期刊文献+
共找到277篇文章
< 1 2 14 >
每页显示 20 50 100
Development of mechanical equivalent porous structures for 3Dprinted artificial femoral heads 被引量:1
1
作者 Moyu Liu Jun Wang +3 位作者 Yu Li Kaiyuan Cheng Yong Huan Ning Li 《Acta Mechanica Sinica》 2025年第4期176-187,共12页
The current artificial bone is unable to accurately replicate the inhomogeneity and anisotropy of human cancellous bone.To address this issue,we proposed a personalized approach based on clinical CT images to design m... The current artificial bone is unable to accurately replicate the inhomogeneity and anisotropy of human cancellous bone.To address this issue,we proposed a personalized approach based on clinical CT images to design mechanical equivalent porous structures for artificial femoral heads.Firstly,supported by Micro and clinical CT scans of 21 bone specimens,the anisotropic mechanical parameters of human cancellous bone in the femoral head were characterized using clinical CT values(Hounsfield unit).After that,the equivalent porous structure of cancellous bone was designed based on the gyroid surface,the influence of its degree of anisotropy and volume fraction on the macroscopic mechanical parameters was investigated by finite element analysis.Furthermore,a mapping relationship between CT values and the porous structure was established by jointly solving the mechanical parameters of the porous structure and human cancellous bone,allowing the design of personalized gradient porous structures based on clinical CT images.Finally,to verify the mechanical equivalence,implant press-in tests were conducted on 3D-printed artificial femoral heads and human femoral heads,the influence of the porous structure’s cell size in bone-implant interaction problems was also explored.Results showed that the minimum deviations of press-in stiffness(<15%)and peak load(<5%)both occurred when the cell size was 20%to 30%of the implant diameter.In conclusion,the designed porous structure can replicate the human cancellous bone-implant interaction at a high level,indicating its effectiveness in optimizing the mechanical performance of 3D-printed artificial femoral head. 展开更多
关键词 Mechanical equivalence porous structure ANISOTROPY Femoral head Artificial bone
原文传递
Indirect 3D printing CDHA scaffolds with hierarchical porous structure to promote osteoinductivity and bone regeneration
2
作者 Wenling Dai Shikui Li +7 位作者 Hengxing Jia Xingchen Zhao Chenxin Liu Changchun Zhou Yumei Xiao Likun Guo Yujiang Fan Xingdong Zhang 《Journal of Materials Science & Technology》 2025年第4期295-307,共13页
Hierarchical porous structure,which include macropores,minor pores,and micropores in scaffolds,are essential in the multiple biological functions of bone repair and regeneration.In this study,patientcustomized calcium... Hierarchical porous structure,which include macropores,minor pores,and micropores in scaffolds,are essential in the multiple biological functions of bone repair and regeneration.In this study,patientcustomized calcium-deficient hydroxyapatite(CDHA)scaffolds with three-level hierarchical porous structure were fabricated by indirect 3D printing technology and particulate leaching method.The sacrificial template scaffolds were fabricated using a photo-curing 3D printer,which provided a prerequisite for the integral structure and interconnected macropores of CDHA scaffolds.Additionally,20 wt%pore former was incorporated into the slurry to enhance the content of smaller pores within the CDHA-2 scaffolds,and then the CDHA-2 scaffolds were sintered to remove the sacrificial template scaffolds and pore former.The obtained CDHA-2 scaffolds exhibited interconnected macropores(300-400μm),minor pores(∼10-100μm),and micropores(<10μm)distributed throughout the scaffolds,which could promote bone tissue ingrowth,increase surface roughness,and enhance protein adsorption of scaffolds.In vitro studies identified that CDHA-2 scaffolds had nanocrystal grains,high specific surface area,and outstanding protein adsorption capacity,which could provide a microenvironment for cell adhesion,spreading,and proliferation.In addition,the murine intramuscular implantation experiment suggested that CDHA-2 scaffolds exhibited excellent osteoinductivity and were superior to traditional BCP ceramics under conditions without the addition of live cells and exogenous growth factors.The rabbit calvarial defect repair results indicated that CDHA-2 scaffolds could enhance in situ bone regeneration.In conclusion,these findings demonstrated that the hierarchical porous structure of CDHA scaffolds was a pivotal factor in modulating osteoinductivity and bone regeneration,and CDHA-2 scaffolds were potential candidates for bone regeneration. 展开更多
关键词 Calcium-deficient hydroxyapatite Indirect 3D printing technology Hierarchical porous structure OSTEOINDUCTIVITY Bone regeneration
原文传递
Profile studies of lithium vapor under high-density plasma irradiation using embedded multichannel capillary porous structure
3
作者 Rendeng TANG Jianxing LIU +6 位作者 Hengxin GUO Congcong YUAN Xiaoxuan HUANG Zhengdong LI Zongbiao YE Jianjun WEI Fujun GOU 《Plasma Science and Technology》 2025年第5期140-149,共10页
Faced with complex operational environments,liquid metal divertors are considered alternative solutions to traditional solid divertors.Experiments have been conducted using a self-designed embedded multichannel capill... Faced with complex operational environments,liquid metal divertors are considered alternative solutions to traditional solid divertors.Experiments have been conducted using a self-designed embedded multichannel capillary porous structure(EM-CPS)for plasma irradiation of lithium(Li)-prefilled EM-CPS in the high-density linear plasma device(SCU-PSI).The optical image analysis of the interaction region between the plasma and Li vapor shows that the region is not a regular geometric shape and the point of strongest light emission appears 1–2 cm in front of the target rather than on its surface.The irregularity is due to the uneven distribution and density of the Li vapor,as well as the radial and axial attenuation of the plasma.As the plasma discharge parameters increase,the vapor profile initially expands globally and then contracts locally,with the point of the strongest light emission gradually moving towards the target surface.The spectral lines of Li 670.78 nm and Ar 763.51 nm in the interaction region are produced by deexcitation.These lines gradually decrease in intensity along the axial direction,which is close to the trend of light emission intensity that initially increases and then decreases along the same direction.These findings provide a reference for studying the interaction mechanism between plasma and liquid Li capillary porous structures in linear plasma devices and future tokamak. 展开更多
关键词 liquid Li vapor shielding plasma capillary porous structure
在线阅读 下载PDF
Non-negligible role of gradient porous structure in superelasticity deterioration and improvement of NiTi shape memory alloys 被引量:2
4
作者 Yintao Zhang Daixiu Wei +5 位作者 Yang Chen Lechun Xie Liqiang Wang Lai-Chang Zhang Weijie Lu Guang Chen 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第19期48-63,共16页
Bone-mimicking gradient porous NiTi shape memory alloys(SMAs)are promising for orthopedic im-plants due to their distinctive superelastic functional properties.However,premature plastic deformation in weak areas such ... Bone-mimicking gradient porous NiTi shape memory alloys(SMAs)are promising for orthopedic im-plants due to their distinctive superelastic functional properties.However,premature plastic deformation in weak areas such as thinner struts,nodes,and sharp corners severely deteriorates the superelasticity of gradient porous NiTi SMAs.In this work,we prepared gradient porous NiTi SMAs with a porosity of 50%by additive manufacturing(AM)and achieved a remarkable improvement of superelasticity by a simple solution treatment regime.After solution treatment,phase transformation temperatures dropped signif-icantly,the dislocation density decreased,and partial intergranular Ti-rich precipitates were transferred into the grain.Compared to as-built samples,the strain recovery rate of solution-treated samples was nearly doubled at a pre-strain of 6%(up to 90%),and all obtained a stable recoverable strain of more than 4%.The remarkable superelasticity improvement was attributed to lower phase transformation tem-peratures,fewer dislocations,and the synergistic strengthening effect of intragranular multi-scale Ti-Ni precipitates.Notably,the gradient porous structure played a non-negligible role in both superelasticity deterioration and improvement.The microstructure evolution of the solution-treated central strut after constant 10 cycles and the origin of the stable superelastic response of gradient porous NiTi SMAs were revealed.This work provides an accessible strategy for improving the superelastic performance of gra-dient porous NiTi SMAs and proposes a key strategy for achieving such high-performance architectured materials. 展开更多
关键词 Shape memory alloys SUPERELASTICITY Gradient porous structure Solution treatment Stable recoverable strain
原文传递
Multi-Material Topology Optimization for Spatial-Varying Porous Structures 被引量:2
5
作者 Chengwan Zhang Kai Long +4 位作者 Zhuo Chen Xiaoyu Yang Feiyu Lu Jinhua Zhang Zunyi Duan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期369-390,共22页
This paper aims to propose a topology optimization method on generating porous structures comprising multiple materials.The mathematical optimization formulation is established under the constraints of individual volu... This paper aims to propose a topology optimization method on generating porous structures comprising multiple materials.The mathematical optimization formulation is established under the constraints of individual volume fraction of constituent phase or total mass,as well as the local volume fraction of all phases.The original optimization problem with numerous constraints is converted into a box-constrained optimization problem by incorporating all constraints to the augmented Lagrangian function,avoiding the parameter dependence in the conventional aggregation process.Furthermore,the local volume percentage can be precisely satisfied.The effects including the globalmass bound,the influence radius and local volume percentage on final designs are exploited through numerical examples.The numerical results also reveal that porous structures keep a balance between the bulk design and periodic design in terms of the resulting compliance.All results,including those for irregular structures andmultiple volume fraction constraints,demonstrate that the proposedmethod can provide an efficient solution for multiple material infill structures. 展开更多
关键词 Topology optimization porous structures local volume fraction augmented lagrangian multiple materials
在线阅读 下载PDF
Effect of Structural Configu ations on Mechanical and Shape Recovery Properties of Ni Ti Triply Periodic Minimal Surface Porous Structures 被引量:2
6
作者 Shuaishuai Wei Bo Song +4 位作者 Lei Zhang Xiaobo Wang Junxiang Fan Zhi Zhang Yusheng Shi 《Chinese Journal of Mechanical Engineering》 CSCD 2024年第6期303-319,共17页
Based on the advantages of triply periodic minimal surface(TPMS)porous structures,extensive research on NiTi shape memory alloy TPMS scaffolds has been conducted.However,the current reports about TPMS porous structure... Based on the advantages of triply periodic minimal surface(TPMS)porous structures,extensive research on NiTi shape memory alloy TPMS scaffolds has been conducted.However,the current reports about TPMS porous structures highly rely on the implicit equation,which limited the design flexibility.In this work,novel shell-based TPMS structures were designed and fabricated by laser powder bed fusion.The comparisons of manufacturability,mechanical properties,and shape recovery responses between traditional solid-based and novel shell-based TPMS structures were evaluated.Results indicated that the shell-based TPMS porous structures possessed larger Young's moduli and higher compressive strengths.Specifically,Diamond shell structure possessed the highest Young's moduli of 605.8±24.5MPa,while Gyroid shell structure possessed the highest compressive strength of 43.90±3.32 MPa.In addition,because of the larger specific surface area,higher critical stress to induce martensite transformation,and lower austenite finish temperature,the Diamond shell porous structure exhibited much higher shape recovery performance(only 0.1%residual strain left at pre-strains of 6%)than other porous structures.These results substantially uncover the effects of structural topology on the mechanical properties and shape recovery responses of NiTi shape memory alloy scaffolds,and confirm the effectiveness of this novel structural design method.This research can provide guidance for the structural design application of NiTi porous scaffolds in bone implants. 展开更多
关键词 NiTi shape memory alloy porous structure Laser powder bed fusion Mechanical property Shape recovery property
在线阅读 下载PDF
Effect of Additive Manufactured Gyroid Porous Structure of Hybrid Gradients on Mechanical and Failure Properties 被引量:3
7
作者 Xin Lin Ruitong Zhang +2 位作者 Wenfeng Lu Kunpeng Zhu Binbin Dan 《Additive Manufacturing Frontiers》 2024年第3期11-24,共14页
In bone tissue engineering,good structural and forming qualities are prerequisites for the long-term implantation of scaffolds.To mitigate the stress-shielding effect between porous bone scaffolds and the human skelet... In bone tissue engineering,good structural and forming qualities are prerequisites for the long-term implantation of scaffolds.To mitigate the stress-shielding effect between porous bone scaffolds and the human skeleton,this study proposes a method for designing non-linear gradient gyroid porous structures with radial-axial hybrid gra-dients that are precisely controlled by multivariate polynomial functions to simulate human bone characteristics.The influence of the volumetric energy density on the forming quality of the porous structures was evaluated by characterizing the internal strut morphology and measuring the strut width and porosity.Finite element analysis combined with experimental observations revealed that during compression,the thin struts at the top and bottom of the hybrid-gradient porous structure deformed first,and the compressive stress and shear stress were gradually transferred from the thin struts at the upper and lower ends of the structure to the thicker struts in the middle.Compared with the axial gradient,the edge struts of the hybrid-gradient porous structures can withstand higher shear and compressive stresses.Furthermore,owing to the variation in the radial gradient,compared to struc-tures with 20%axial porosity variation,the hybrid-gradient porous structure with 40%radial porosity variation and 20%axial porosity variation exhibited an 18.10%increase in elastic modulus and a 4.29%increase in yield strength.Additionally,its effective energy absorption was 20.39%higher than that of the homogeneous structures.Compared to radial-gradient porous structures,the hybrid-gradient porous structure showed a lower sensitivity of the elastic modulus and yield strength to the volumetric energy density. 展开更多
关键词 Gyroid porous structure Hybrid gradient Additive manufacturing Mechanical properties Triple-periodic minimal surfaces
暂未订购
A novel multi-channel porous structure facilitating mass transport towards highly efficient alkaline water electrolysis
8
作者 Xinge Jiang Vasileios Kyriakou +6 位作者 Chen Song Xianbin Wang Sophie Costil Chunming Deng Taikai Liu Tao Jiang Hanlin Liao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期511-518,I0013,共9页
An advantageous porous architecture of electrodes is pivotal in significantly enhancing alkaline water electrolysis(AWE)efficiency by optimizing the mass transport mechanisms.This effect becomes even more pronounced w... An advantageous porous architecture of electrodes is pivotal in significantly enhancing alkaline water electrolysis(AWE)efficiency by optimizing the mass transport mechanisms.This effect becomes even more pronounced when aiming to achieve elevated current densities.Herein,we employed a rapid and scalable laser texturing process to craft novel multi-channel porous electrodes.Particularly,the obtained electrodes exhibit the lowest Tafel slope of 79 mV dec^(-1)(HER)and 49 mV dec^(-1)(OER).As anticipated,the alkaline electrolyzer(AEL)cell incorporating multi-channel porous electrodes(NP-LT30)exhibited a remarkable improvement in cell efficiency,with voltage drops(from 2.28 to 1.97 V)exceeding 300 mV under 1 A cm^(-1),compared to conventional perforated Ni plate electrodes.This enhancement mainly stemmed from the employed multi-channel porous structure,facilitating mass transport and bubble dynamics through an innovative convection mode,surpassing the traditional convection mode.Furthermore,the NP-LT30-based AEL cell demonstrated exceptional durability for 300 h under 1.0 A cm^(-2).This study underscores the capability of the novel multi-channel porous electrodes to expedite mass transport in practical AWE applications. 展开更多
关键词 Alkaline water electrolysis Mass transport Bubble dynamics Innovative convection mode Multi-channel porous structure
在线阅读 下载PDF
Wave Attenuation due to Stratified Porous Structure with Stepped Seabed
9
作者 Ashna Varghese K.R.Athul Krishna D.Karmakar 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第4期844-866,共23页
The wave interaction with stratified porous structure combined with a surface-piercing porous block in a stepped seabed is analysed based on the small amplitude wave theory.The study is performed to analyse the effect... The wave interaction with stratified porous structure combined with a surface-piercing porous block in a stepped seabed is analysed based on the small amplitude wave theory.The study is performed to analyse the effectiveness of partial porous structure in increasing the wave attenuation in the nearshore regions consisting of stratified porous structures of different configurations using the eigenfunction expansion method and orthogonal mode-coupling relation.The hydrodynamic characteristics such as wave reflection coefficient,transmission coefficient,dissipation coefficient,wave force impact and surface elevation are investigated due to the presence of both horizontally and vertically stratified porous structures.The effect of varying porosity,structural width,angle of incidence,wavelength and length between the porous block and stratified structure is examined.The numerical results are validated with the results available in the literature.The present study illustrates that the presence of the stratified structure decreases wave transmission and efficient wave attenuation can also be easily achieved.The wave force acting on stratified structure can be decreased if the structure is combined with wider surface-piercing porous blocks.Further,the presence of stratified porous structure combined with porous block helps in creating a tranquil zone in the leeside of the structure.The combination of vertical and horizontal stratified porous structure with surface-piercing porous block is intended to be an effective solution for the protection of coastal facilities. 展开更多
关键词 Stratified porous structure Surface-piercing porous block Stepped seabed Eigenfunction expansion method Wave force
在线阅读 下载PDF
Designing High-Porosity Porous Structures with Complex Geometries for Enhanced Thermal Conductivity Using Selective Laser Melting and Heat Treatment
10
作者 Hulin Tang Xiang Zhang +6 位作者 Chenping Zhang Tian Zhou Shiyue Guo Gaopeng Xu Rusheng Zhao Boyoung Hur Xuezheng Yue 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2024年第5期808-824,共17页
Rapid advancements in the aerospace industry necessitate the development of unified,lightweight and thermally conductive structures.Integrating complex geometries,including bionic and porous structures,is paramount in... Rapid advancements in the aerospace industry necessitate the development of unified,lightweight and thermally conductive structures.Integrating complex geometries,including bionic and porous structures,is paramount in thermally conductive structures to attain improved thermal conductivity.The design of two high-porosity porous lattice structures was inspired by pomelo peel structure,using Voronoi parametric design.By combining characteristic elements of two high-porostructuressity porous lattice structures designed,a novel high-porosity porous gradient structure is created.This structure is based on gradient design.Utilizing selective laser melting(SLM),fabrication comprises three.Steady-state thermal characteristics are evaluated via finite element analysis(FEA).The experimental thermal conductivity measurements correlate well with simulation results,validating the sequence of K_L as the highest,followed by D_K_L and then D_L.Heat treatment significantly improves thermal conductivity,enhancing the base material by about 45.6%and porous structured samples by approximately 43.7%. 展开更多
关键词 Selective laser melting porous lattice structure Thermal conductivity Heat treatment
原文传递
Effects of Microporous Structure of Activated Carbon on Adsorption Performance of N-butane
11
作者 刘晓敏 邓先伦 +1 位作者 朱光真 王国栋 《Agricultural Science & Technology》 CAS 2012年第1期13-16,92,共5页
[Objective] The paper was to study the effect of microporous structure of ac- tivated carbon on adsorption performance of n-butane. [Method] Using 8 activated car- bons prepared from different materials and technologi... [Objective] The paper was to study the effect of microporous structure of ac- tivated carbon on adsorption performance of n-butane. [Method] Using 8 activated car- bons prepared from different materials and technologies, the effects of physical prop- erties of activated carbon on butane adsorption performance were investigated. [Result] Specific surface area, pore volume and pore size distribution of activated carbon exert- ed remarkable effects on butane adsorption. The activated carbon with high percent- age of micropore volume within the range of 1.2-2 nm possessed high butane activity. The level of butane retentivity rose with the increase of the volume of pore within the range of 0.5-0,9 nm, which led to smaller butan working capacity (BWC). [Conclusion] The study provided reference for the adsorption research for activated carbon. 展开更多
关键词 Activated carbon BWC Micro'porous structure Adsorption mechanism
在线阅读 下载PDF
Triply periodic minimal surface(TPMS)porous structures:from multi-scale design,precise additive manufacturing to multidisciplinary applications 被引量:41
12
作者 Jiawei Feng Jianzhong Fu +1 位作者 Xinhua Yao Yong He 《International Journal of Extreme Manufacturing》 SCIE EI 2022年第2期1-31,共31页
Inspired by natural porous architectures,numerous attempts have been made to generate porous structures.Owing to the smooth surfaces,highly interconnected porous architectures,and mathematical controllable geometry fe... Inspired by natural porous architectures,numerous attempts have been made to generate porous structures.Owing to the smooth surfaces,highly interconnected porous architectures,and mathematical controllable geometry features,triply periodic minimal surface(TPMS)is emerging as an outstanding solution to constructing porous structures in recent years.However,many advantages of TPMS are not fully utilized in current research.Critical problems of the process from design,manufacturing to applications need further systematic and integrated discussions.In this work,a comprehensive overview of TPMS porous structures is provided.In order to generate the digital models of TPMS,the geometry design algorithms and performance control strategies are introduced according to diverse requirements.Based on that,precise additive manufacturing methods are summarized for fabricating physical TPMS products.Furthermore,actual multidisciplinary applications are presented to clarify the advantages and further potential of TPMS porous structures.Eventually,the existing problems and further research outlooks are discussed. 展开更多
关键词 triply periodic minimal surface porous structures shape and performance control additive manufacturing multidisciplinary applications
在线阅读 下载PDF
Au-decorated porous structure graphene with enhanced sensing performance for low-concentration NO2 detection 被引量:20
13
作者 Yan-Yan Fan Hai-Ling Tu +4 位作者 Yu Pang Feng Wei Hong-Bin Zhao Yi Yang Tian-Ling Ren 《Rare Metals》 SCIE EI CAS CSCD 2020年第6期651-658,共8页
A recent progress in new emerging two-dimensional(2 D)materials has provided promising opportunity for gas sensing in ultra-low detectable concentration.In this work,we have demonstrated a flexible NO2 gas sensor with... A recent progress in new emerging two-dimensional(2 D)materials has provided promising opportunity for gas sensing in ultra-low detectable concentration.In this work,we have demonstrated a flexible NO2 gas sensor with porous structure graphene on polyethylene terephthalate substrates operating at room temperature.The gas sensor exhibited good performance with response of 1.2%and a fast response time within 30 s after exposure to50×10^-9 NO2 gas.As porous structure of graphene increased the surface area,the sensor showed high sensitivity of ppb level for NO2 detection.Au nanoparticles were decorated on the surface of the porous structure graphene skeleton,resulting in an incensement of response compared with pristine graphene.Au nanoparticles-decorated graphene exhibits not only better sensitivity(1.5-1.6 times larger than pristine graphene)for NO2 gas detection,but also fast response.The sensor was found to be robust and sensitive under the cycling bending test,which could also be ascribed to the merits of graphene.This porous structure graphene-based gas sensor is expected to enable a simple and inexpensive flexible gas sensing platform. 展开更多
关键词 GRAPHENE Au nanoparticles porous structure Gas sensor Nitrogen dioxide(NO2)
原文传递
Pomelo Peel-Inspired 3D-Printed Porous Structure for Efficient Absorption of Compressive Strain Energy 被引量:4
14
作者 Baisong Yang Wenhui Chen +12 位作者 Renlong Xin Xiaohong Zhou Di Tan Chuan Ding You Wu Liang Yin Chuyang Chen Shan Wang Zhenglei Yu Jonathan TPham Sheng Liu Yifeng Lei Longjian Xue 《Journal of Bionic Engineering》 SCIE EI CSCD 2022年第2期448-457,共10页
The porous structure in pomelo peel is believed to be responsible for the protection of its fruit from damage during the free falling from a tree.The quantitative understanding of the relationship between the deformat... The porous structure in pomelo peel is believed to be responsible for the protection of its fruit from damage during the free falling from a tree.The quantitative understanding of the relationship between the deformation behavior and the porous structure could pave the way for the design of porous structures for efficient energy absorption.Here,a universal feature of pore distribution in pomelo peels along the radial direction is extracted from three varieties of pomelos,which shows strong correlation to the deformation behavior of the peels under compression.Guided by the porous design found in pomelo peels,porous polyether-ether-ketone(PEEK)cube is additively manufactured and possesses the highest ability to absorb energy during compression as compared to the non-pomelo-inspired geometries,which is further confirmed by the finite element simulation.The nature-optimized porous structure revealed here could guide the design of lightweight and high-energy-dissipating materials/devices. 展开更多
关键词 Bionic design Pomelo peel porous structure 3D printing Energy absorption
在线阅读 下载PDF
Self-supporting nanoporous Ni/metallic glass composites with hierarchically porous structure for efficient hydrogen evolution reaction 被引量:4
15
作者 Jing Wang Li You +8 位作者 Zhibin Li Xiongjun Liu Rui Li Qing Du Xianzhen Wang Hui Wang Yuan Wu Suihe Jiang Zhaoping Lu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第14期145-150,共6页
Searching for free-standing and cost-efficient hydrogen evolution reaction(HER)electrocatalysts with high efficiency and excellent durability remains a great challenge for the hydrogen-based energy industry.Here,we re... Searching for free-standing and cost-efficient hydrogen evolution reaction(HER)electrocatalysts with high efficiency and excellent durability remains a great challenge for the hydrogen-based energy industry.Here,we report fabrication of a unique hierarchically porous structure,i.e.,nanoporous Ni(NPN)/metallic glass(MG)composite,through surface dealloying of the specially designed Ni_(40)Zr_(40)Ti_(20)MG wire.This porous composite is composed of micrometer slits staggered with nanometer pores,which not only enlarges effective surface areas for the catalytic reaction,but also facilitates the release of H2 gas.As a result,the NPN/MG hybrid electrode exhibited the prominent HER performance with a low overpotential of 78 m V at 10 m A cm^(-2)and Tafel slope of 42.4 m V dec^(-1),along with outstanding stability in alkaline solutions.Outstanding catalytic properties,combining with their free-standing capability and cost efficiency,make the current composite electrode viable for HER applications. 展开更多
关键词 Nanoporous Ni DEALLOYING Metallic glasses precursor Hierarchically porous structure Hydrogen evolution reaction
原文传递
Nitrogen and sulfur co-doped graphene aerogel with hierarchically porous structure for high-performance supercapacitors 被引量:7
16
作者 Zhiwei Lu Xiaochao Xu +3 位作者 Yujuan Chen Xiaohui Wang Li Sun Kelei Zhuo 《Green Energy & Environment》 CSCD 2020年第1期69-75,共7页
Supercapacitors with unique performance have been widely utilized in many fields. Herein, we report a nitrogen and sulfur co-doped graphene aerogel(N/S-GA-2) prepared using a low toxic precursor for high-performance s... Supercapacitors with unique performance have been widely utilized in many fields. Herein, we report a nitrogen and sulfur co-doped graphene aerogel(N/S-GA-2) prepared using a low toxic precursor for high-performance supercapacitors. The as-obtained material possesses a hierarchically porous structure and a large number of electrochemical active sites. At a current density of 1 Ag^-1, the specific capacitance of the N/S-GA-2 for supercapacitors with the ionic liquid as the electrolyte is 169.4 Fg^-1, and the corresponding energy density is 84.5 Wh kg^-1.At a power density of 8.9 k W kg^-1, the energy density can reach up to 75.7 Wh kg^-1, showing that the N/S-GA-2 has an excellent electrochemical performance. Consequently, the N/S-GA-2 can be used as a promising candidate of electrode materials for supercapacitors with high power density and high energy density. 展开更多
关键词 Graphene aerogel Hierarchically porous structure SUPERCAPACITOR Ionic liquid
在线阅读 下载PDF
Porous structures of natural materials and bionic design 被引量:1
17
作者 张建忠 汪久根 马家驹 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第10期1095-1099,共5页
This investigation and morphology analysis of porous structure of some kinds of natural materials such as chicken eggshell, partridge eggshell, pig bone, and seeds of mung bean, soja, ginkgo, lotus seed, as well as th... This investigation and morphology analysis of porous structure of some kinds of natural materials such as chicken eggshell, partridge eggshell, pig bone, and seeds of mung bean, soja, ginkgo, lotus seed, as well as the epidermis of apples, with SEM (Scanning Electronic Microscope) showed that natural structures’ pores can be classified into uniform pores, gradient pores and multi pores from the viewpoint of the distribution variation of pore density, size and geometry. Furthermore, an optimal design of porous bearings was for the first time developed based on the gradient configuration of natural materials. The bionic design of porous structures is predicted to be widely developed and applied in the fields of materials and mechanical engineering in the future. 展开更多
关键词 Natural materials porous structure Bionic design SEM
在线阅读 下载PDF
Introduction of porous structure:A feasible and promising method for improving thermoelectric performance of Bi_2Te_3 based bulks 被引量:1
18
作者 Jie Hu Xi’An Fan +5 位作者 Chengpeng Jiang Bo Feng Qiusheng Xiang Guangqiang Li Zhu He Yawei Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第12期2458-2463,共6页
The porous p-type BiSbTebulks containing irregularly and randomly oriented pores were obtained by artificially controlling the relative density of sintered samples during resistance pressing sintering process. It is d... The porous p-type BiSbTebulks containing irregularly and randomly oriented pores were obtained by artificially controlling the relative density of sintered samples during resistance pressing sintering process. It is demonstrated that the thermoelectric performances are significantly affected by the porous structure, especially for the electrical and thermal conductivity due to the enhanced carrier scattering and phonon scattering. The increasing porosity resulted in the obvious decrease in electrical and thermal conductivity, and little change in Seebeck coefficients. It is encouraging that the reduction of thermal conductivity can compensate for the deterioration of electrical performance, leading to the enhancement in thermoelectric figure of merit(ZT). The maximum ZT value of 1.0 was obtained for the sample with a relative density of 90% at 333 K. Unfortunately, the increase in porosity also brought in obvious degradations in Vickers hardness from 51.71 to 27.74 HV. It is worth mentioning that although the Vickers hardness of the sample with a relative density of 90% decreased to 40.12 HV, it was still about twice as high as that of the zone melting sample(21.25 HV). To summarize, introducing pores structure into bulks properly not only enhances the ZT value of BiTebased alloys, but also reduces the use of raw materials and saves production cost. 展开更多
关键词 Thermoelectric materials porous structure Bi_2Te_3 Thermal conductivity Vickers hardness
原文传递
Synergy of porous structure and cation doping in Ta3N5 photoanode towards improved photoelectrochemical water oxidation 被引量:1
19
作者 Yubin Chen Hongyu Xia +4 位作者 Xiaoyang Feng Ya Liu Wenyu Zheng Lijing Ma Rui Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第1期343-350,I0011,共9页
Herein,a cross-linked porous Ta3N5 film was prepared via a simple solution combustion route followed by a high-temperature nitridation process for photoelectrochemical(PEC) water oxidation.Meanwhile,the metal cations(... Herein,a cross-linked porous Ta3N5 film was prepared via a simple solution combustion route followed by a high-temperature nitridation process for photoelectrochemical(PEC) water oxidation.Meanwhile,the metal cations(Mg2+ and Zr4+) were incorporated into the porous Ta3N5 to enhance the PEC performance.The porous Mg/Zr co-doped Ta3N5 photoanode yielded a photocurrent density of 1.40 mA cm^(-2) at 1.23 V vs RHE,which is 5.6 times higher than that of the dense Ta3N5 photoanode.The enhanced performance should be ascribed to the synergistic effect of porous structure and cation doping,which can enlarge the electrochemical active surface area and accelerate the charge transfer by introducing ON substitution defects.Subsequently,Co(OH)2 cocatalyst was loaded on the Mg/Zr-Ta3N5 photoanode to negatively shift the onset potential to 0.45 V vs RHE and further improve the photocurrent density to 3.5 mA cm^(-2)at 1.23 V vs.RHE,with a maximum half-cell solar to hydrogen efficiency of 0.45%.The present study provides a new strategy to design efficient Ta3N5 photoelectrodes via the simultaneous control of the morphology and composition. 展开更多
关键词 Photoelectrochemical water oxidation Ta3N5 porous structure DOPING Solution combustion
在线阅读 下载PDF
Damping of Oblique Ocean Waves by a Vertical Porous Structure Placed on a Multi-step Bottom 被引量:1
20
作者 Santu Das Swaroop Nandan Bora 《Journal of Marine Science and Application》 2014年第4期362-376,共15页
Oblique ocean wave damping by a vertical porous structure placed on a multi-step bottom topography is studied with the help of linear water wave theory. Some portion of the oblique wave, incident on the porous structu... Oblique ocean wave damping by a vertical porous structure placed on a multi-step bottom topography is studied with the help of linear water wave theory. Some portion of the oblique wave, incident on the porous structure, gets reflected by the multi-step bottom and the porous structure, and the rest propagates into the water medium following the porous structure. Two cases are considered: first a solid vertical wall placed at a finite distance from the porous structure in the water medium following the porous structure and then a special case of an unbounded water medium following the porous structure. In both cases, boundary value problems are set up in three different media, the first medium being water, the second medium being the porous structure consisting ofp vertical regions-one above each step and the third medium being water again. By using the matching conditions along the virtualvertical boundaries, a system of linear equations is deduced. The behavior of the reflection coefficient and the dimensionless amplitude of the transmitted progressive wave due to different relevant parameters are studied. Energy loss due to the propagation of oblique water wave through the porous structure is also carried out. The effects of various parameters, such as number of evanescent modes, porosity, friction factor, structure width, number of steps and angle of incidence, on the reflection coefficient and the dimensionless amplitude of the transmitted wave are studied graphically for both cases. Number of evanescent modes merely affects the scattering phenomenon. But higher values of porosity show relatively lower reflection than that for lower porosity. Oscillation in the reflection coefficient is observed for lower values of friction factor but it disappears with an increase in the value of friction factor. Amplitude of the transmitted progressive wave is independent of the porosity of the structure. But lower value of friction factor causes higher transmission. The investigation is then carried out for the second case, i.e., when the wall is absent. The significant difference between the two cases considered here is that the reflection due to a thin porous structure is very high when the solid wall exists as compared to the case when no wall is present. Energy loss due to different porosity, friction factor, structure width and angle of incidence is also examined. Validity of our model is ascertained by matching it with an available one. 展开更多
关键词 porous structure oblique wave REFLECTION matching condition multi-step bottom friction factor energy loss
在线阅读 下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部