Road traffic flow forecasting provides critical information for the operational management of road mobility challenges, and models are used to generate the forecast. This paper uses a random process to present a novel...Road traffic flow forecasting provides critical information for the operational management of road mobility challenges, and models are used to generate the forecast. This paper uses a random process to present a novel traffic modelling framework for aggregate traffic on urban roads. The main idea is that road traffic flow is random, even for the recurrent flow, such as rush hour traffic, which is predisposed to congestion. Therefore, the structure of the aggregate traffic flow model for urban roads should correlate well with the essential variables of the observed random dynamics of the traffic flow phenomena. The novelty of this paper is the developed framework, based on the Poisson process, the kinematics of urban road traffic flow, and the intermediate modelling approach, which were combined to formulate the model. Empirical data from an urban road in Ghana was used to explore the model’s fidelity. The results show that the distribution from the model correlates well with that of the empirical traffic, providing a strong validation of the new framework and instilling confidence in its potential for significantly improved forecasts and, hence, a more hopeful outlook for real-world traffic management.展开更多
In order to solve the problem of poor formability caused by different materials and properties in the process of tailor-welded sheets forming,a forming method was proposed to change the stress state of tailor-welded s...In order to solve the problem of poor formability caused by different materials and properties in the process of tailor-welded sheets forming,a forming method was proposed to change the stress state of tailor-welded sheets by covering the tailor-welded sheets with better plastic properties overlapping sheets.At the same time,the interface friction effect between the overlapping and tailor-welded sheets was utilized to control the stress magnitude and further improve the formability and quality of the tailor-welded sheets.In this work,the bulging process of the tailor-welded overlapping sheets was taken as the research object.Aluminum alloy tailor-welded overlapping sheets bulging specimens were studied by a combination of finite element analysis and experimental verification.The results show that the appropriate use of interface friction between tailor-welded and overlapping sheets can improve the formability of tailor-welded sheets and control the flow of weld seam to improve the forming quality.When increasing the interface friction coefficient on the side of tailor-welded sheets with higher strength and decreasing that on the side of tailor-welded sheets with lower strength,the deformation of the tailor-welded sheets are more uniform,the offset of the weld seam is minimal,the limit bulging height is maximal,and the forming quality is optimal.展开更多
The formation of an embedded electron current sheet within the magnetotail plasma sheet has been poorly understood.In this article,we present an electron current layer detected at the edge of the magnetotail plasma sh...The formation of an embedded electron current sheet within the magnetotail plasma sheet has been poorly understood.In this article,we present an electron current layer detected at the edge of the magnetotail plasma sheet.The ions were demagnetized inside the electron current layer,but the electrons were still frozen in with the magnetic field line.Thus,this decoupling of ions and electrons gave rise to a strong Hall electric field,which could be the reason for the formation of the embedded thin current layer.The magnetized electrons,the absence of the nongyrotropic electron distribution,and negligible energy dissipation in the layer indicate that magnetic reconnection had not been triggered within the embedded thin current layer.The highly asymmetric plasma on the two sides of the current layer and low magnetic shear across it could suppress magnetic reconnection.The observations indicate that the embedded electric current layer,probably generated by the Hall electric field,even down to electron scale,is not a sufficient condition for magnetic reconnection.展开更多
The influence of geometric configuration on the friction characteristics during incremental sheet forming of AA5052 was analyzed by integrating surface morphology and its characteristic parameters,along with plastic s...The influence of geometric configuration on the friction characteristics during incremental sheet forming of AA5052 was analyzed by integrating surface morphology and its characteristic parameters,along with plastic strain,contact pressure,and area.The interface promotes lubrication and support when wall angles were≤40°,a 0.5 mm-thin sheet was used,and a 10 mm-large tool radius was employed.This mainly results in micro-plowing and plastic extrusion flow,leading to lower friction coefficient.However,when wall angles exceed 40°,significant plastic strain roughening occurs,leading to inadequate lubrication on the newly formed surface.Increased sheet thickness and decreased tool radius elevate contact pressure.These actions trigger micro-cutting and adhesion,potentially leading to localized scuffing and dimple tears,and higher friction coefficient.The friction mechanisms remain unaffected by the part’s plane curve features.As the forming process progresses,abrasive wear intensifies,and surface morphology evolves unfavorably for lubrication and friction reduction.展开更多
This article examines the influence of annealing temperature on fracture toughness and forming limit curves of dissimilar aluminum/silver sheets.In the cold roll bonding process,after brushing and acid washing,the pre...This article examines the influence of annealing temperature on fracture toughness and forming limit curves of dissimilar aluminum/silver sheets.In the cold roll bonding process,after brushing and acid washing,the prepared surfaces are placed on top of each other and by rolling with reduction more than 50%,the bonding between layers is established.In this research,the roll bonding process was done at room temperature,without the use of lubricants and with a 70%thickness reduction.Then,the final thickness of the Ag/Al bilayer sheet reached 350μm by several stages of cold rolling.Before cold rolling,it should be noted that to decrease the hardness created due to plastic deformation,the roll-bonded samples were subjected to annealing heat treatment at 400℃for 90 min.Thus,the final samples were annealed at 200,300 and 400℃for 90 min and cooled in a furnace to examine the annealing temperature effects.The uniaxial tensile and microhardness tests measured mechanical properties.Also,to investigate the fracture mechanism,the fractography of the cross-section was examined by scanning electron microscope(SEM).To evaluate the formability of Ag/Al bilayer sheets,forming limit curves were obtained experimentally through the Nakazima test.The resistance of composites to failure due to cracking was also investigated by fracture toughness.The results showed that annealing increases the elongation and formability of the Ag/Al bilayer sheet while reduces the ultimate tensile strength and fracture toughness.However,the changing trend is not the same at different temperatures,and according to the results,the most significant effect is obtained at 300℃and aluminum layers.It was also determined that by increasing annealing temperature,the fracture mechanism from shear ductile with small and shallow dimples becomes ductile with deep cavities.展开更多
To enhance the computational efficiency of spatio-temporally discretized phase-field models,we present a high-speed solver specifically designed for the Poisson equations,a component frequently used in the numerical c...To enhance the computational efficiency of spatio-temporally discretized phase-field models,we present a high-speed solver specifically designed for the Poisson equations,a component frequently used in the numerical computation of such models.This efficient solver employs algorithms based on discrete cosine transformations(DCT)or discrete sine transformations(DST)and is not restricted by any spatio-temporal schemes.Our proposed methodology is appropriate for a variety of phase-field models and is especially efficient when combined with flow field systems.Meanwhile,this study has conducted an extensive numerical comparison and found that employing DCT and DST techniques not only yields results comparable to those obtained via the Multigrid(MG)method,a conventional approach used in the resolution of the Poisson equations,but also enhances computational efficiency by over 90%.展开更多
A novel laser-based additive manufacturing approach of metal additive manufacturing using powder sheets(MAPS)has been introduced recently.The method utilizes polymer-bound powder sheets for metal AM as a feedstock,ins...A novel laser-based additive manufacturing approach of metal additive manufacturing using powder sheets(MAPS)has been introduced recently.The method utilizes polymer-bound powder sheets for metal AM as a feedstock,instead of loose powders.Conventional laser beam powder bed fusion(LPBF)additive manufacturing(AM)is among the most widespread 3D printing technologies.However,LPBF faces challenges related to safety and the impracticality of changing materials due to its reliance on loose powders.Thus,MAPS demonstrates the capability to overcome the limitations of LPBF by offering enhanced safety and the ability to print multi-material structures without the risk of material cross-contamination.As a part of developing processes,we investigate the effects of polymeric binder content on the printability and microstructural characteristics of MAPS-printed stainless steel 316 L.The results indicate that the average layer thickness of solidified material improves as the scanning speed decreases from 1000 mm/s to 50 mm/s across three different polymeric binder contents:10 wt%,20 wt%,and 30 wt%PCL.Additionally,a higher polymeric binder content(i.e.20 wt%and 30 wt%)in the powder sheets reduces the likelihood of crack formation.Electron backscatter diffraction(EBSD)analysis reveals that an increase in scanning speed promotes the formation of more equiaxed grains,while an increase in polymer content results in a reduction in grain size.These findings provide valuable insights into optimizing MAPS configurations for enhanced productivity and functionality in metal component manufacturing.展开更多
This study focuses on the risks associated with the on-balance sheet recognition of data resources.At the legal level,disputes over ownership often arise due to unclear data property rights,while privacy protection,cy...This study focuses on the risks associated with the on-balance sheet recognition of data resources.At the legal level,disputes over ownership often arise due to unclear data property rights,while privacy protection,cybersecurity,and cross-border data flows create additional compliance challenges.In terms of recognition,the subjectivity of traditional valuation methods,the lack of active markets,and the rapid depreciation of data value caused by technological iteration hinder reliable measurement.With respect to disclosure,organizations face a dilemma between transparency and confidentiality.Collectively,these issues exacerbate audit risks.It is therefore imperative to establish an appropriate legal,accounting,and auditing framework to mitigate such risks and remove barriers to the proper recognition of data assets on balance sheets.展开更多
This paper investigates nonlinear Landau damping in the 3D Vlasov-Poisson(VP)system.We study the asymptotic stability of the Poisson equilibriumμ(v)=1/π^(2)(1+|v|^(2))^(2) under small perturbations.Building on the f...This paper investigates nonlinear Landau damping in the 3D Vlasov-Poisson(VP)system.We study the asymptotic stability of the Poisson equilibriumμ(v)=1/π^(2)(1+|v|^(2))^(2) under small perturbations.Building on the foundational work of Ionescu,Pausader,Wang and Widmayer[28],we provide a streamlined proof of nonlinear Landau damping for the 3D unscreened VP system.Our analysis leverages sharp decay estimates,novel decomposition techniques to demonstrate the stabilization of the particle distribution and the decay of electric field.These results reveal the free transport-like behavior for the perturbed densityρ(t,x),and enhance the understanding of Landau damping in an unconfined setting near stable equilibria.展开更多
Edge cracking is one of the most serious problems in the rolling process of magnesium alloy sheets,which limits its application.In this work,the edge cracking behavior of different initial AZ31 alloy sheets,including ...Edge cracking is one of the most serious problems in the rolling process of magnesium alloy sheets,which limits its application.In this work,the edge cracking behavior of different initial AZ31 alloy sheets,including as-cast(AC),as-rolled(AR)and as-extruded(AE),was systematically investigated and compared under the online heating rolling(O-LHR)process with a single-pass reduction of 50% at 250℃.The results show that both AC and AR sheets exhibit severe edge cracking behavior after the O-LHR.Among them,the AR sheet exhibits the severest edge cracking behavior on the rolling plane(RD-TD)and longitudinal section(RD-ND),which is attributed to the strong basal texture and extremely uneven microstructure with shear bands.While no visible edge crack appears in the AE rolled sheet,which is mainly related to the tilted texture and the more dynamic recrystallization during rolling process.Moreover,it is also found that the micro-cracks of the AC rolled sheet are mainly generated in the local fine-grained area and the twins where recrystallization occurs.In the AR rolled sheet,micro-cracks mainly develop inside the shear bands.Meanwhile,the micro-crack initiation mechanism of AC and AR rolled sheets was also discussed.展开更多
文摘Road traffic flow forecasting provides critical information for the operational management of road mobility challenges, and models are used to generate the forecast. This paper uses a random process to present a novel traffic modelling framework for aggregate traffic on urban roads. The main idea is that road traffic flow is random, even for the recurrent flow, such as rush hour traffic, which is predisposed to congestion. Therefore, the structure of the aggregate traffic flow model for urban roads should correlate well with the essential variables of the observed random dynamics of the traffic flow phenomena. The novelty of this paper is the developed framework, based on the Poisson process, the kinematics of urban road traffic flow, and the intermediate modelling approach, which were combined to formulate the model. Empirical data from an urban road in Ghana was used to explore the model’s fidelity. The results show that the distribution from the model correlates well with that of the empirical traffic, providing a strong validation of the new framework and instilling confidence in its potential for significantly improved forecasts and, hence, a more hopeful outlook for real-world traffic management.
基金Funded by the National Natural Science Foundation of China(Nos.52075347,51575364)and the Natural Science Foundation of Liaoning Provincial(No.2022-MS-295)。
文摘In order to solve the problem of poor formability caused by different materials and properties in the process of tailor-welded sheets forming,a forming method was proposed to change the stress state of tailor-welded sheets by covering the tailor-welded sheets with better plastic properties overlapping sheets.At the same time,the interface friction effect between the overlapping and tailor-welded sheets was utilized to control the stress magnitude and further improve the formability and quality of the tailor-welded sheets.In this work,the bulging process of the tailor-welded overlapping sheets was taken as the research object.Aluminum alloy tailor-welded overlapping sheets bulging specimens were studied by a combination of finite element analysis and experimental verification.The results show that the appropriate use of interface friction between tailor-welded and overlapping sheets can improve the formability of tailor-welded sheets and control the flow of weld seam to improve the forming quality.When increasing the interface friction coefficient on the side of tailor-welded sheets with higher strength and decreasing that on the side of tailor-welded sheets with lower strength,the deformation of the tailor-welded sheets are more uniform,the offset of the weld seam is minimal,the limit bulging height is maximal,and the forming quality is optimal.
基金the National Natural Science Founda-tion of China(NSFC,Grant No.42174181)and the Key Research Program of Frontier Sciences,CAS(Grant No.QYZDJ-SSW-DQC010).
文摘The formation of an embedded electron current sheet within the magnetotail plasma sheet has been poorly understood.In this article,we present an electron current layer detected at the edge of the magnetotail plasma sheet.The ions were demagnetized inside the electron current layer,but the electrons were still frozen in with the magnetic field line.Thus,this decoupling of ions and electrons gave rise to a strong Hall electric field,which could be the reason for the formation of the embedded thin current layer.The magnetized electrons,the absence of the nongyrotropic electron distribution,and negligible energy dissipation in the layer indicate that magnetic reconnection had not been triggered within the embedded thin current layer.The highly asymmetric plasma on the two sides of the current layer and low magnetic shear across it could suppress magnetic reconnection.The observations indicate that the embedded electric current layer,probably generated by the Hall electric field,even down to electron scale,is not a sufficient condition for magnetic reconnection.
基金the support of the Key Research and Development Program of Shaanxi Province,China(No.2021GXLH-Z-049)。
文摘The influence of geometric configuration on the friction characteristics during incremental sheet forming of AA5052 was analyzed by integrating surface morphology and its characteristic parameters,along with plastic strain,contact pressure,and area.The interface promotes lubrication and support when wall angles were≤40°,a 0.5 mm-thin sheet was used,and a 10 mm-large tool radius was employed.This mainly results in micro-plowing and plastic extrusion flow,leading to lower friction coefficient.However,when wall angles exceed 40°,significant plastic strain roughening occurs,leading to inadequate lubrication on the newly formed surface.Increased sheet thickness and decreased tool radius elevate contact pressure.These actions trigger micro-cutting and adhesion,potentially leading to localized scuffing and dimple tears,and higher friction coefficient.The friction mechanisms remain unaffected by the part’s plane curve features.As the forming process progresses,abrasive wear intensifies,and surface morphology evolves unfavorably for lubrication and friction reduction.
基金Project(4013311)supported by the National Science Foundation of Iran(INSF)。
文摘This article examines the influence of annealing temperature on fracture toughness and forming limit curves of dissimilar aluminum/silver sheets.In the cold roll bonding process,after brushing and acid washing,the prepared surfaces are placed on top of each other and by rolling with reduction more than 50%,the bonding between layers is established.In this research,the roll bonding process was done at room temperature,without the use of lubricants and with a 70%thickness reduction.Then,the final thickness of the Ag/Al bilayer sheet reached 350μm by several stages of cold rolling.Before cold rolling,it should be noted that to decrease the hardness created due to plastic deformation,the roll-bonded samples were subjected to annealing heat treatment at 400℃for 90 min.Thus,the final samples were annealed at 200,300 and 400℃for 90 min and cooled in a furnace to examine the annealing temperature effects.The uniaxial tensile and microhardness tests measured mechanical properties.Also,to investigate the fracture mechanism,the fractography of the cross-section was examined by scanning electron microscope(SEM).To evaluate the formability of Ag/Al bilayer sheets,forming limit curves were obtained experimentally through the Nakazima test.The resistance of composites to failure due to cracking was also investigated by fracture toughness.The results showed that annealing increases the elongation and formability of the Ag/Al bilayer sheet while reduces the ultimate tensile strength and fracture toughness.However,the changing trend is not the same at different temperatures,and according to the results,the most significant effect is obtained at 300℃and aluminum layers.It was also determined that by increasing annealing temperature,the fracture mechanism from shear ductile with small and shallow dimples becomes ductile with deep cavities.
基金Supported by Shanxi Province Natural Science Research(202203021212249)Special/Youth Foundation of Taiyuan University of Technology(2022QN101)+3 种基金National Natural Science Foundation of China(12301556)Research Project Supported by Shanxi Scholarship Council of China(2021-029)International Cooperation Base and Platform Project of Shanxi Province(202104041101019)Basic Research Plan of Shanxi Province(202203021211129)。
文摘To enhance the computational efficiency of spatio-temporally discretized phase-field models,we present a high-speed solver specifically designed for the Poisson equations,a component frequently used in the numerical computation of such models.This efficient solver employs algorithms based on discrete cosine transformations(DCT)or discrete sine transformations(DST)and is not restricted by any spatio-temporal schemes.Our proposed methodology is appropriate for a variety of phase-field models and is especially efficient when combined with flow field systems.Meanwhile,this study has conducted an extensive numerical comparison and found that employing DCT and DST techniques not only yields results comparable to those obtained via the Multigrid(MG)method,a conventional approach used in the resolution of the Poisson equations,but also enhances computational efficiency by over 90%.
基金supported by PoSAddive–Powder Sheet Additive Manufacturing(co-funded by EIT Raw Materials,Grant No.22021)the AML in Trinity College Dublin.EIT Raw Materials is supported by EIT,a body of the European Union.
文摘A novel laser-based additive manufacturing approach of metal additive manufacturing using powder sheets(MAPS)has been introduced recently.The method utilizes polymer-bound powder sheets for metal AM as a feedstock,instead of loose powders.Conventional laser beam powder bed fusion(LPBF)additive manufacturing(AM)is among the most widespread 3D printing technologies.However,LPBF faces challenges related to safety and the impracticality of changing materials due to its reliance on loose powders.Thus,MAPS demonstrates the capability to overcome the limitations of LPBF by offering enhanced safety and the ability to print multi-material structures without the risk of material cross-contamination.As a part of developing processes,we investigate the effects of polymeric binder content on the printability and microstructural characteristics of MAPS-printed stainless steel 316 L.The results indicate that the average layer thickness of solidified material improves as the scanning speed decreases from 1000 mm/s to 50 mm/s across three different polymeric binder contents:10 wt%,20 wt%,and 30 wt%PCL.Additionally,a higher polymeric binder content(i.e.20 wt%and 30 wt%)in the powder sheets reduces the likelihood of crack formation.Electron backscatter diffraction(EBSD)analysis reveals that an increase in scanning speed promotes the formation of more equiaxed grains,while an increase in polymer content results in a reduction in grain size.These findings provide valuable insights into optimizing MAPS configurations for enhanced productivity and functionality in metal component manufacturing.
文摘This study focuses on the risks associated with the on-balance sheet recognition of data resources.At the legal level,disputes over ownership often arise due to unclear data property rights,while privacy protection,cybersecurity,and cross-border data flows create additional compliance challenges.In terms of recognition,the subjectivity of traditional valuation methods,the lack of active markets,and the rapid depreciation of data value caused by technological iteration hinder reliable measurement.With respect to disclosure,organizations face a dilemma between transparency and confidentiality.Collectively,these issues exacerbate audit risks.It is therefore imperative to establish an appropriate legal,accounting,and auditing framework to mitigate such risks and remove barriers to the proper recognition of data assets on balance sheets.
基金supported by the Academy of Mathematics and Systems ScienceChinese Academy of Sciences startup fund+3 种基金the National Natural Science Foundation of China(12050410257,12288201)the National Key R&D Program of China(2021YFA1000800)partially supported by the National Key R&D Program of China(2021YFA1001500)partially supported by the NSF of China(12288101)。
文摘This paper investigates nonlinear Landau damping in the 3D Vlasov-Poisson(VP)system.We study the asymptotic stability of the Poisson equilibriumμ(v)=1/π^(2)(1+|v|^(2))^(2) under small perturbations.Building on the foundational work of Ionescu,Pausader,Wang and Widmayer[28],we provide a streamlined proof of nonlinear Landau damping for the 3D unscreened VP system.Our analysis leverages sharp decay estimates,novel decomposition techniques to demonstrate the stabilization of the particle distribution and the decay of electric field.These results reveal the free transport-like behavior for the perturbed densityρ(t,x),and enhance the understanding of Landau damping in an unconfined setting near stable equilibria.
基金financially supported by the National Natural Science Foundation of China(Nos.52071036,U2037601)the Guangdong Major Project of Basic and Applied Basic Research,China(No.2020B0301030006)+1 种基金the Independent Research Project of State Key Laboratory of Mechanical Transmissions,China(Nos.SKLMT-ZZKT-2022Z01,SKLMT-ZZKT-2022M12)the Chongqing Science and Technology Commission,China(No.CSTB2022TIAD-KPX0021)。
文摘Edge cracking is one of the most serious problems in the rolling process of magnesium alloy sheets,which limits its application.In this work,the edge cracking behavior of different initial AZ31 alloy sheets,including as-cast(AC),as-rolled(AR)and as-extruded(AE),was systematically investigated and compared under the online heating rolling(O-LHR)process with a single-pass reduction of 50% at 250℃.The results show that both AC and AR sheets exhibit severe edge cracking behavior after the O-LHR.Among them,the AR sheet exhibits the severest edge cracking behavior on the rolling plane(RD-TD)and longitudinal section(RD-ND),which is attributed to the strong basal texture and extremely uneven microstructure with shear bands.While no visible edge crack appears in the AE rolled sheet,which is mainly related to the tilted texture and the more dynamic recrystallization during rolling process.Moreover,it is also found that the micro-cracks of the AC rolled sheet are mainly generated in the local fine-grained area and the twins where recrystallization occurs.In the AR rolled sheet,micro-cracks mainly develop inside the shear bands.Meanwhile,the micro-crack initiation mechanism of AC and AR rolled sheets was also discussed.