To investigate the influence of coarse aggregate parent rock properties on the elastic modulus of concrete,the mineralogical properties and stress-strain curves of granite and dolomite parent rocks,as well as the stre...To investigate the influence of coarse aggregate parent rock properties on the elastic modulus of concrete,the mineralogical properties and stress-strain curves of granite and dolomite parent rocks,as well as the strength and elastic modulus of mortar and concrete prepared with mechanism aggregates of the corresponding lithology,and the stress-strain curves of concrete were investigated.In this paper,a coarse aggregate and mortar matrix bonding assumption is proposed,and a prediction model for the elastic modulus of mortar is established by considering the lithology of the mechanism sand and the slurry components.An equivalent coarse aggregate elastic modulus model was established by considering factors such as coarse aggregate particle size,volume fraction,and mortar thickness between coarse aggregates.Based on the elastic modulus of the equivalent coarse aggregate and the remaining mortar,a prediction model for the elastic modulus of the two and three components of concrete in series and then in parallel was established,and the predicted values differed from the measured values within 10%.It is proposed that the coarse aggregate elastic modulus in highstrength concrete is the most critical factor affecting the elastic modulus of concrete,and as the coarse aggregate elastic modulus increases by 27.7%,the concrete elastic modulus increases by 19.5%.展开更多
Alkali-free SiO_(2)-Al_(2)O_(3)-CaO-MgO with different SiO_(2)/Al_(2)O_(3)mass ratios was prepared by conventional melt quenching method.The glass network structure,thermodynamic properties and elastic modulus changes...Alkali-free SiO_(2)-Al_(2)O_(3)-CaO-MgO with different SiO_(2)/Al_(2)O_(3)mass ratios was prepared by conventional melt quenching method.The glass network structure,thermodynamic properties and elastic modulus changes with SiO_(2)and Al_(2)O_(3)ratios were investigated using various techniques.It is found that when SiO_(2)is replaced by Al_(2)O_(3),the Q^(4) to Q^(3) transition of silicon-oxygen network decreases while the aluminum-oxygen network increases,which result in the transformation of Si-O-Si bonds to Si-O-Al bonds and an increase in glass network connectivity even though the intermolecular bond strength decreases.The glass transition temperature(T_(g))increases continuously,while the thermal expansion coefficient increases and high-temperature viscosity first decreases and then increases.Meanwhile,the elastic modulus values increase from 93 to 102 GPa.This indicates that the elastic modulus is mainly affected by packing factor and dissociation energy,and elements with higher packing factors and dissociation energies supplant those with lower values,resulting in increased rigidity within the glass.展开更多
The National Geophysical Data Center(NGDC)of the United States has collected aeromagnetic data for input into a series of geomagnetic models to improve model resolution;however,in the Tibetan Plateau region,ground-bas...The National Geophysical Data Center(NGDC)of the United States has collected aeromagnetic data for input into a series of geomagnetic models to improve model resolution;however,in the Tibetan Plateau region,ground-based observations remain insufficient to clearly reflect the characteristics of the region’s lithospheric magnetism.In this study,we evaluate the lithospheric magnetism of the Tibetan Plateau by using a 3D surface spline model based on observations from>200 newly constructed repeat stations(portable stations)to determine the spatial distribution of plateau geomagnetism,as well as its correlation with the tectonic features of the region.We analyze the relationships between M≥5 earthquakes and lithospheric magnetic field variations on the Tibetan Plateau and identify regions susceptible to strong earthquakes.We compare the geomagnetic results with those from an enhanced magnetic model(EMM2015)developed by the NGDC and provide insights into improving lithospheric magnetic field calculations in the Tibetan Plateau region.Further research reveals that these magnetic anomalies exhibit distinct differences from the magnetic-seismic correlation mechanisms observed in other tectonic settings;here,they are governed primarily by the combined effects of compressional magnetism,thermal magnetism,and deep thermal stress.This study provides new evidence of geomagnetic anomalies on the Tibetan Plateau,interprets them physically,and demonstrates their potential for identifying seismic hazard zones on the Plateau.展开更多
Ecosystems along the eastern margin of the Qinghai-Tibet Plateau(EQTP)are highly fragile and extremely sensitive to climate change and human disturbances.To quantitatively assess climate-induced ecosystem responses,th...Ecosystems along the eastern margin of the Qinghai-Tibet Plateau(EQTP)are highly fragile and extremely sensitive to climate change and human disturbances.To quantitatively assess climate-induced ecosystem responses,this study proposes a Climate-Induced Productivity Index(CIPI)based on the Super Slack-Based Measure(Super-SBM)model using remote sensing data from 2001 to 2020.The results reveal persistently low CIPI values(0.47-0.53)across major ecosystem types,indicating widespread vulnerability to climatic variability.Among these ecosystems,forests exhibit the highest CIPI(0.55),followed by shrublands(0.54),croplands(0.53),grasslands(0.51),and barelands(0.43).The Theil index analysis further demonstrates significant intra-group disparities,suggesting that extreme climatic events amplify CIPI heterogeneity.Moreover,the dominant environmental drivers differ among ecosystem types:the Palmer Drought Severity Index(PDSI)primarily constrains grassland productivity,solar radiation(SRAD)strongly influences shrub and cropland systems,whereas subsurface factors exert greater control in forested regions.This study provides a quantitative framework for evaluating climate-ecosystem interactions and offers a scientific basis for long-term ecological monitoring and security planning across the EQTP.展开更多
The viscoelastic behavior of isotactic polypropylene with ultra-high molecular weight(UHPPH) and broad molecular weight distribution(MWD), produced in the presence of Ziegler-Natta catalyst, was investigated by means ...The viscoelastic behavior of isotactic polypropylene with ultra-high molecular weight(UHPPH) and broad molecular weight distribution(MWD), produced in the presence of Ziegler-Natta catalyst, was investigated by means of oscillatory rheometry at 180 and 200 ℃, whose loss modulus(G″) plots at 180 and 200 ℃ versus the natural logarithm of angular frequency(ω) present a pronounced maximum at 34.35 and 69.21 rad/s, respectively, and do not show a maximum peak at 0.01-100 rad/s for Ziegler-Natta catalyzing ethylene-propylene random copolymerization(PPR) with a conventional molecular weight and broad MWD. The fact indicates that the high molecular weight is responsible for a maximum peak of G″(ω) vs. lnω curves for UHPPH. This makes it possible to determine the plateau modulus(G 0_N) of UHPPH from a certain experimental temperature G″(ω) curve directly. For UHPPH, the G 0_N determined to be 4.28×10 5 and 3.62×10 5 Pa at 180 and 200 ℃, respectively, decreases with the increase of temperature and is independent of the molecular weight, which directly confirms reputation theoretical prediction that the G 0_N has no relation to the molecular weight.展开更多
Young's modulus and Poisson's ratio are crucial parameters for reservoir characterization and rock brittleness evaluation.Conventional methods often rely on indirect computation or approximations of the Zoeppr...Young's modulus and Poisson's ratio are crucial parameters for reservoir characterization and rock brittleness evaluation.Conventional methods often rely on indirect computation or approximations of the Zoeppritz equations to estimate Young's modulus,which can introduce cumulative errors and reduce the accuracy of inversion results.To address these issues,this paper introduces the analytical solution of the Zoeppritz equation into the inversion process.The equation is re-derived and expressed in terms of Young's modulus,Poisson's ratio,and density.Within the Bayesian framework,we construct an objective function for the joint inversion of PP and PS waves.Traditional gradient-based algorithms often suffer from low precision and the computational complexity.In this study,we address limitations of conventional approaches related to low precision and complicated code by using Circle chaotic mapping,Levy flights,and Gaussian mutation to optimize the quantum particle swarm optimization(QPSO),named improved quantum particle swarm optimization(IQPSO).The IQPSO demonstrates superior global optimization capabilities.We test the proposed inversion method with both synthetic and field data.The test results demonstrate the proposed method's feasibility and effectiveness,indicating an improvement in inversion accuracy over traditional methods.展开更多
A better understanding of the structure and dynamics of disturbed forests is key for forecasting their future successional trajectories.Despite vulnerability of subalpine forests to warming climate,little is known as ...A better understanding of the structure and dynamics of disturbed forests is key for forecasting their future successional trajectories.Despite vulnerability of subalpine forests to warming climate,little is known as to how their community composition has responded to disturbances and climate warming over decades.Before the 1970s,subalpine forests on the southeastern Qinghai-Tibet Plateau mainly experienced logging and fire,but afterwards they were more impacted by climate warming.Thus,they provide an excellent setting to test whether disturbances and climate warming led to changes in forest structure.Based on the analysis of 3145 forest inventory plots at 4-to 5-year resolution,we found that spruce-fir forests shifted to pine and broadleaved forests since the early 1970s.Such a turnover in species composition mainly occurred in the 1994e1998 period.By strongly altering site conditions,disturbances in concert with climate warming reshuffle community composition to warm-adapted broadleaf-pine species.Thus,moderate disturbances shifted forest composition through a gradual loss of resilience of spruce-fir forests.Shifts in these foundation species will have profound impacts on ecosystem functions and services.In the future,broadleaved forests could expand more rapidly than evergreen needle-leaved forests under moderate warming scenarios.In addition to climate,the effects of anthropogenic disturbances on subalpine forests should be considered in adaptive forest management and in projections of future forest changes.展开更多
Water use efficiency(WUE),as a pivotal indicator of the coupling degree within the carbon–water cycle of ecosystems,holds considerable importance in assessment of the carbon–water balance within terrestrial ecosyste...Water use efficiency(WUE),as a pivotal indicator of the coupling degree within the carbon–water cycle of ecosystems,holds considerable importance in assessment of the carbon–water balance within terrestrial ecosystems.However,in the context of global warming,WUE evolution and its primary drivers on the Tibetan Plateau remain unclear.This study employed the ensemble empirical mode decomposition method and the random forest algorithm to decipher the nonlinear trends and drivers of WUE on the Tibetan Plateau in 2001–2020.Results indicated an annual mean WUE of 0.8088 gC/mm·m^(2)across the plateau,with a spatial gradient reflecting decrease from the southeast toward the northwest.Areas manifesting monotonous trends of increase or decrease in WUE accounted for 23.64%and 9.69%of the total,respectively.Remarkably,66.67%of the region exhibited trend reversals,i.e.,39.94%of the area of the Tibetan Plateau showed transition from a trend of increase to a trend of decrease,and 26.73%of the area demonstrated a shift from a trend of decrease to a trend of increase.Environmental factors accounted for 70.79%of the variability in WUE.The leaf area index and temperature served as the major driving forces of WUE variation.展开更多
Optogenetic has been widely applied in various pathogenesis investigations of neuropathic diseases since its accurate and targeted regulation of neuronal activity.However,due to the mismatch between the soft tissues a...Optogenetic has been widely applied in various pathogenesis investigations of neuropathic diseases since its accurate and targeted regulation of neuronal activity.However,due to the mismatch between the soft tissues and the optical waveguide,the long-term neural regulation within soft tissue(such as brain and spinal cord)by implantable optical fibers is a large challenge.Herein,we designed a modulus selfadaptive hydrogel optical fiber(MSHOF)with tunable mechanical properties(Young’modulus was tunable in the range of 0.32-10.56MPa)and low light attenuation(0.12-0.21 dB/cm,472nm laser light),which adapts to light transmission under soft tissues.These advantages of MSHOF can ensure the effectiveness of optogenetic stimulation meanwhile safeguarding the safety of the brain/materials interaction interface.In addition,this work provides more design possibilities of MSHOF for photogenetic stimuli and has significant application prospects in photomedical therapy.展开更多
Porous designs effectively reduce stress shielding in metallic orthopedic implants.However,current porous structures often fail to adequately meet the needs of patients with osteoporosis and low-modulus body regions.T...Porous designs effectively reduce stress shielding in metallic orthopedic implants.However,current porous structures often fail to adequately meet the needs of patients with osteoporosis and low-modulus body regions.This study proposes a sinusoidal-based lattice structure for an ultralow and widely tunable modulus design,aiming to match diverse bone tissue requirements and enhance biomechanical compatibility.Parametric modeling and finite element analysis were used to evaluate the performance of this structure.Results show that,within the design range suitable for bone growth,the elastic modulus of this lattice structure is tunable over a wide range,from 0.09 to 32.67 GPa,outperforming existing porous structures.The lowest value closely matched the minimum mechanical properties of human cancellous bone among porous structures.Moreover,the structure exhibited distinct anisotropic characteristics,allowing for directional design based on mechanical requirements.The structure’s permeability ranged from 1.19×10^(-8) m^(2) to 2.3×10^(-7) m^(2),making it highly compatible with human cancellous bone and meeting the requirements of orthopedic implants.Samples with porosities ranging from 46% to 87% were successfully fabricated using powder bed fusion additive manufacturing,validating the simulation predictions.This tunable low-modulus lattice structure provides a novel approach for developing personalized orthopedic implants,particularly for patients with specialized needs such as osteoporosis,and can potentially enhance biomechanical compatibility and long-term stability.展开更多
Tibetan turnip and oilseeds are the most important vegetables cultivated in the Qinghai-Tibet Plateau.Our field observations identified a dominant early-bolting phenotype at the vegetative growth stage in the Tibetan ...Tibetan turnip and oilseeds are the most important vegetables cultivated in the Qinghai-Tibet Plateau.Our field observations identified a dominant early-bolting phenotype at the vegetative growth stage in the Tibetan turnip,which was possibly due to cross-pollination contamination from nearby oilseeds.We performed genetic and molecular experiments to explore the main reason for early bolting.We first analyzed gene expression and genomic sequence variation of turnip and oilseed BraFLC2,a gene that acts as a key repressor of flowering in turnip in a dosage-dependent manner.We found that the differences in flowering time and life habits between turnip and oilseeds were closely correlated with the genetic variations in BraFLC2.We further identified that the early-bolting turnip was the hybrid between turnip and oilseeds by selecting BraFLC2 as a testing gene.Furthermore,using an artificial hybridization experiment,we found that the heterozygote and low levels of BraFLC2 expression promoted early bolting in hybrid plants.These findings indicate that early-bolting in turnip is caused by cross-pollination contamination from oilseeds under human agricultural activities.We propose a strategy of strict seed screening,cultivation isolation and turnip breeding to ensure high quality and yield.展开更多
The Qinghai-Tibet Plateau,with its high altitude and cold climate,is one of the most fragile ecological environments in China and is distinguished by its naturally elevated arsenic(As)levels in the soil,largely due to...The Qinghai-Tibet Plateau,with its high altitude and cold climate,is one of the most fragile ecological environments in China and is distinguished by its naturally elevated arsenic(As)levels in the soil,largely due to its rich mineral and geothermal resources.This review provides a comprehensive analysis of As content,focusing on its distribution,environmental migration,and transformation behavior across the plateau.The review further evaluates the distribution of As in different functional areas,revealing that geothermal fields(107.2 mg/kg),mining areas(53.8 mg/kg),and croplands(39.3 mg/kg)have the highest As concentrations,followed by river and lake sediments and adjacent areas(33.1 mg/kg).These elevated levels are primarily attributed to the presence of As-rich minerals,such as arsenopyrite and pyrite.Additionally,human activities,including mining and geothermal energy production,exacerbate the release of As into the environment.The review also highlights the role of localmicroorganisms,particularly those fromthe phyla Proteobacteria and Actinobacteria,which possess As metabolic genes that facilitate As translocation.Given the unique climatic conditions of the plateau,conventionalmethods for As controlmay not be fully effective.However,the review identifies promising remediation strategies that are environmentally adaptable,such as the use of local microorganisms,specific adsorbents,and integrated technologies,which offer potential solutions for managing and utilizing Ascontaminated soils on the plateau.展开更多
Rationally regulating the porosity of hard carbon(HC),especially the closed pores matching the low potential plateau and the ultra-microporous structure suitable for Na+embedding,has been shown to be the key to improv...Rationally regulating the porosity of hard carbon(HC),especially the closed pores matching the low potential plateau and the ultra-microporous structure suitable for Na+embedding,has been shown to be the key to improving the sodium storage performance and initial coulombic efficiency(ICE).However,the preparation of such HC materials with specific pore structures still faces great challenges.Herein,a simple pre-oxidation strategy is employed to construct abundant closed ultra-microporous structures in soy protein powder-derived HC material,achieving a significant improvement in its ICE and platform capacity.The pre-oxidation process promotes the cross-linking degree of the soy protein,thereby hindering the directional growth of graphite domains during the carbonization process.The optimized HC exhibits ultra-high platform capacity(329 mAh g^(-1))and considerable energy density(148.5 Wh kg^(-1)).Based on the ex-situ Raman and X-ray photoelectron spectroscopy characterization results,the excellent sodium storage capacity of the HC material is attributed to the synergistic effect of adsorption-intercalation/filling.The presented work provides novel insights into the synthesis of other biomass-derived HC materials with abundant closed ultra-micro pores.展开更多
Discrete fracture network(DFN)commonly existing in natural rock masses plays an important role in geological complexity which can influence rock fracturing behaviour during fluid injection.This paper simulated the hyd...Discrete fracture network(DFN)commonly existing in natural rock masses plays an important role in geological complexity which can influence rock fracturing behaviour during fluid injection.This paper simulated the hydraulic fracturing process in lab-scale coal samples with DFNs and the induced seismic activities by the discrete element method(DEM).The effects of DFNs on hydraulic fracturing,induced seismicity and elastic property changes have been concluded.Denser DFNs can comprehensively decrease the peak injection pressure and injection duration.The proportion of strong seismic events increases first and then decreases with increasing DFN density.In addition,the relative modulus of the rock mass is derived innovatively from breakdown pressure,breakdown fracture length and the related initiation time.Increasing DFN densities among large(35–60 degrees)and small(0–30 degrees)fracture dip angles show opposite evolution trends in relative modulus.The transitional point(dip angle)for the opposite trends is also proportionally affected by the friction angle of the rock mass.The modelling results have much practical meaning to infer the density and geometry of pre-existing fractures and the elastic property of rock mass in the field,simply based on the hydraulic fracturing and induced seismicity monitoring data.展开更多
The Qinghai-Tibet Plateau(QTP)has three main grassland types:alpine meadow,alpine steppe,and alpine desert steppe.In this study,we asked how plant productivity and species diversity vary with altitude,longitude and la...The Qinghai-Tibet Plateau(QTP)has three main grassland types:alpine meadow,alpine steppe,and alpine desert steppe.In this study,we asked how plant productivity and species diversity vary with altitude,longitude and latitude in alpine grasslands of the QTP.We then identified the environmental factors that drive these observed patterns of plant productivity and species diversity.We found that although plant productivity and species diversity varied greatly across large-scale longitudinal and latitudinal gradients,these changes were strongest across the longitudinal gradient.This finding indicates that moisture rather than temperature has the greatest impact on plant productivity and species diversity of the alpine grasslands in the QTP.We also found that besides soil and climate factors,partial pressure of carbon dioxide(pCO_(2))also has significant effects on plant productivity,and barometric pressure and partial pressure of oxygen(pO_(2))also have significant effects on species diversity.Furthermore,the relationship between the biomass of grassland-dominant species and species diversity was affected by the spatial scale at which these factors were studied.Our study provides new insights into the interconnections between plant productivity and species diversity and the major factors that influence alpine grasslands.It also provides a scientific basis for the maintenance of plant diversity and ecosystem functions in hypoxic(low-oxygen)regions.展开更多
To tackle the issue of notch frequency and center frequency drift of the L(0,1)mode guided wave in ultra⁃sonic guided wave⁃based stress monitoring of prestressed steel strands,a method using higher⁃order mode plateau ...To tackle the issue of notch frequency and center frequency drift of the L(0,1)mode guided wave in ultra⁃sonic guided wave⁃based stress monitoring of prestressed steel strands,a method using higher⁃order mode plateau fre⁃quencies is adopted.First,the correlation between group velocity peaks and phase velocities at these plateau frequen⁃cies is analyzed.This analysis establishes a quantitative rela⁃tionship between phase velocity and stress in the steel strand,providing a theoretical foundation for stress monitor⁃ing.Then the two⁃dimensional Fourier transform is em⁃ployed to separate wave modes.Dynamic programming techniques are applied in the frequency⁃velocity domain to extract higher⁃order modes.By identifying the group veloc⁃ity peaks of these separated higher⁃order modes,the plateau frequencies of guided waves are determined,enabling indi⁃rect measurement of stress in the steel strand.To validate this method,finite element simulations are conducted under three scenarios.Results show that the higher⁃order modes of transient signals from three different positions can be ac⁃curately extracted,leading to successful cable stress moni⁃toring.This approach effectively circumvents the issue of guided wave frequency drift and improves stress monitoring accuracy.Consequently,it significantly improves the appli⁃cation of ultrasonic guided wave technology in structural health monitoring.展开更多
As the highest and largest plateau in the world,the Qinghai-Tibet Plateau(QTP)covers wide geological,topographical and climatic gradients and thus acts as a major center for biodiversity and houses a diverse array of ...As the highest and largest plateau in the world,the Qinghai-Tibet Plateau(QTP)covers wide geological,topographical and climatic gradients and thus acts as a major center for biodiversity and houses a diverse array of high elevation ecosystems.Together these factors make the QTP a critical ecological shield for Asia.However,the composition,structure and function of plant diversity in QTP has experienced profound changes in recent decades.Long-term on-site monitoring,fieldexperiments,remote sensing,and simulations have led to significantadvances in our understanding of how plant diversity on the QTP has responded to climate change and human activity.This review synthesizes findingsfrom previous researches on how climate change and human activity have impacted plant diversity on the QTP.We identify gaps in our knowledge and highlight the need for interdisciplinary studies,long-term monitoring networks,and adaptive management strategies to enhance our knowledge and safeguard the QTP’s biodiversity amid accelerating global climate change.展开更多
In this manuscript,we propose an analytical equivalent linear viscoelastic constitutive model for fiber-reinforced composites,bypassing general computational homogenization.The method is based on the reduced-order hom...In this manuscript,we propose an analytical equivalent linear viscoelastic constitutive model for fiber-reinforced composites,bypassing general computational homogenization.The method is based on the reduced-order homogenization(ROH)approach.The ROH method typically involves solving multiple finite element problems under periodic conditions to evaluate elastic strain and eigenstrain influence functions in an‘off-line’stage,which offers substantial cost savings compared to direct computational homogenization methods.Due to the unique structure of the fibrous unit cell,“off-line”stage calculation can be eliminated by influence functions obtained analytically.Introducing the standard solid model to the ROH method enables the creation of a comprehensive analytical homogeneous viscoelastic constitutive model.This method treats fibrous composite materials as homogeneous,anisotropic viscoelastic materials,significantly reducing computational time due to its analytical nature.This approach also enables precise determination of a homogenized anisotropic relaxation modulus and accurate capture of various viscoelastic responses under different loading conditions.Three sets of numerical examples,including unit cell tests,three-point beam bending tests,and torsion tests,are given to demonstrate the predictive performance of the homogenized viscoelastic model.Furthermore,the model is validated against experimental measurements,confirming its accuracy and reliability.展开更多
The Qinghai-Xizang Plateau(QXP)serves as a crucial ecological barrier in China and Asia,exerting profound influences on global climate and biodiversity conservation.Gannan Tibetan Autonomous Prefecture(hereinafter ref...The Qinghai-Xizang Plateau(QXP)serves as a crucial ecological barrier in China and Asia,exerting profound influences on global climate and biodiversity conservation.Gannan Tibetan Autonomous Prefecture(hereinafter referred as Gannan Prefecture),located on the northeastern edge of the QXP,represents a fragile alpine ecosystem in which land use change significantly impacts ecosystem services(ESs).This study established a comprehensive framework,utilizing the Patch-generating Land-Use Simulation(PLUS)model coupled with the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model to predict land use patterns under the natural development scenario,cultivated land protection scenario,and ecological protection scenario for Gannan Prefecture by 2030 and evaluated four critical ESs:habitat quality(HQ),water yield(WY),soil retention(SR),and carbon storage(CS).The primary aim is to elucidate the impacts of dynamic land use change on ESs.The results revealed that,from 2000 to 2020,HQ exhibited minimal variation,whereas CS experienced a slight decline.Conversely,WY and SR showed significant improvements.Under the natural development scenario,construction land was projected to increase by 4247.74 hm^(2),primarily at the expense of forest land.The cultivated land protection scenario anticipated an increase in farmland by 2634.36 hm^(2),which was crucial for maintaining food security.The ecological protection scenario predicted a notable expansion of forest land,accompanied by a restrained development rate of construction land.The ecological protection scenario also showed an increase in the ecosystem service index(ESI),encompassing 26.07%of the region.Forest land and grassland emerged as the primary contributors to ESs,while construction land substantially impacted WY.Water bodies exhibited minimal contribution to ESs.This study enhanced the understanding of land use change impacts on ESs in fragile and high-altitude ecosystems,offering essential theoretical frameworks and practical direction for forthcoming ecological policy and regional planning endeavors.展开更多
基金Funded by State Railway Administration Research Project(No.2023JS007)National Natural Science Foundation of China(No.52438002)+1 种基金Research and Development Programs for Science and Technology of China Railways Corporation(No.J2023G003)New Cornerstone Science Foundation through the XPLORER PRIZE。
文摘To investigate the influence of coarse aggregate parent rock properties on the elastic modulus of concrete,the mineralogical properties and stress-strain curves of granite and dolomite parent rocks,as well as the strength and elastic modulus of mortar and concrete prepared with mechanism aggregates of the corresponding lithology,and the stress-strain curves of concrete were investigated.In this paper,a coarse aggregate and mortar matrix bonding assumption is proposed,and a prediction model for the elastic modulus of mortar is established by considering the lithology of the mechanism sand and the slurry components.An equivalent coarse aggregate elastic modulus model was established by considering factors such as coarse aggregate particle size,volume fraction,and mortar thickness between coarse aggregates.Based on the elastic modulus of the equivalent coarse aggregate and the remaining mortar,a prediction model for the elastic modulus of the two and three components of concrete in series and then in parallel was established,and the predicted values differed from the measured values within 10%.It is proposed that the coarse aggregate elastic modulus in highstrength concrete is the most critical factor affecting the elastic modulus of concrete,and as the coarse aggregate elastic modulus increases by 27.7%,the concrete elastic modulus increases by 19.5%.
基金Supported by the National Key Research Program(No.2024-1129-954-112)National Natural Science Foundation of China(No.52372033)Guangxi Science and Technology Major Program(No.AA24263054)。
文摘Alkali-free SiO_(2)-Al_(2)O_(3)-CaO-MgO with different SiO_(2)/Al_(2)O_(3)mass ratios was prepared by conventional melt quenching method.The glass network structure,thermodynamic properties and elastic modulus changes with SiO_(2)and Al_(2)O_(3)ratios were investigated using various techniques.It is found that when SiO_(2)is replaced by Al_(2)O_(3),the Q^(4) to Q^(3) transition of silicon-oxygen network decreases while the aluminum-oxygen network increases,which result in the transformation of Si-O-Si bonds to Si-O-Al bonds and an increase in glass network connectivity even though the intermolecular bond strength decreases.The glass transition temperature(T_(g))increases continuously,while the thermal expansion coefficient increases and high-temperature viscosity first decreases and then increases.Meanwhile,the elastic modulus values increase from 93 to 102 GPa.This indicates that the elastic modulus is mainly affected by packing factor and dissociation energy,and elements with higher packing factors and dissociation energies supplant those with lower values,resulting in increased rigidity within the glass.
基金supported by the CAS Pioneer Hundred Talents Program and Second Tibetan Plateau Scientific Expedition Research Program(2019QZKK0708)as well as the Basic Research Program of Qinghai Province:Lithospheric Geomagnetic Field of the Qinghai‒Tibet Plateau and the Relationship with Strong Earthquakes(2021-ZJ-969Q).
文摘The National Geophysical Data Center(NGDC)of the United States has collected aeromagnetic data for input into a series of geomagnetic models to improve model resolution;however,in the Tibetan Plateau region,ground-based observations remain insufficient to clearly reflect the characteristics of the region’s lithospheric magnetism.In this study,we evaluate the lithospheric magnetism of the Tibetan Plateau by using a 3D surface spline model based on observations from>200 newly constructed repeat stations(portable stations)to determine the spatial distribution of plateau geomagnetism,as well as its correlation with the tectonic features of the region.We analyze the relationships between M≥5 earthquakes and lithospheric magnetic field variations on the Tibetan Plateau and identify regions susceptible to strong earthquakes.We compare the geomagnetic results with those from an enhanced magnetic model(EMM2015)developed by the NGDC and provide insights into improving lithospheric magnetic field calculations in the Tibetan Plateau region.Further research reveals that these magnetic anomalies exhibit distinct differences from the magnetic-seismic correlation mechanisms observed in other tectonic settings;here,they are governed primarily by the combined effects of compressional magnetism,thermal magnetism,and deep thermal stress.This study provides new evidence of geomagnetic anomalies on the Tibetan Plateau,interprets them physically,and demonstrates their potential for identifying seismic hazard zones on the Plateau.
基金National Key R&D Program of China,No.2022YFF1302401National Natural Science Foundation of China,No.42271007。
文摘Ecosystems along the eastern margin of the Qinghai-Tibet Plateau(EQTP)are highly fragile and extremely sensitive to climate change and human disturbances.To quantitatively assess climate-induced ecosystem responses,this study proposes a Climate-Induced Productivity Index(CIPI)based on the Super Slack-Based Measure(Super-SBM)model using remote sensing data from 2001 to 2020.The results reveal persistently low CIPI values(0.47-0.53)across major ecosystem types,indicating widespread vulnerability to climatic variability.Among these ecosystems,forests exhibit the highest CIPI(0.55),followed by shrublands(0.54),croplands(0.53),grasslands(0.51),and barelands(0.43).The Theil index analysis further demonstrates significant intra-group disparities,suggesting that extreme climatic events amplify CIPI heterogeneity.Moreover,the dominant environmental drivers differ among ecosystem types:the Palmer Drought Severity Index(PDSI)primarily constrains grassland productivity,solar radiation(SRAD)strongly influences shrub and cropland systems,whereas subsurface factors exert greater control in forested regions.This study provides a quantitative framework for evaluating climate-ecosystem interactions and offers a scientific basis for long-term ecological monitoring and security planning across the EQTP.
文摘The viscoelastic behavior of isotactic polypropylene with ultra-high molecular weight(UHPPH) and broad molecular weight distribution(MWD), produced in the presence of Ziegler-Natta catalyst, was investigated by means of oscillatory rheometry at 180 and 200 ℃, whose loss modulus(G″) plots at 180 and 200 ℃ versus the natural logarithm of angular frequency(ω) present a pronounced maximum at 34.35 and 69.21 rad/s, respectively, and do not show a maximum peak at 0.01-100 rad/s for Ziegler-Natta catalyzing ethylene-propylene random copolymerization(PPR) with a conventional molecular weight and broad MWD. The fact indicates that the high molecular weight is responsible for a maximum peak of G″(ω) vs. lnω curves for UHPPH. This makes it possible to determine the plateau modulus(G 0_N) of UHPPH from a certain experimental temperature G″(ω) curve directly. For UHPPH, the G 0_N determined to be 4.28×10 5 and 3.62×10 5 Pa at 180 and 200 ℃, respectively, decreases with the increase of temperature and is independent of the molecular weight, which directly confirms reputation theoretical prediction that the G 0_N has no relation to the molecular weight.
基金supported by Fundamental Research Funds for the Central Universities,CHD300102264715National Key Research and Development Program of China under Grant 2021YFA0716902Natural Science Basic Research Program of Shaanxi 2024JCYBMS-199。
文摘Young's modulus and Poisson's ratio are crucial parameters for reservoir characterization and rock brittleness evaluation.Conventional methods often rely on indirect computation or approximations of the Zoeppritz equations to estimate Young's modulus,which can introduce cumulative errors and reduce the accuracy of inversion results.To address these issues,this paper introduces the analytical solution of the Zoeppritz equation into the inversion process.The equation is re-derived and expressed in terms of Young's modulus,Poisson's ratio,and density.Within the Bayesian framework,we construct an objective function for the joint inversion of PP and PS waves.Traditional gradient-based algorithms often suffer from low precision and the computational complexity.In this study,we address limitations of conventional approaches related to low precision and complicated code by using Circle chaotic mapping,Levy flights,and Gaussian mutation to optimize the quantum particle swarm optimization(QPSO),named improved quantum particle swarm optimization(IQPSO).The IQPSO demonstrates superior global optimization capabilities.We test the proposed inversion method with both synthetic and field data.The test results demonstrate the proposed method's feasibility and effectiveness,indicating an improvement in inversion accuracy over traditional methods.
基金supported by the National Natural Science Foundation of China(42030508)the Second Tibetan Plateau Scientific Expedition and Research(STEP)program(2019QZKK0301)the Key technology research and development projects in Xizang Autonomous Regions(XZ202101ZY0005G).
文摘A better understanding of the structure and dynamics of disturbed forests is key for forecasting their future successional trajectories.Despite vulnerability of subalpine forests to warming climate,little is known as to how their community composition has responded to disturbances and climate warming over decades.Before the 1970s,subalpine forests on the southeastern Qinghai-Tibet Plateau mainly experienced logging and fire,but afterwards they were more impacted by climate warming.Thus,they provide an excellent setting to test whether disturbances and climate warming led to changes in forest structure.Based on the analysis of 3145 forest inventory plots at 4-to 5-year resolution,we found that spruce-fir forests shifted to pine and broadleaved forests since the early 1970s.Such a turnover in species composition mainly occurred in the 1994e1998 period.By strongly altering site conditions,disturbances in concert with climate warming reshuffle community composition to warm-adapted broadleaf-pine species.Thus,moderate disturbances shifted forest composition through a gradual loss of resilience of spruce-fir forests.Shifts in these foundation species will have profound impacts on ecosystem functions and services.In the future,broadleaved forests could expand more rapidly than evergreen needle-leaved forests under moderate warming scenarios.In addition to climate,the effects of anthropogenic disturbances on subalpine forests should be considered in adaptive forest management and in projections of future forest changes.
基金National Nonprofit Institute Research Grant of CAF,No.CAFYBB2018ZA004,No.CAFYBB2023ZA009Fengyun Application Pioneering Project,No.FY-APP-ZX-2023.02。
文摘Water use efficiency(WUE),as a pivotal indicator of the coupling degree within the carbon–water cycle of ecosystems,holds considerable importance in assessment of the carbon–water balance within terrestrial ecosystems.However,in the context of global warming,WUE evolution and its primary drivers on the Tibetan Plateau remain unclear.This study employed the ensemble empirical mode decomposition method and the random forest algorithm to decipher the nonlinear trends and drivers of WUE on the Tibetan Plateau in 2001–2020.Results indicated an annual mean WUE of 0.8088 gC/mm·m^(2)across the plateau,with a spatial gradient reflecting decrease from the southeast toward the northwest.Areas manifesting monotonous trends of increase or decrease in WUE accounted for 23.64%and 9.69%of the total,respectively.Remarkably,66.67%of the region exhibited trend reversals,i.e.,39.94%of the area of the Tibetan Plateau showed transition from a trend of increase to a trend of decrease,and 26.73%of the area demonstrated a shift from a trend of decrease to a trend of increase.Environmental factors accounted for 70.79%of the variability in WUE.The leaf area index and temperature served as the major driving forces of WUE variation.
基金supported by the National Key Research and Development Program of China(Nos.2021YFA1201302 and 2021YFA1201300)the National Natural Science Foundation of China(Nos.52303033,52173029)+1 种基金Shanghai Sailing Program(No.23YF1400400)the Natural Science Foundation of Shanghai(No.21ZR1400500).
文摘Optogenetic has been widely applied in various pathogenesis investigations of neuropathic diseases since its accurate and targeted regulation of neuronal activity.However,due to the mismatch between the soft tissues and the optical waveguide,the long-term neural regulation within soft tissue(such as brain and spinal cord)by implantable optical fibers is a large challenge.Herein,we designed a modulus selfadaptive hydrogel optical fiber(MSHOF)with tunable mechanical properties(Young’modulus was tunable in the range of 0.32-10.56MPa)and low light attenuation(0.12-0.21 dB/cm,472nm laser light),which adapts to light transmission under soft tissues.These advantages of MSHOF can ensure the effectiveness of optogenetic stimulation meanwhile safeguarding the safety of the brain/materials interaction interface.In addition,this work provides more design possibilities of MSHOF for photogenetic stimuli and has significant application prospects in photomedical therapy.
基金supported by National Key R&D Program of China(Grant No.2022YFB4600500)Fundamental Research Funds for the Central Universities,and the Program for Innovation Team of Shaanxi Province(Grant No.2023-CX-TD-17).
文摘Porous designs effectively reduce stress shielding in metallic orthopedic implants.However,current porous structures often fail to adequately meet the needs of patients with osteoporosis and low-modulus body regions.This study proposes a sinusoidal-based lattice structure for an ultralow and widely tunable modulus design,aiming to match diverse bone tissue requirements and enhance biomechanical compatibility.Parametric modeling and finite element analysis were used to evaluate the performance of this structure.Results show that,within the design range suitable for bone growth,the elastic modulus of this lattice structure is tunable over a wide range,from 0.09 to 32.67 GPa,outperforming existing porous structures.The lowest value closely matched the minimum mechanical properties of human cancellous bone among porous structures.Moreover,the structure exhibited distinct anisotropic characteristics,allowing for directional design based on mechanical requirements.The structure’s permeability ranged from 1.19×10^(-8) m^(2) to 2.3×10^(-7) m^(2),making it highly compatible with human cancellous bone and meeting the requirements of orthopedic implants.Samples with porosities ranging from 46% to 87% were successfully fabricated using powder bed fusion additive manufacturing,validating the simulation predictions.This tunable low-modulus lattice structure provides a novel approach for developing personalized orthopedic implants,particularly for patients with specialized needs such as osteoporosis,and can potentially enhance biomechanical compatibility and long-term stability.
基金supported by the National Natural Science Foundation of China(no.32200306,32170385 and 32070362)the Postdoctoral Directional Training Foundation of Yunnan Province,and the Second Tibetan Plateau Scientific Expedition and Research(STEP)program(no.2019QZKK0502).
文摘Tibetan turnip and oilseeds are the most important vegetables cultivated in the Qinghai-Tibet Plateau.Our field observations identified a dominant early-bolting phenotype at the vegetative growth stage in the Tibetan turnip,which was possibly due to cross-pollination contamination from nearby oilseeds.We performed genetic and molecular experiments to explore the main reason for early bolting.We first analyzed gene expression and genomic sequence variation of turnip and oilseed BraFLC2,a gene that acts as a key repressor of flowering in turnip in a dosage-dependent manner.We found that the differences in flowering time and life habits between turnip and oilseeds were closely correlated with the genetic variations in BraFLC2.We further identified that the early-bolting turnip was the hybrid between turnip and oilseeds by selecting BraFLC2 as a testing gene.Furthermore,using an artificial hybridization experiment,we found that the heterozygote and low levels of BraFLC2 expression promoted early bolting in hybrid plants.These findings indicate that early-bolting in turnip is caused by cross-pollination contamination from oilseeds under human agricultural activities.We propose a strategy of strict seed screening,cultivation isolation and turnip breeding to ensure high quality and yield.
基金supported by the Central Public-interest Scientific Institution Basal Research Fund(No.Y2024QC29)the Central Public-interest Scientific Institution Basal Research Fund(Nos.2024-jbkyywf-lwj and 2024-jbkyywf-zyj).
文摘The Qinghai-Tibet Plateau,with its high altitude and cold climate,is one of the most fragile ecological environments in China and is distinguished by its naturally elevated arsenic(As)levels in the soil,largely due to its rich mineral and geothermal resources.This review provides a comprehensive analysis of As content,focusing on its distribution,environmental migration,and transformation behavior across the plateau.The review further evaluates the distribution of As in different functional areas,revealing that geothermal fields(107.2 mg/kg),mining areas(53.8 mg/kg),and croplands(39.3 mg/kg)have the highest As concentrations,followed by river and lake sediments and adjacent areas(33.1 mg/kg).These elevated levels are primarily attributed to the presence of As-rich minerals,such as arsenopyrite and pyrite.Additionally,human activities,including mining and geothermal energy production,exacerbate the release of As into the environment.The review also highlights the role of localmicroorganisms,particularly those fromthe phyla Proteobacteria and Actinobacteria,which possess As metabolic genes that facilitate As translocation.Given the unique climatic conditions of the plateau,conventionalmethods for As controlmay not be fully effective.However,the review identifies promising remediation strategies that are environmentally adaptable,such as the use of local microorganisms,specific adsorbents,and integrated technologies,which offer potential solutions for managing and utilizing Ascontaminated soils on the plateau.
基金supported by the National Natural Science Foundation of China(42167068,22269020)the Gansu Province Higher Education Industry Support Plan Project(2023CYZC-68)the Central Guidance for Local Science and Technology Development Funds Project(YDZX20216200001007)。
文摘Rationally regulating the porosity of hard carbon(HC),especially the closed pores matching the low potential plateau and the ultra-microporous structure suitable for Na+embedding,has been shown to be the key to improving the sodium storage performance and initial coulombic efficiency(ICE).However,the preparation of such HC materials with specific pore structures still faces great challenges.Herein,a simple pre-oxidation strategy is employed to construct abundant closed ultra-microporous structures in soy protein powder-derived HC material,achieving a significant improvement in its ICE and platform capacity.The pre-oxidation process promotes the cross-linking degree of the soy protein,thereby hindering the directional growth of graphite domains during the carbonization process.The optimized HC exhibits ultra-high platform capacity(329 mAh g^(-1))and considerable energy density(148.5 Wh kg^(-1)).Based on the ex-situ Raman and X-ray photoelectron spectroscopy characterization results,the excellent sodium storage capacity of the HC material is attributed to the synergistic effect of adsorption-intercalation/filling.The presented work provides novel insights into the synthesis of other biomass-derived HC materials with abundant closed ultra-micro pores.
基金Australian Research Council Linkage Program(LP200301404)for sponsoring this researchthe financial support provided by the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(Chengdu University of Technology,SKLGP2021K002)National Natural Science Foundation of China(52374101,32111530138).
文摘Discrete fracture network(DFN)commonly existing in natural rock masses plays an important role in geological complexity which can influence rock fracturing behaviour during fluid injection.This paper simulated the hydraulic fracturing process in lab-scale coal samples with DFNs and the induced seismic activities by the discrete element method(DEM).The effects of DFNs on hydraulic fracturing,induced seismicity and elastic property changes have been concluded.Denser DFNs can comprehensively decrease the peak injection pressure and injection duration.The proportion of strong seismic events increases first and then decreases with increasing DFN density.In addition,the relative modulus of the rock mass is derived innovatively from breakdown pressure,breakdown fracture length and the related initiation time.Increasing DFN densities among large(35–60 degrees)and small(0–30 degrees)fracture dip angles show opposite evolution trends in relative modulus.The transitional point(dip angle)for the opposite trends is also proportionally affected by the friction angle of the rock mass.The modelling results have much practical meaning to infer the density and geometry of pre-existing fractures and the elastic property of rock mass in the field,simply based on the hydraulic fracturing and induced seismicity monitoring data.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program(STEP),Grant No.2019QZKK0606.
文摘The Qinghai-Tibet Plateau(QTP)has three main grassland types:alpine meadow,alpine steppe,and alpine desert steppe.In this study,we asked how plant productivity and species diversity vary with altitude,longitude and latitude in alpine grasslands of the QTP.We then identified the environmental factors that drive these observed patterns of plant productivity and species diversity.We found that although plant productivity and species diversity varied greatly across large-scale longitudinal and latitudinal gradients,these changes were strongest across the longitudinal gradient.This finding indicates that moisture rather than temperature has the greatest impact on plant productivity and species diversity of the alpine grasslands in the QTP.We also found that besides soil and climate factors,partial pressure of carbon dioxide(pCO_(2))also has significant effects on plant productivity,and barometric pressure and partial pressure of oxygen(pO_(2))also have significant effects on species diversity.Furthermore,the relationship between the biomass of grassland-dominant species and species diversity was affected by the spatial scale at which these factors were studied.Our study provides new insights into the interconnections between plant productivity and species diversity and the major factors that influence alpine grasslands.It also provides a scientific basis for the maintenance of plant diversity and ecosystem functions in hypoxic(low-oxygen)regions.
基金The National Natural Science Foundation of China(No.52278303).
文摘To tackle the issue of notch frequency and center frequency drift of the L(0,1)mode guided wave in ultra⁃sonic guided wave⁃based stress monitoring of prestressed steel strands,a method using higher⁃order mode plateau fre⁃quencies is adopted.First,the correlation between group velocity peaks and phase velocities at these plateau frequen⁃cies is analyzed.This analysis establishes a quantitative rela⁃tionship between phase velocity and stress in the steel strand,providing a theoretical foundation for stress monitor⁃ing.Then the two⁃dimensional Fourier transform is em⁃ployed to separate wave modes.Dynamic programming techniques are applied in the frequency⁃velocity domain to extract higher⁃order modes.By identifying the group veloc⁃ity peaks of these separated higher⁃order modes,the plateau frequencies of guided waves are determined,enabling indi⁃rect measurement of stress in the steel strand.To validate this method,finite element simulations are conducted under three scenarios.Results show that the higher⁃order modes of transient signals from three different positions can be ac⁃curately extracted,leading to successful cable stress moni⁃toring.This approach effectively circumvents the issue of guided wave frequency drift and improves stress monitoring accuracy.Consequently,it significantly improves the appli⁃cation of ultrasonic guided wave technology in structural health monitoring.
基金the Second Tibetan Plateau Scientific Expedition and Research program(2024QZKK0200)the Key Projects of the Joint Fund of the National Natural Science Foundation of China(U23A20149)+2 种基金Yunnan Key R&D Program(202403AC00028)for supporting the fieldexcursion,samples collections and ecological experiment in QTP.Rest co-authors acknowledge the Yunnan Innovation Team Project(202305AS350004 to Yang Yang)the Young Academic and Technical Leader Raising Foundation of Yunnan Province(202205AC160053 to Jianguo Chen)the CAS“Light of West China”Program(xbzg-zdsys-202319 to Bo Song),Yunnan Revitalization Talent Support Program“Young Talent”Project(to Yazhou Zhang),National Youth Talent Support Program(to Yang Niu)and Postdoctoral(oversea)Fund of Ministry of Education of China(to Zihan Jiang)。
文摘As the highest and largest plateau in the world,the Qinghai-Tibet Plateau(QTP)covers wide geological,topographical and climatic gradients and thus acts as a major center for biodiversity and houses a diverse array of high elevation ecosystems.Together these factors make the QTP a critical ecological shield for Asia.However,the composition,structure and function of plant diversity in QTP has experienced profound changes in recent decades.Long-term on-site monitoring,fieldexperiments,remote sensing,and simulations have led to significantadvances in our understanding of how plant diversity on the QTP has responded to climate change and human activity.This review synthesizes findingsfrom previous researches on how climate change and human activity have impacted plant diversity on the QTP.We identify gaps in our knowledge and highlight the need for interdisciplinary studies,long-term monitoring networks,and adaptive management strategies to enhance our knowledge and safeguard the QTP’s biodiversity amid accelerating global climate change.
基金support by the National Key R&D Program of China(Grant No.2023YFA1008901)the National Natural Science Foundation of China(Grant Nos.11988102,12172009)is gratefully acknowledged.
文摘In this manuscript,we propose an analytical equivalent linear viscoelastic constitutive model for fiber-reinforced composites,bypassing general computational homogenization.The method is based on the reduced-order homogenization(ROH)approach.The ROH method typically involves solving multiple finite element problems under periodic conditions to evaluate elastic strain and eigenstrain influence functions in an‘off-line’stage,which offers substantial cost savings compared to direct computational homogenization methods.Due to the unique structure of the fibrous unit cell,“off-line”stage calculation can be eliminated by influence functions obtained analytically.Introducing the standard solid model to the ROH method enables the creation of a comprehensive analytical homogeneous viscoelastic constitutive model.This method treats fibrous composite materials as homogeneous,anisotropic viscoelastic materials,significantly reducing computational time due to its analytical nature.This approach also enables precise determination of a homogenized anisotropic relaxation modulus and accurate capture of various viscoelastic responses under different loading conditions.Three sets of numerical examples,including unit cell tests,three-point beam bending tests,and torsion tests,are given to demonstrate the predictive performance of the homogenized viscoelastic model.Furthermore,the model is validated against experimental measurements,confirming its accuracy and reliability.
基金funded by the National Natural Science Foundation of China(42101276)the Major Project of Key Research Bases for Humanities and Social Sciences Funded by the Ministry of Education of China(22JJD790015)the Science and Technology Project of Gansu Province,China(20JR5RA529).
文摘The Qinghai-Xizang Plateau(QXP)serves as a crucial ecological barrier in China and Asia,exerting profound influences on global climate and biodiversity conservation.Gannan Tibetan Autonomous Prefecture(hereinafter referred as Gannan Prefecture),located on the northeastern edge of the QXP,represents a fragile alpine ecosystem in which land use change significantly impacts ecosystem services(ESs).This study established a comprehensive framework,utilizing the Patch-generating Land-Use Simulation(PLUS)model coupled with the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model to predict land use patterns under the natural development scenario,cultivated land protection scenario,and ecological protection scenario for Gannan Prefecture by 2030 and evaluated four critical ESs:habitat quality(HQ),water yield(WY),soil retention(SR),and carbon storage(CS).The primary aim is to elucidate the impacts of dynamic land use change on ESs.The results revealed that,from 2000 to 2020,HQ exhibited minimal variation,whereas CS experienced a slight decline.Conversely,WY and SR showed significant improvements.Under the natural development scenario,construction land was projected to increase by 4247.74 hm^(2),primarily at the expense of forest land.The cultivated land protection scenario anticipated an increase in farmland by 2634.36 hm^(2),which was crucial for maintaining food security.The ecological protection scenario predicted a notable expansion of forest land,accompanied by a restrained development rate of construction land.The ecological protection scenario also showed an increase in the ecosystem service index(ESI),encompassing 26.07%of the region.Forest land and grassland emerged as the primary contributors to ESs,while construction land substantially impacted WY.Water bodies exhibited minimal contribution to ESs.This study enhanced the understanding of land use change impacts on ESs in fragile and high-altitude ecosystems,offering essential theoretical frameworks and practical direction for forthcoming ecological policy and regional planning endeavors.