efficient hydrogen evolution reaction(HER)electrocatalysts with high efficiency and excellent durability remains a great challenge for the hydrogen-based energy industry.Here,we report fabrication of a unique hierarchically porous structure,i.e.,nanoporous Ni(NPN)/metallic glass(MG)composite,through surface dealloying of the specially designed Ni_(40)Zr_(40)Ti_(20)MG wire.This porous composite is composed of micrometer slits staggered with nanometer pores,which not only enlarges effective surface areas for the catalytic reaction,but also facilitates the release of H2 gas.As a result,the NPN/MG hybrid electrode exhibited the prominent HER performance with a low overpotential of 78 m V at 10 m A cm^(-2)and Tafel slope of 42.4 m V dec^(-1),along with outstanding stability in alkaline solutions.Outstanding catalytic properties,combining with their free-standing capability and cost efficiency,make the current composite electrode viable for HER applications.展开更多
Supercapacitors with unique performance have been widely utilized in many fields. Herein, we report a nitrogen and sulfur co-doped graphene aerogel(N/S-GA-2) prepared using a low toxic precursor for high-performance s...Supercapacitors with unique performance have been widely utilized in many fields. Herein, we report a nitrogen and sulfur co-doped graphene aerogel(N/S-GA-2) prepared using a low toxic precursor for high-performance supercapacitors. The as-obtained material possesses a hierarchically porous structure and a large number of electrochemical active sites. At a current density of 1 Ag^-1, the specific capacitance of the N/S-GA-2 for supercapacitors with the ionic liquid as the electrolyte is 169.4 Fg^-1, and the corresponding energy density is 84.5 Wh kg^-1.At a power density of 8.9 k W kg^-1, the energy density can reach up to 75.7 Wh kg^-1, showing that the N/S-GA-2 has an excellent electrochemical performance. Consequently, the N/S-GA-2 can be used as a promising candidate of electrode materials for supercapacitors with high power density and high energy density.展开更多
This investigation and morphology analysis of porous structure of some kinds of natural materials such as chicken eggshell, partridge eggshell, pig bone, and seeds of mung bean, soja, ginkgo, lotus seed, as well as th...This investigation and morphology analysis of porous structure of some kinds of natural materials such as chicken eggshell, partridge eggshell, pig bone, and seeds of mung bean, soja, ginkgo, lotus seed, as well as the epidermis of apples, with SEM (Scanning Electronic Microscope) showed that natural structures’ pores can be classified into uniform pores, gradient pores and multi pores from the viewpoint of the distribution variation of pore density, size and geometry. Furthermore, an optimal design of porous bearings was for the first time developed based on the gradient configuration of natural materials. The bionic design of porous structures is predicted to be widely developed and applied in the fields of materials and mechanical engineering in the future.展开更多
The porous p-type BiSbTebulks containing irregularly and randomly oriented pores were obtained by artificially controlling the relative density of sintered samples during resistance pressing sintering process. It is d...The porous p-type BiSbTebulks containing irregularly and randomly oriented pores were obtained by artificially controlling the relative density of sintered samples during resistance pressing sintering process. It is demonstrated that the thermoelectric performances are significantly affected by the porous structure, especially for the electrical and thermal conductivity due to the enhanced carrier scattering and phonon scattering. The increasing porosity resulted in the obvious decrease in electrical and thermal conductivity, and little change in Seebeck coefficients. It is encouraging that the reduction of thermal conductivity can compensate for the deterioration of electrical performance, leading to the enhancement in thermoelectric figure of merit(ZT). The maximum ZT value of 1.0 was obtained for the sample with a relative density of 90% at 333 K. Unfortunately, the increase in porosity also brought in obvious degradations in Vickers hardness from 51.71 to 27.74 HV. It is worth mentioning that although the Vickers hardness of the sample with a relative density of 90% decreased to 40.12 HV, it was still about twice as high as that of the zone melting sample(21.25 HV). To summarize, introducing pores structure into bulks properly not only enhances the ZT value of BiTebased alloys, but also reduces the use of raw materials and saves production cost.展开更多
Herein,a cross-linked porous Ta3N5 film was prepared via a simple solution combustion route followed by a high-temperature nitridation process for photoelectrochemical(PEC) water oxidation.Meanwhile,the metal cations(...Herein,a cross-linked porous Ta3N5 film was prepared via a simple solution combustion route followed by a high-temperature nitridation process for photoelectrochemical(PEC) water oxidation.Meanwhile,the metal cations(Mg2+ and Zr4+) were incorporated into the porous Ta3N5 to enhance the PEC performance.The porous Mg/Zr co-doped Ta3N5 photoanode yielded a photocurrent density of 1.40 mA cm^(-2) at 1.23 V vs RHE,which is 5.6 times higher than that of the dense Ta3N5 photoanode.The enhanced performance should be ascribed to the synergistic effect of porous structure and cation doping,which can enlarge the electrochemical active surface area and accelerate the charge transfer by introducing ON substitution defects.Subsequently,Co(OH)2 cocatalyst was loaded on the Mg/Zr-Ta3N5 photoanode to negatively shift the onset potential to 0.45 V vs RHE and further improve the photocurrent density to 3.5 mA cm^(-2)at 1.23 V vs.RHE,with a maximum half-cell solar to hydrogen efficiency of 0.45%.The present study provides a new strategy to design efficient Ta3N5 photoelectrodes via the simultaneous control of the morphology and composition.展开更多
Oblique ocean wave damping by a vertical porous structure placed on a multi-step bottom topography is studied with the help of linear water wave theory. Some portion of the oblique wave, incident on the porous structu...Oblique ocean wave damping by a vertical porous structure placed on a multi-step bottom topography is studied with the help of linear water wave theory. Some portion of the oblique wave, incident on the porous structure, gets reflected by the multi-step bottom and the porous structure, and the rest propagates into the water medium following the porous structure. Two cases are considered: first a solid vertical wall placed at a finite distance from the porous structure in the water medium following the porous structure and then a special case of an unbounded water medium following the porous structure. In both cases, boundary value problems are set up in three different media, the first medium being water, the second medium being the porous structure consisting ofp vertical regions-one above each step and the third medium being water again. By using the matching conditions along the virtualvertical boundaries, a system of linear equations is deduced. The behavior of the reflection coefficient and the dimensionless amplitude of the transmitted progressive wave due to different relevant parameters are studied. Energy loss due to the propagation of oblique water wave through the porous structure is also carried out. The effects of various parameters, such as number of evanescent modes, porosity, friction factor, structure width, number of steps and angle of incidence, on the reflection coefficient and the dimensionless amplitude of the transmitted wave are studied graphically for both cases. Number of evanescent modes merely affects the scattering phenomenon. But higher values of porosity show relatively lower reflection than that for lower porosity. Oscillation in the reflection coefficient is observed for lower values of friction factor but it disappears with an increase in the value of friction factor. Amplitude of the transmitted progressive wave is independent of the porosity of the structure. But lower value of friction factor causes higher transmission. The investigation is then carried out for the second case, i.e., when the wall is absent. The significant difference between the two cases considered here is that the reflection due to a thin porous structure is very high when the solid wall exists as compared to the case when no wall is present. Energy loss due to different porosity, friction factor, structure width and angle of incidence is also examined. Validity of our model is ascertained by matching it with an available one.展开更多
基金supported by the National Key R&D Program of China(Grant No.2021YFC2501700).
文摘The current artificial bone is unable to accurately replicate the inhomogeneity and anisotropy of human cancellous bone.To address this issue,we proposed a personalized approach based on clinical CT images to design mechanical equivalent porous structures for artificial femoral heads.Firstly,supported by Micro and clinical CT scans of 21 bone specimens,the anisotropic mechanical parameters of human cancellous bone in the femoral head were characterized using clinical CT values(Hounsfield unit).After that,the equivalent porous structure of cancellous bone was designed based on the gyroid surface,the influence of its degree of anisotropy and volume fraction on the macroscopic mechanical parameters was investigated by finite element analysis.Furthermore,a mapping relationship between CT values and the porous structure was established by jointly solving the mechanical parameters of the porous structure and human cancellous bone,allowing the design of personalized gradient porous structures based on clinical CT images.Finally,to verify the mechanical equivalence,implant press-in tests were conducted on 3D-printed artificial femoral heads and human femoral heads,the influence of the porous structure’s cell size in bone-implant interaction problems was also explored.Results showed that the minimum deviations of press-in stiffness(<15%)and peak load(<5%)both occurred when the cell size was 20%to 30%of the implant diameter.In conclusion,the designed porous structure can replicate the human cancellous bone-implant interaction at a high level,indicating its effectiveness in optimizing the mechanical performance of 3D-printed artificial femoral head.
基金supported by the National Key Research and Development Program of China(No.2019YFA0110600)the Science and Technology Support Program of Sichuan Province(No.2019YJ0161).
文摘Hierarchical porous structure,which include macropores,minor pores,and micropores in scaffolds,are essential in the multiple biological functions of bone repair and regeneration.In this study,patientcustomized calcium-deficient hydroxyapatite(CDHA)scaffolds with three-level hierarchical porous structure were fabricated by indirect 3D printing technology and particulate leaching method.The sacrificial template scaffolds were fabricated using a photo-curing 3D printer,which provided a prerequisite for the integral structure and interconnected macropores of CDHA scaffolds.Additionally,20 wt%pore former was incorporated into the slurry to enhance the content of smaller pores within the CDHA-2 scaffolds,and then the CDHA-2 scaffolds were sintered to remove the sacrificial template scaffolds and pore former.The obtained CDHA-2 scaffolds exhibited interconnected macropores(300-400μm),minor pores(∼10-100μm),and micropores(<10μm)distributed throughout the scaffolds,which could promote bone tissue ingrowth,increase surface roughness,and enhance protein adsorption of scaffolds.In vitro studies identified that CDHA-2 scaffolds had nanocrystal grains,high specific surface area,and outstanding protein adsorption capacity,which could provide a microenvironment for cell adhesion,spreading,and proliferation.In addition,the murine intramuscular implantation experiment suggested that CDHA-2 scaffolds exhibited excellent osteoinductivity and were superior to traditional BCP ceramics under conditions without the addition of live cells and exogenous growth factors.The rabbit calvarial defect repair results indicated that CDHA-2 scaffolds could enhance in situ bone regeneration.In conclusion,these findings demonstrated that the hierarchical porous structure of CDHA scaffolds was a pivotal factor in modulating osteoinductivity and bone regeneration,and CDHA-2 scaffolds were potential candidates for bone regeneration.
基金supported by the National Key Research and Development Program of China(No.2022YFE03130000)。
文摘Faced with complex operational environments,liquid metal divertors are considered alternative solutions to traditional solid divertors.Experiments have been conducted using a self-designed embedded multichannel capillary porous structure(EM-CPS)for plasma irradiation of lithium(Li)-prefilled EM-CPS in the high-density linear plasma device(SCU-PSI).The optical image analysis of the interaction region between the plasma and Li vapor shows that the region is not a regular geometric shape and the point of strongest light emission appears 1–2 cm in front of the target rather than on its surface.The irregularity is due to the uneven distribution and density of the Li vapor,as well as the radial and axial attenuation of the plasma.As the plasma discharge parameters increase,the vapor profile initially expands globally and then contracts locally,with the point of the strongest light emission gradually moving towards the target surface.The spectral lines of Li 670.78 nm and Ar 763.51 nm in the interaction region are produced by deexcitation.These lines gradually decrease in intensity along the axial direction,which is close to the trend of light emission intensity that initially increases and then decreases along the same direction.These findings provide a reference for studying the interaction mechanism between plasma and liquid Li capillary porous structures in linear plasma devices and future tokamak.
基金the financial support of the National Natural Science Foundation under Grant No.52274387project support by the Shanghai Science and Technology Com-mission(Grant No.20S31900100).
文摘Bone-mimicking gradient porous NiTi shape memory alloys(SMAs)are promising for orthopedic im-plants due to their distinctive superelastic functional properties.However,premature plastic deformation in weak areas such as thinner struts,nodes,and sharp corners severely deteriorates the superelasticity of gradient porous NiTi SMAs.In this work,we prepared gradient porous NiTi SMAs with a porosity of 50%by additive manufacturing(AM)and achieved a remarkable improvement of superelasticity by a simple solution treatment regime.After solution treatment,phase transformation temperatures dropped signif-icantly,the dislocation density decreased,and partial intergranular Ti-rich precipitates were transferred into the grain.Compared to as-built samples,the strain recovery rate of solution-treated samples was nearly doubled at a pre-strain of 6%(up to 90%),and all obtained a stable recoverable strain of more than 4%.The remarkable superelasticity improvement was attributed to lower phase transformation tem-peratures,fewer dislocations,and the synergistic strengthening effect of intragranular multi-scale Ti-Ni precipitates.Notably,the gradient porous structure played a non-negligible role in both superelasticity deterioration and improvement.The microstructure evolution of the solution-treated central strut after constant 10 cycles and the origin of the stable superelastic response of gradient porous NiTi SMAs were revealed.This work provides an accessible strategy for improving the superelastic performance of gra-dient porous NiTi SMAs and proposes a key strategy for achieving such high-performance architectured materials.
基金This study is financially supported by StateKey Laboratory of Alternate Electrical Power System with Renewable Energy Sources(Grant No.LAPS22012).
文摘This paper aims to propose a topology optimization method on generating porous structures comprising multiple materials.The mathematical optimization formulation is established under the constraints of individual volume fraction of constituent phase or total mass,as well as the local volume fraction of all phases.The original optimization problem with numerous constraints is converted into a box-constrained optimization problem by incorporating all constraints to the augmented Lagrangian function,avoiding the parameter dependence in the conventional aggregation process.Furthermore,the local volume percentage can be precisely satisfied.The effects including the globalmass bound,the influence radius and local volume percentage on final designs are exploited through numerical examples.The numerical results also reveal that porous structures keep a balance between the bulk design and periodic design in terms of the resulting compliance.All results,including those for irregular structures andmultiple volume fraction constraints,demonstrate that the proposedmethod can provide an efficient solution for multiple material infill structures.
基金Supported by Natural and Science Foundation of China(Grant Nos.52275331,52201041,52305360)Guangdong Provincial Key-Area Research and Development Program of China(Grant No.2020B090923001)+3 种基金National Key Research and Development Program of China(Grant No.2023YFB4604800)Hubei Provincial Key Research and Development Program of China(Grant No.2022BAA011)Academic Frontier Youth Team at Huazhong University of Science and Technology of China(Grant No.2018QYTD04)Hong Kong Scholars Program of China(Grant No.XJ2022014)。
文摘Based on the advantages of triply periodic minimal surface(TPMS)porous structures,extensive research on NiTi shape memory alloy TPMS scaffolds has been conducted.However,the current reports about TPMS porous structures highly rely on the implicit equation,which limited the design flexibility.In this work,novel shell-based TPMS structures were designed and fabricated by laser powder bed fusion.The comparisons of manufacturability,mechanical properties,and shape recovery responses between traditional solid-based and novel shell-based TPMS structures were evaluated.Results indicated that the shell-based TPMS porous structures possessed larger Young's moduli and higher compressive strengths.Specifically,Diamond shell structure possessed the highest Young's moduli of 605.8±24.5MPa,while Gyroid shell structure possessed the highest compressive strength of 43.90±3.32 MPa.In addition,because of the larger specific surface area,higher critical stress to induce martensite transformation,and lower austenite finish temperature,the Diamond shell porous structure exhibited much higher shape recovery performance(only 0.1%residual strain left at pre-strains of 6%)than other porous structures.These results substantially uncover the effects of structural topology on the mechanical properties and shape recovery responses of NiTi shape memory alloy scaffolds,and confirm the effectiveness of this novel structural design method.This research can provide guidance for the structural design application of NiTi porous scaffolds in bone implants.
基金supported by National Natural Science Foundation of China(Grant No.52175481)Postdoctoral Science Foundation of China(Grant No.2023M743539).
文摘In bone tissue engineering,good structural and forming qualities are prerequisites for the long-term implantation of scaffolds.To mitigate the stress-shielding effect between porous bone scaffolds and the human skeleton,this study proposes a method for designing non-linear gradient gyroid porous structures with radial-axial hybrid gra-dients that are precisely controlled by multivariate polynomial functions to simulate human bone characteristics.The influence of the volumetric energy density on the forming quality of the porous structures was evaluated by characterizing the internal strut morphology and measuring the strut width and porosity.Finite element analysis combined with experimental observations revealed that during compression,the thin struts at the top and bottom of the hybrid-gradient porous structure deformed first,and the compressive stress and shear stress were gradually transferred from the thin struts at the upper and lower ends of the structure to the thicker struts in the middle.Compared with the axial gradient,the edge struts of the hybrid-gradient porous structures can withstand higher shear and compressive stresses.Furthermore,owing to the variation in the radial gradient,compared to struc-tures with 20%axial porosity variation,the hybrid-gradient porous structure with 40%radial porosity variation and 20%axial porosity variation exhibited an 18.10%increase in elastic modulus and a 4.29%increase in yield strength.Additionally,its effective energy absorption was 20.39%higher than that of the homogeneous structures.Compared to radial-gradient porous structures,the hybrid-gradient porous structure showed a lower sensitivity of the elastic modulus and yield strength to the volumetric energy density.
基金financial support from the National Key R&D Program(2023YFE0108000)the Academy of Sciences Project of Guangdong Province(2019GDASYL-0102007,2021GDASYL-20210103063)+1 种基金GDAS’Project of Science and Technology Development(2022GDASZH-2022010203-003)financial support from the China Scholarship Council(202108210128)。
文摘An advantageous porous architecture of electrodes is pivotal in significantly enhancing alkaline water electrolysis(AWE)efficiency by optimizing the mass transport mechanisms.This effect becomes even more pronounced when aiming to achieve elevated current densities.Herein,we employed a rapid and scalable laser texturing process to craft novel multi-channel porous electrodes.Particularly,the obtained electrodes exhibit the lowest Tafel slope of 79 mV dec^(-1)(HER)and 49 mV dec^(-1)(OER).As anticipated,the alkaline electrolyzer(AEL)cell incorporating multi-channel porous electrodes(NP-LT30)exhibited a remarkable improvement in cell efficiency,with voltage drops(from 2.28 to 1.97 V)exceeding 300 mV under 1 A cm^(-1),compared to conventional perforated Ni plate electrodes.This enhancement mainly stemmed from the employed multi-channel porous structure,facilitating mass transport and bubble dynamics through an innovative convection mode,surpassing the traditional convection mode.Furthermore,the NP-LT30-based AEL cell demonstrated exceptional durability for 300 h under 1.0 A cm^(-2).This study underscores the capability of the novel multi-channel porous electrodes to expedite mass transport in practical AWE applications.
基金Science and Engineering Research Board(SERB),Department of Science&Technology(DST),Government of India for supporting financially under the research grant No.CRG/2018/004184Ministry of Ports,Shipping and Waterways,Government of India through the research grant No.DW/01013(13)/2/2021.
文摘The wave interaction with stratified porous structure combined with a surface-piercing porous block in a stepped seabed is analysed based on the small amplitude wave theory.The study is performed to analyse the effectiveness of partial porous structure in increasing the wave attenuation in the nearshore regions consisting of stratified porous structures of different configurations using the eigenfunction expansion method and orthogonal mode-coupling relation.The hydrodynamic characteristics such as wave reflection coefficient,transmission coefficient,dissipation coefficient,wave force impact and surface elevation are investigated due to the presence of both horizontally and vertically stratified porous structures.The effect of varying porosity,structural width,angle of incidence,wavelength and length between the porous block and stratified structure is examined.The numerical results are validated with the results available in the literature.The present study illustrates that the presence of the stratified structure decreases wave transmission and efficient wave attenuation can also be easily achieved.The wave force acting on stratified structure can be decreased if the structure is combined with wider surface-piercing porous blocks.Further,the presence of stratified porous structure combined with porous block helps in creating a tranquil zone in the leeside of the structure.The combination of vertical and horizontal stratified porous structure with surface-piercing porous block is intended to be an effective solution for the protection of coastal facilities.
基金funding of the Shanghai Sailing Program(No.19YF1434300)the Shanghai Engineering Research Center of High-Performance Medical Device Materials(No.20DZ2255500)the National Natural Science Foundation of China(No.11947137).
文摘Rapid advancements in the aerospace industry necessitate the development of unified,lightweight and thermally conductive structures.Integrating complex geometries,including bionic and porous structures,is paramount in thermally conductive structures to attain improved thermal conductivity.The design of two high-porosity porous lattice structures was inspired by pomelo peel structure,using Voronoi parametric design.By combining characteristic elements of two high-porostructuressity porous lattice structures designed,a novel high-porosity porous gradient structure is created.This structure is based on gradient design.Utilizing selective laser melting(SLM),fabrication comprises three.Steady-state thermal characteristics are evaluated via finite element analysis(FEA).The experimental thermal conductivity measurements correlate well with simulation results,validating the sequence of K_L as the highest,followed by D_K_L and then D_L.Heat treatment significantly improves thermal conductivity,enhancing the base material by about 45.6%and porous structured samples by approximately 43.7%.
基金Supported by "Eleventh Five-Year" National Science and Technology Support Project(2009BADB1B03)Forestry Public Welfare Industry Special (201004051)~~
文摘[Objective] The paper was to study the effect of microporous structure of ac- tivated carbon on adsorption performance of n-butane. [Method] Using 8 activated car- bons prepared from different materials and technologies, the effects of physical prop- erties of activated carbon on butane adsorption performance were investigated. [Result] Specific surface area, pore volume and pore size distribution of activated carbon exert- ed remarkable effects on butane adsorption. The activated carbon with high percent- age of micropore volume within the range of 1.2-2 nm possessed high butane activity. The level of butane retentivity rose with the increase of the volume of pore within the range of 0.5-0,9 nm, which led to smaller butan working capacity (BWC). [Conclusion] The study provided reference for the adsorption research for activated carbon.
基金financially supported by National Key R&D Program of China(No.2020YFC1107103)Key Research and Development Program of Zhejiang Province(No.2021C01107)+1 种基金China Postdoctoral Science Foundation(No.2020M681846)Science Fund for Creative Research Groups of National Natural Science Foundation of China(No.51821093).
文摘Inspired by natural porous architectures,numerous attempts have been made to generate porous structures.Owing to the smooth surfaces,highly interconnected porous architectures,and mathematical controllable geometry features,triply periodic minimal surface(TPMS)is emerging as an outstanding solution to constructing porous structures in recent years.However,many advantages of TPMS are not fully utilized in current research.Critical problems of the process from design,manufacturing to applications need further systematic and integrated discussions.In this work,a comprehensive overview of TPMS porous structures is provided.In order to generate the digital models of TPMS,the geometry design algorithms and performance control strategies are introduced according to diverse requirements.Based on that,precise additive manufacturing methods are summarized for fabricating physical TPMS products.Furthermore,actual multidisciplinary applications are presented to clarify the advantages and further potential of TPMS porous structures.Eventually,the existing problems and further research outlooks are discussed.
基金financially supported by National Natural Science Foundation of China(No.61874137)。
文摘A recent progress in new emerging two-dimensional(2 D)materials has provided promising opportunity for gas sensing in ultra-low detectable concentration.In this work,we have demonstrated a flexible NO2 gas sensor with porous structure graphene on polyethylene terephthalate substrates operating at room temperature.The gas sensor exhibited good performance with response of 1.2%and a fast response time within 30 s after exposure to50×10^-9 NO2 gas.As porous structure of graphene increased the surface area,the sensor showed high sensitivity of ppb level for NO2 detection.Au nanoparticles were decorated on the surface of the porous structure graphene skeleton,resulting in an incensement of response compared with pristine graphene.Au nanoparticles-decorated graphene exhibits not only better sensitivity(1.5-1.6 times larger than pristine graphene)for NO2 gas detection,but also fast response.The sensor was found to be robust and sensitive under the cycling bending test,which could also be ascribed to the merits of graphene.This porous structure graphene-based gas sensor is expected to enable a simple and inexpensive flexible gas sensing platform.
基金supported by the National Key R&DProgram of China(2018YFB1105100)National Natural Science Foundation of China(51973165).
文摘The porous structure in pomelo peel is believed to be responsible for the protection of its fruit from damage during the free falling from a tree.The quantitative understanding of the relationship between the deformation behavior and the porous structure could pave the way for the design of porous structures for efficient energy absorption.Here,a universal feature of pore distribution in pomelo peels along the radial direction is extracted from three varieties of pomelos,which shows strong correlation to the deformation behavior of the peels under compression.Guided by the porous design found in pomelo peels,porous polyether-ether-ketone(PEEK)cube is additively manufactured and possesses the highest ability to absorb energy during compression as compared to the non-pomelo-inspired geometries,which is further confirmed by the finite element simulation.The nature-optimized porous structure revealed here could guide the design of lightweight and high-energy-dissipating materials/devices.
基金supported by National Natural Science Foundation of China(Nos.11790293,51871016,51671018,51671021,and 51961160729)the Funds for Creative Research Groups of China(No.51921001)+3 种基金111 Project(B07003)the Program for Changjiang Scholars and Innovative Research Team in University of China(IRT 14R05)the Fundamental Research Funds for the Central Universities(Nos.FRF-GF-19-011A,FRF-TP-18-004C1,FRF-BD-19-002B,and FRF-TP19-054A2)partially supported by State Key Laboratory for Advanced Metals and Materials(2018Z-19)。
文摘Searching for free-standing and cost-efficient hydrogen evolution reaction(HER)electrocatalysts with high efficiency and excellent durability remains a great challenge for the hydrogen-based energy industry.Here,we report fabrication of a unique hierarchically porous structure,i.e.,nanoporous Ni(NPN)/metallic glass(MG)composite,through surface dealloying of the specially designed Ni_(40)Zr_(40)Ti_(20)MG wire.This porous composite is composed of micrometer slits staggered with nanometer pores,which not only enlarges effective surface areas for the catalytic reaction,but also facilitates the release of H2 gas.As a result,the NPN/MG hybrid electrode exhibited the prominent HER performance with a low overpotential of 78 m V at 10 m A cm^(-2)and Tafel slope of 42.4 m V dec^(-1),along with outstanding stability in alkaline solutions.Outstanding catalytic properties,combining with their free-standing capability and cost efficiency,make the current composite electrode viable for HER applications.
基金Financial support from the National Natural Science Foundation of China (Nos. 21873026 and 21573058)the Program for Innovative Research Team in Science and Technology in University of Henan Province (17IRTSTHN 001) is gratefully acknowledged
文摘Supercapacitors with unique performance have been widely utilized in many fields. Herein, we report a nitrogen and sulfur co-doped graphene aerogel(N/S-GA-2) prepared using a low toxic precursor for high-performance supercapacitors. The as-obtained material possesses a hierarchically porous structure and a large number of electrochemical active sites. At a current density of 1 Ag^-1, the specific capacitance of the N/S-GA-2 for supercapacitors with the ionic liquid as the electrolyte is 169.4 Fg^-1, and the corresponding energy density is 84.5 Wh kg^-1.At a power density of 8.9 k W kg^-1, the energy density can reach up to 75.7 Wh kg^-1, showing that the N/S-GA-2 has an excellent electrochemical performance. Consequently, the N/S-GA-2 can be used as a promising candidate of electrode materials for supercapacitors with high power density and high energy density.
文摘This investigation and morphology analysis of porous structure of some kinds of natural materials such as chicken eggshell, partridge eggshell, pig bone, and seeds of mung bean, soja, ginkgo, lotus seed, as well as the epidermis of apples, with SEM (Scanning Electronic Microscope) showed that natural structures’ pores can be classified into uniform pores, gradient pores and multi pores from the viewpoint of the distribution variation of pore density, size and geometry. Furthermore, an optimal design of porous bearings was for the first time developed based on the gradient configuration of natural materials. The bionic design of porous structures is predicted to be widely developed and applied in the fields of materials and mechanical engineering in the future.
基金supported financially by the National Natural Science Foundation of China(Nos.11074195 and 51674181)the Key Projects of Hubei Provincial Department of Education(No.D20151103)
文摘The porous p-type BiSbTebulks containing irregularly and randomly oriented pores were obtained by artificially controlling the relative density of sintered samples during resistance pressing sintering process. It is demonstrated that the thermoelectric performances are significantly affected by the porous structure, especially for the electrical and thermal conductivity due to the enhanced carrier scattering and phonon scattering. The increasing porosity resulted in the obvious decrease in electrical and thermal conductivity, and little change in Seebeck coefficients. It is encouraging that the reduction of thermal conductivity can compensate for the deterioration of electrical performance, leading to the enhancement in thermoelectric figure of merit(ZT). The maximum ZT value of 1.0 was obtained for the sample with a relative density of 90% at 333 K. Unfortunately, the increase in porosity also brought in obvious degradations in Vickers hardness from 51.71 to 27.74 HV. It is worth mentioning that although the Vickers hardness of the sample with a relative density of 90% decreased to 40.12 HV, it was still about twice as high as that of the zone melting sample(21.25 HV). To summarize, introducing pores structure into bulks properly not only enhances the ZT value of BiTebased alloys, but also reduces the use of raw materials and saves production cost.
基金the financial support from the China National Key Research and Development Plan Project (No. 2018YFB1502003)the National Natural Science Foundation of China (No. 21606175)the Shaanxi Technical Innovation Guidance Project (Grant no. 2018HJCG-14)。
文摘Herein,a cross-linked porous Ta3N5 film was prepared via a simple solution combustion route followed by a high-temperature nitridation process for photoelectrochemical(PEC) water oxidation.Meanwhile,the metal cations(Mg2+ and Zr4+) were incorporated into the porous Ta3N5 to enhance the PEC performance.The porous Mg/Zr co-doped Ta3N5 photoanode yielded a photocurrent density of 1.40 mA cm^(-2) at 1.23 V vs RHE,which is 5.6 times higher than that of the dense Ta3N5 photoanode.The enhanced performance should be ascribed to the synergistic effect of porous structure and cation doping,which can enlarge the electrochemical active surface area and accelerate the charge transfer by introducing ON substitution defects.Subsequently,Co(OH)2 cocatalyst was loaded on the Mg/Zr-Ta3N5 photoanode to negatively shift the onset potential to 0.45 V vs RHE and further improve the photocurrent density to 3.5 mA cm^(-2)at 1.23 V vs.RHE,with a maximum half-cell solar to hydrogen efficiency of 0.45%.The present study provides a new strategy to design efficient Ta3N5 photoelectrodes via the simultaneous control of the morphology and composition.
文摘Oblique ocean wave damping by a vertical porous structure placed on a multi-step bottom topography is studied with the help of linear water wave theory. Some portion of the oblique wave, incident on the porous structure, gets reflected by the multi-step bottom and the porous structure, and the rest propagates into the water medium following the porous structure. Two cases are considered: first a solid vertical wall placed at a finite distance from the porous structure in the water medium following the porous structure and then a special case of an unbounded water medium following the porous structure. In both cases, boundary value problems are set up in three different media, the first medium being water, the second medium being the porous structure consisting ofp vertical regions-one above each step and the third medium being water again. By using the matching conditions along the virtualvertical boundaries, a system of linear equations is deduced. The behavior of the reflection coefficient and the dimensionless amplitude of the transmitted progressive wave due to different relevant parameters are studied. Energy loss due to the propagation of oblique water wave through the porous structure is also carried out. The effects of various parameters, such as number of evanescent modes, porosity, friction factor, structure width, number of steps and angle of incidence, on the reflection coefficient and the dimensionless amplitude of the transmitted wave are studied graphically for both cases. Number of evanescent modes merely affects the scattering phenomenon. But higher values of porosity show relatively lower reflection than that for lower porosity. Oscillation in the reflection coefficient is observed for lower values of friction factor but it disappears with an increase in the value of friction factor. Amplitude of the transmitted progressive wave is independent of the porosity of the structure. But lower value of friction factor causes higher transmission. The investigation is then carried out for the second case, i.e., when the wall is absent. The significant difference between the two cases considered here is that the reflection due to a thin porous structure is very high when the solid wall exists as compared to the case when no wall is present. Energy loss due to different porosity, friction factor, structure width and angle of incidence is also examined. Validity of our model is ascertained by matching it with an available one.