针对实际点云数据中存在的噪点与缺陷对拟合平面时带来的影响,提出一种基于最小平方中值算法(least median of squares,LMedS)与距离加权总体最小二乘法(weighted total least squares based on distance,WTLSD)相结合的平面拟合算法。...针对实际点云数据中存在的噪点与缺陷对拟合平面时带来的影响,提出一种基于最小平方中值算法(least median of squares,LMedS)与距离加权总体最小二乘法(weighted total least squares based on distance,WTLSD)相结合的平面拟合算法。通过最小平方中值算法初步去除点云中的噪点,并基于距离构建初始权重矩阵,利用距离加权总体最小二乘法对点云进行平面拟合,减少平面中凸起与凹陷等缺陷对平面拟合的影响,该算法与传统平面拟合算法相比具备消除异常点与平面缺陷的优点,具备更高的拟合精度;与随机采样一致性算法(random sample consensus,RANSAC)相比具有更高的拟合效率与相近的拟合精度。展开更多
Rapid and accurate recognition of coal and rock is an important prerequisite for safe and efficient coal mining.In this paper,a novel coal-rock recognition method is proposed based on fusing laser point cloud and imag...Rapid and accurate recognition of coal and rock is an important prerequisite for safe and efficient coal mining.In this paper,a novel coal-rock recognition method is proposed based on fusing laser point cloud and images,named Multi-Modal Frustum PointNet(MMFP).Firstly,MobileNetV3 is used as the backbone network of Mask R-CNN to reduce the network parameters and compress the model volume.The dilated convolutional block attention mechanism(Dilated CBAM)and inception structure are combined with MobileNetV3 to further enhance the detection accuracy.Subsequently,the 2D target candidate box is calculated through the improved Mask R-CNN,and the frustum point cloud in the 2D target candidate box is extracted to reduce the calculation scale and spatial search range.Then,the self-attention PointNet is constructed to segment the fused point cloud within the frustum range,and the bounding box regression network is used to predict the bounding box parameters.Finally,an experimental platform of shearer coal wall cutting is established,and multiple comparative experiments are conducted.Experimental results indicate that the proposed coal-rock recognition method is superior to other advanced models.展开更多
传统激光雷达同时定位与建图(simultaneous localization and mapping,SLAM)算法依靠周围环境的几何特征配准点云,在非结构化环境下无法保证配准精度。针对该问题,提出一种结合点云强度信息的改进激光SLAM算法。首先,在已有几何特征的...传统激光雷达同时定位与建图(simultaneous localization and mapping,SLAM)算法依靠周围环境的几何特征配准点云,在非结构化环境下无法保证配准精度。针对该问题,提出一种结合点云强度信息的改进激光SLAM算法。首先,在已有几何特征的基础上,基于点云邻域内强度平滑度、均值和方差提取出强度边缘与平面特征,增加在几何特征稀疏场景下提取可靠特征点的数量;然后,通过融合特征点的局部几何曲率和强度信息构建权重函数,以最小化点到直线和平面距离残差的加权和为优化准则,使用列文伯格-马夸尔特方法求解位姿变换。使用KITTI数据集对算法进行验证,结果表明与A-LOAM、LeGO-LOAM算法相比,所提算法的平均定位误差分别降低了47.1%和31.8%,在保证系统实时性的前提下,具有更高的定位精度和鲁棒性。展开更多
针对多目标识别过程中点云分类和分割精度不高的问题,提出了一种基于改进Transformer模型的点云分类与分割方法DRPT(Double randomness Point Transformer),该方法在Transformer模型卷积投影层创建新的点嵌入,利用局部邻域的动态处理在...针对多目标识别过程中点云分类和分割精度不高的问题,提出了一种基于改进Transformer模型的点云分类与分割方法DRPT(Double randomness Point Transformer),该方法在Transformer模型卷积投影层创建新的点嵌入,利用局部邻域的动态处理在数据特征向量中持续增加全局特征属性,从而提高多目标识别中点云分类和分割的精度。实验中采用了标准基准数据集(ModelNet40、ShapeNet部分分割和SemanticKITTI场景语义分割数据集)以验证模型的性能,实验结果表明:DRPT模型的pIoU值为85.9%,比其他模型平均高出3.5%,有效提高了多目标识别检测时点云分类与分割精度,是对智能网联技术发展的有效支撑。展开更多
文摘针对实际点云数据中存在的噪点与缺陷对拟合平面时带来的影响,提出一种基于最小平方中值算法(least median of squares,LMedS)与距离加权总体最小二乘法(weighted total least squares based on distance,WTLSD)相结合的平面拟合算法。通过最小平方中值算法初步去除点云中的噪点,并基于距离构建初始权重矩阵,利用距离加权总体最小二乘法对点云进行平面拟合,减少平面中凸起与凹陷等缺陷对平面拟合的影响,该算法与传统平面拟合算法相比具备消除异常点与平面缺陷的优点,具备更高的拟合精度;与随机采样一致性算法(random sample consensus,RANSAC)相比具有更高的拟合效率与相近的拟合精度。
基金supported in part by the National Natural Science Foundation of China(Nos.52174152 and 52074271)in part by the Xuzhou Basic Research Program Project(No.KC23051)+2 种基金in part by the Shandong Province Technology Innovation Guidance Plan(Central Guidance for Local Scientific and Technological Development Fund)(No.YDZX2024119)in part by the Graduate Innovation Program of China University of Mining and Technology(No.2025WLKXJ088)in part by the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX252830).
文摘Rapid and accurate recognition of coal and rock is an important prerequisite for safe and efficient coal mining.In this paper,a novel coal-rock recognition method is proposed based on fusing laser point cloud and images,named Multi-Modal Frustum PointNet(MMFP).Firstly,MobileNetV3 is used as the backbone network of Mask R-CNN to reduce the network parameters and compress the model volume.The dilated convolutional block attention mechanism(Dilated CBAM)and inception structure are combined with MobileNetV3 to further enhance the detection accuracy.Subsequently,the 2D target candidate box is calculated through the improved Mask R-CNN,and the frustum point cloud in the 2D target candidate box is extracted to reduce the calculation scale and spatial search range.Then,the self-attention PointNet is constructed to segment the fused point cloud within the frustum range,and the bounding box regression network is used to predict the bounding box parameters.Finally,an experimental platform of shearer coal wall cutting is established,and multiple comparative experiments are conducted.Experimental results indicate that the proposed coal-rock recognition method is superior to other advanced models.
文摘传统激光雷达同时定位与建图(simultaneous localization and mapping,SLAM)算法依靠周围环境的几何特征配准点云,在非结构化环境下无法保证配准精度。针对该问题,提出一种结合点云强度信息的改进激光SLAM算法。首先,在已有几何特征的基础上,基于点云邻域内强度平滑度、均值和方差提取出强度边缘与平面特征,增加在几何特征稀疏场景下提取可靠特征点的数量;然后,通过融合特征点的局部几何曲率和强度信息构建权重函数,以最小化点到直线和平面距离残差的加权和为优化准则,使用列文伯格-马夸尔特方法求解位姿变换。使用KITTI数据集对算法进行验证,结果表明与A-LOAM、LeGO-LOAM算法相比,所提算法的平均定位误差分别降低了47.1%和31.8%,在保证系统实时性的前提下,具有更高的定位精度和鲁棒性。
文摘针对多目标识别过程中点云分类和分割精度不高的问题,提出了一种基于改进Transformer模型的点云分类与分割方法DRPT(Double randomness Point Transformer),该方法在Transformer模型卷积投影层创建新的点嵌入,利用局部邻域的动态处理在数据特征向量中持续增加全局特征属性,从而提高多目标识别中点云分类和分割的精度。实验中采用了标准基准数据集(ModelNet40、ShapeNet部分分割和SemanticKITTI场景语义分割数据集)以验证模型的性能,实验结果表明:DRPT模型的pIoU值为85.9%,比其他模型平均高出3.5%,有效提高了多目标识别检测时点云分类与分割精度,是对智能网联技术发展的有效支撑。